
Schedule of Talks

27th Annual Fall Workshop on Computational Geometry

November 3–4, 2017

Stony Brook University

Stony Brook, NY

Sponsored by the National Science Foundation and the
Department of Applied Mathematics and Statistics and the

Department of Computer Science,
College of Engineering and Applied Sciences, Stony Brook University

Program Committee:

Greg Aloupis (Tufts) Peter Brass (CCNY)
William Randolph Franklin (RPI) Jie Gao (co-chair, Stony Brook)
Mayank Goswami (Queens College) Matthew P. Johnson (Lehman College)
Joseph S. B. Mitchell (co-chair, Stony Brook) Don Sheehy (University of Connecticut)
Jinhui Xu (University at Buffalo)

Friday, November 3, 2017: Computer Science (NCS), Room 120

9:20 Opening remarks

Contributed Session 1 Chair: Joe Mitchell

9:30–9:45 “Sampling Conditions for Clipping-free Voronoi Meshing by the VoroCrust Algorithm”,
Scott Mitchell, Ahmed Abdelkader, Ahmad Rushdi, Mohamed Ebeida, Ahmed Mahmoud,
John Owens and Chandrajit Bajaj

9:45–10:00 “Quasi-centroidal Simplicial Meshes for Optimal Variational Methods”, Xiangmin

Jiao

10:00–10:15 “A Parallel Approach for Computing Discrete Gradients on Mulfiltrations”, Federico
Iuricich, Sara Scaramuccia, Claudia Landi and Leila De Floriani

10:15–10:30 “Parallel Intersection Detection in Massive Sets of Cubes”, W. Randolph Franklin
and Salles V.G. Magalhães

10:30–11:00 Break.

Contributed Session 2 Chair: Jie Gao

11:00–11:15 “Dynamic Orthogonal Range Searching on the RAM, Revisited”, Timothy M. Chan
and Konstantinos Tsakalidis

11:15–11:30 “Faster Algorithm for Truth Discovery via Range Cover”, Ziyun Huang, Hu Ding
and Jinhui Xu

11:30–11:45 “An Efficient Sum Query Algorithm for Distance-based Locally Dominating Func-
tions”, Ziyun Huang and Jinhui Xu

11:45–12:00 “Approximate Convex Hull of Data Streams”, Avrim Blum, Vladimir Braverman,
Ananya Kumar, Harry Lang and Lin Yang

12:00–1:00 Lunch (provided)

1:00–2:00 Invited Talk: “The geometry of data structures”, John Iacono (NYU Tandon School of
Engineering and UniversitĹibre de Bruxelles)

Abstract: A technique has been developed to study and analyze data structures called the
geometric view. Several examples of the use of this view will be presented including, rotation-
based binary search tree data structure, cache-oblivious persistence, and disjoint sets. In all
of these examples the main theme is that by moving to the geometric view, details of the
data structure that seem cumbersome and hard to approach are abstracted in such a way
that allows a simple, yet equivalent, view.

Contributed Session 3 Chair: Jinhui Xu

2:00–2:15 “Online Unit Covering in L2”, Anirban Ghosh

2:15–2:30 “An O(n logn)-Time Algorithm for the k-Center Problem in Trees”, Haitao Wang and
Jingru Zhang

2:30–2:45 “Compact Data Structures for Abstract Order Types and Optimal Encodings for SUM
Problems”, Jean Cardinal, Timothy Chan, John Iacono, Stefan Langerman and Aurélien

Ooms

2:45–3:00 “Lightweight Sketches for Mining Trajectory Data”, Maria Astefanoaei, Panagiota Kat-
sikouli, Mayank Goswami and Rik Sarkar

3:00–3:30 Break

Contributed Session 4 Chair: Don Sheehy

3:30–3:45 “Calculating the Dominant Guard Set of a Simple Polygon”, Eyup Serdar Ayaz and
Alper Ungor

3:45–4:00 “Perfect Polygons”, Hugo A. Akitaya, Erik D. Demaine, Martin L. Demaine, Adam
Hesterberg, Joseph S.B. Mitchell and David Stalfa

4:00–4:15 “Efficient Approximations for the Online Dispersion Problem”, Jing Chen, Bo Li and
Yingkai Li

4:15–4:30 “Edge Conflicts Can Increase Along Minimal Rotation-Distance Paths”, Sean Cleary

and Roland Maio

4:30–4:45 “Optimal Safety Patrol Scheduling Using Randomized Traveling Salesman Tour”, Hao-
Tsung Yang, Shih-Yu Tsai, Jie Gao and Shan Lin

5:00–6:00 Open Problem Session

Saturday, November 4, 2017: Computer Science (NCS), Room 120

Contributed Session 5 Chair: Jie Gao

9:30–9:45 “On the Density of Triangles with Periodic Billiard Paths”, Ramona Charlton

9:45–10:00 “Nearest Neighbor Condensation with Guarantees”, Alejandro Flores Velazco and
David Mount

10:00–10:15 “On the Complexity of Random Semi Voronoi Diagrams”, Chenglin Fan and Ben-
jamin Raichel

10:15–10:30 “Efficient Algorithms for Computing a Minimal Homology Basis”, Tamal K. Dey,
Tianqi Li and Yusu Wang

10:30–11:00 Break

Contributed Session 6 Chair: Matt Johnson

11:00–11:15 “Cardiac Trabeculae Segmentation: an Application of Computational Topology”,
Chao Chen, Dimitris Metaxas, Yusu Wang, Pengxiang Wu and Changhe Yuan

11:15–11:30 “Topological and Geometric Reconstruction of Metric Graphs in Rn”, Brittany Fasy,
Rafal Komendarcźyk, Sushovan Majhi and Carola Wenk

11:30–11:45 “Randomized Incremental Construction of Net-Trees”, Mahmoodreza Jahanseir and
Donald Sheehy

11:45–12:00 “On Computing a Timescale Invariant Bottleneck Distance”, Nicholas J. Cavanna,
Oliver Kisielius and Donald R. Sheehy

12:00–1:00 Lunch (provided)

1:00–2:00 Invited Talk: “Sublinear algorithms for outsourced data analysis”, Suresh Venkatasub-
ramanian (University of Utah)

Abstract: In the era of outsourcing, communication has replaced computation as an expensive
resource. Researchers have proposed numerous models for communication-efficient computing
that draw on classical ideas of interactive proofs, updated for our more “sublinear” world.

I’ll talk about the model of streaming interactive proofs and how we can solve classic problems
in data analysis like near neighbor search, minimum enclosing balls, and range searching in
general with sublinear communication.

Contributed Session 7 Chair: Mayank Goswami

2:00–2:15 “Improved Results for Minimum Constraint Removal”, Eduard Eiben, Jonathan Gem-
mell, Iyad Kanj and Andrew Youngdahl

2:15–2:30 “Algorithm for Optimal Chance Constrained Knapsack with Applications to Multi-
robot Teaming”, Fan Yang and Nilanjan Chakraborty

2:30–2:45 “Freeze Tag Awakening in 2D is NP-hard”, Hugo Akitaya, Jingjin Yu and Zachary Abel

2:45–3:00 “Freeze Tag is Hard in 3D”, Erik D. Demaine and Mikhail Rudoy; Matthew P. Johnson
(“Easier Hardness for 3D Freeze-Tag”)

3:00–3:30 Break

Contributed Session 8 Chair: W. Randolph Franklin

3:30–3:45 “Declarative vs Rule-based Control for Flocking Dynamics”, Usama Mehmood, Nicola
Paoletti, Dung Phan, Radu Grosu, Shan Lin, Scott Stoller, Ashish Tiwari, Junxing Yang and
Scott Smolka

3:45–4:00 “Realizing Minimum Spanning Trees from Random Embeddings”, Saad Quader, Alexan-
der Russell and Ion Mandoiu

4:00–4:15 “The Minimum Road Trips Problem”, Samuel Micka and Brendan Mumey

4:15–4:30 “Harder Hardness of Approximation for 2D r-Gather”, Matthew P. Johnson

Sampling Conditions for Clipping-free Voronoi Meshing

by the VoroCrust Algorithm

Scott Mitchell1, Ahmed Abdelkader2, Ahmad Rushdi1,3, Mohamed Ebeida1,
Ahmed Mahmoud3, John Owens3 and Chandrajit Bajaj4

1 Sandia National Laboratories
2 University of Maryland, College Park

3 University of California, Davis
4 University of Texas, Austin

For presentation at the Fall Workshop on Computational Geometry (FWCG 2017)

Abstract

Decomposing the volume bounded by a closed surface using simple cells is a key step in
many applications. Although tetrahedral meshing is well-established with many successful
implementations, many research questions remain open for polyhedral meshing, which promises
significant advantages in some contexts. Unfortunately, current approaches to polyhedral meshing
often resort to clipping cells near the boundary, which results in certain defects. In this talk,
we present an analysis of the VoroCrust algorithm, which leverages ideas from α-shapes and
the power crust algorithm to produce conforming Voronoi cells on both sides of the surface.
We derive sufficient conditions for a weighted sampling to produce a topologically-correct and
geometrically-accurate reconstruction, using the ε-sampling paradigm with a standard sparsity
condition. The resulting surface reconstruction consists of weighted Delaunay triangles, except
inside tetrahedra with a negative weighted circumradius where a Steiner vertex is generated
close to the surface.

Generating quality meshes is an important problem in computer graphics and geometric modeling.
Polyhedral meshing offers higher degrees of freedom per element than tetrahedral or hex-dominant
meshing, and is more efficient in filling a space, because it produces fewer elements for the same
number of nodes. Within the class of polyhedral mesh elements, Voronoi cells are particularly useful
in numerical simulations for their geometric properties, e.g., planar facets and positive Jacobians.

A conforming mesh exhibits two desirable properties simultaneously : 1) a decomposition of
the enclosed volume, and 2) a reconstruction of the bounding surface. A common technique for
producing boundary-conforming decomposition from Voronoi cells relies on clipping, i.e., intersecting
and truncating, each cell by the bounding surface [3]. An alternative to clipping is to locally mirror
the Voronoi generators on either side of the surface [2].

VoroCrust can be viewed as a principled mirroring technique. Similar to the power crust [1], the
reconstruction is composed of the facets shared by cells on the inside and outside of the manifold.
However, VoroCrust uses pairs of unweighted generators tightly hugging the surface, which allows
further decomposition of the interior without disrupting the surface reconstruction. VoroCrust can
also be viewed as a special case of the weighted α-shape [4]. A description of the abstract VoroCrust
algorithm we analyze is provided next. Figure 1 illustrates the basic concepts in 2D.

1

The Abstract VoroCrust Algorithm

1. Take as input a weighted point sampling P = {(pi, wi)} of a closed 2-manifold M.

2. Use weights to define a ball Bi of radius ri =
√
wi centered at each sample pi.

3. Find intersecting triplet of balls to obtain one corner point on either side of M.

4. Collect the Voronoi generators G as the set of corner points outside all sample balls.

5. Optionally, include in G more generators far-inside M to further decompose its interior.

6. Output the Voronoi diagram of G as the desired decomposition, and the facets separating the
inside and outside generators as the reconstructed surface M̂.

Problem Statement: We seek to characterize the locations and weights of the input samples
in Step (1) to guarantee a topologically-correct and geometrically-accurate reconstruction.

(a) Weighted samples. (b) Intersection pairs. (c) Voronoi cells. (d) Reconstruction facets.

Figure 1: VoroCrust reconstruction, demonstrated on a planar curve. The weight of a point defines
the radius of a ball around it. The reconstruction is the Voronoi facets separating the uncovered
intersection pairs on opposite sides of the manifold.

Summary of Results: An ε-sampling S is δ-weighted if each sample is associated with a
ball of radius ri = δ lfs(pi), with δ ≥ ε. In addition, S is conflict-free if ∀j 6= i, ‖pi − pj‖ ≥
ε ·min(lfs(pi), lfs(pj)). For some constants ε, δ, c, we show that the reconstruction M̂ is geometrically-
close and topologically-correct. Moreover, M̂ → M quadratically as ε → 0. Specifically, for
every p ∈ M with closest point q ∈ M̂, and for every q ∈ M̂ with closest point p ∈ M, we have
‖pq‖ < c · δ2lfs(p). The reconstruction M̂ contains every input sample as a vertex. Rather than
filtering, the algorithm as outlined above naturally resolves slivers by introducing Steiner vertices.

References

[1] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust, unions of balls, and
the medial axis transform. Computational Geometry, 19(2):127–153, July 2001.

[2] Joseph E. Bishop. Simulating the pervasive fracture of materials and structures using randomly
close packed Voronoi tessellations. Computational Mechanics, 44(4):455–471, September 2009.

[3] Mohamed S. Ebeida and Scott A. Mitchell. Uniform random Voronoi meshes. In International
Meshing Roundtable (IMR), pages 258–275, 2011.

[4] Herbert Edelsbrunner. Weighted alpha shapes. University of Illinois at Urbana-Champaign,
Department of Computer Science, 1992.

2

1

Quasicentroidal Simplicial Meshes for
Optimal Variational Methods

Xiangmin Jiao

Abstract—Mesh generation is an important problem
in computational geometry with numerous applications.
One of its most important applications is the variational
methods for the numerical solutions of partial differen-
tial equations, which are essential not only for scientific
discoveries and engineering innovations but also computer-
aided design. Traditional requirements on mesh generation
include well-shapedness in aspect ratios and quasiuniformity
in element sizes, which are necessary conditions for the
convergence of Galerkin finite elements. In this work,
we introduce the concepts of quasicentroidal meshes, in
which all the elements are nearly symmetric about their
subelements. These meshes can enable superconvergence
of some variational methods and hence optimal efficiency.
In particular, quadratic finite elements on quasicentroidal
meshes enjoy fourth-order convergence for L2 projection
and the Poisson equation, compared to the regular third-
order convergence. We propose an approach to generate
quasicentroidal simplicial meshes based on quasiregular
honeycomb tessellations and pose some open problems in
optimal mesh generation.

I. INTRODUCTION

Mesh generation is an important problem at the in-
tersection of computational geometry, applied mathe-
matics, and applications. It has numerous applications
in computer science and computer engineering, such
as computer graphics, visualization, image processing,
computer-aided design, which provide valuable tools for
scientists and engineers. Meshes also provide geomet-
ric supports for defining well-behaved piecewise basis
functions, which are the underpinnings of any variational
method for solving partial differential equations (PDEs)
that describe some physics phenomena. Therefore, the
importance of mesh generation for science and engi-
neering cannot be overstated. The requirements of mesh
generation are typically motivated by the convergence
properties of the variational methods. Therefore, rigor-
ous convergence analysis, especially in terms of their
requirements on meshes, is fundamentally important
to the researchers in mesh generation, as well as to
the practitioners who rely on variational methods in
engineering, computer-aided design, etc.

Mesh generation has been investigated for a few
decades. In this work, we focus on simplicial meshes due

Department of Applied Mathematics and Statistics, Stony Brook
University, Stony Brook, NY 11794. xiangmin.jiao@stonybrook.edu.

to their flexibility in dealing with complex geometries
and mesh adaptation. We will review the traditional
requirements of mesh generation, and then propose a
new optimality condition called quasicentroidality. This
condition is important for achieving superconvergence of
variational methods using quadratic elements, and hence
it can lead to better accuracy without extra computational
cost. We propose a method to generate these meshes
based on quasiregular honeycomb tessellations and pose
some new open problems in optimal mesh generation.

II. TRADITIONAL REQUIREMENTS ON MESHES

To motivate the requirements on mesh generation, let
us consider some example variational problems. One of
the simplest examples is the Poisson equation

−∆u(x) = f(x) for x ∈ Ω ⊆ Rd (1)

with some Dirichlet boundary condition u(x) = uD(x)
on its boundary Γ. In the context of CAD, the Laplace
operator is often replaced by the surface Laplacian,
a.k.a. the Laplace-Beltrami operator, which introduce
nonlinearity. For simplicity, let us focus on the linear
case by assuming the standard Laplace operator.

To solve a PDE using variational methods, we first
introduce a set of test functions {ψ1, ψ2, . . . , ψn}. As-
sume that the ψi are (weakly) differentiable and that they
vanish along the Dirichlet boundary ∂Ω. By taking the
inner product of (1) with ψi and then integrating the
second derivatives by parts, we can convert (1) into the
variational form (or the weak form)∫

Ω

∇u ·∇ψ dx =

∫
Ω

fψ dx. (2)

We introduce a set of basis functions (or trial functions)
φ = [φ1, φ2, . . . , φn]T to approximate u as u ≈ uThφ,
and then obtain an algebraic equation

Kuh = f . (3)

In the Galerkin methods, {φi} = {ψi}. A closely related
variational problem is the projection∫

Ω

uψi dx =

∫
Ω

fψi dx, (4)

2

which is a zeroth-order elliptic problem known as L2

projection in the context of Galerkin methods. See e.g.
[3] for more detail.

The basis and trial functions are typically defined
through the aid of a mesh that tessellates Ω into a set
of elements τk, i.e., Ω =

⋃m
k=1 τk. We assume the

mesh is conformal, which means that any two adjacent
elements must meet at a lower-dimensional subelement
(a node, edge, face, etc.) shared by the two elements. For
meshes with linear elements, two conditions are typically
imposed on mesh generation for the Galerkin methods:

Quasiuniformity in element sizes: The ratio between
the sizes of the largest and smallest elements should be
bounded by a constant in some metric space.

Well-shapedness in aspect ratio. The maximum
angle should be bounded away from 180◦, or in a
simplified sense, the ratio between the circumradius to
inradius (i.e., the aspect ratio) should be bounded by
some constant.

Quasiuniformity and well-shapedness together are suf-
ficient mesh conditions for the convergence of the vari-
ational formulation with consistent discretizations for
well-posed PDEs. Quasiuniformity is a necessary condi-
tion for the well-conditioning of all variational methods,
whereas well-shapedness is a necessary condition for
second and higher-order PDEs. Besides their impor-
tance for linear elements, these conditions also apply
to quadratic and higher-order elements. In addition, the
following condition is often cited in mesh generation:

Voronoi/Delaunay property: The facets of the
Voronoi cells pass through the mid-points of, and are
perpendicular to, the edges in the Delaunay mesh.

The Voronoi/Delaunay property is typically used as
a heuristic for achieving well-shapedness of elements.
More importantly, the Voronoi property is useful in the
context of finite volume methods, which compute fluxes
along the facets of the Voronoi cells: Thanks to the
symmetry about the facets, the leading-order error terms
in the fluxes cancel out on Voronoi meshes similar to
centered differences in 1-D [4]. In addition, the so-called
centroidal Voronoi tessellation (CVT) has been shown to
enable better accuracy for various applications such as
image compression, cellular biology, etc. [1]. However,
such a notion of “symmetry” or “centroidality” has not
been investigated systematically in the context of finite
elements. The goal of the remainder of this work is
to address this fundamental question, with a focus on
meshes with quadratic elements.

III. CENTROIDALITY AND QUASICENTROIDALITY

We now introduce a new condition for mesh gen-
eration with some notion of “symmetry” of a mesh.
From numerical-analysis point of view, we introduce
the conditions of centroidality and quasicentroidality,

which lead to error cancellations in variational methods,
analogous to the error cancellation due to the Voronoi
property for finite volumes.

First, we introduce the following notion of weighted
centroids, which generalizes the notion of centorids.

Definition 1. Given a region τ ∈ Rd, its weighted
centroid with a weighting function ψ(x) is a point
x̄ ∈ Rd such that∫

τ

(x− x̄)ψ(x)dx = 0. (5)

If ψ ≡ 1, the above definition reduces to the centroid
(a.k.a. the center of mass). If ψ(x) is a positive function,
then x̄ lies within the convex hull of τ . In general, ψ is
the Lagrange polynomial basis functions corresponding
to the nodes of τ , and hence ψ may have negative
values. Because ψ is in general nonlinear, the existence
of the weighted centroid cannot be taken for granted.
We note the following fact for elements with Lagrange
polynomial basis functions.

Proposition 2. Any element τ with stable degree-p
Lagrange basis functions {φi} must have a weighted
centroid with respect to each of its basis function φi.

Here by stable basis functions, we mean that for each
φi(x),

∫
τ
|φi(x)| dx ≤ C

∫
τ
φi(x) dx for some small

C > 0. The proof of Proposition 2 involves a geometric
argument.

Proof: Let ψ = φi(x) in (5). Consider each non-
linear equation

gj(x̄) = (xj − x̄j)ψ(x),

for j = 1, 2, . . . d. By assumption,
∫
τ
ψ(x) dx > 0. Let

ej denote the vector along the jth coordinate axis. Since
gj(x̄) is a polynomial in x̄ and Gj =

∫
τ
gj(αej) dx has

opposite signs as α → −∞ and α → ∞, there must
exist two hyperplanes P1 and P2 perpendicular to ej
such that Gj has opposite signs for any pair of points
from beyond P1 and P2, respectively. Therefore, the zero
levelset of Gj(x̄) exists and is bounded between P1 and
P2. The d zero-levelset hypersurfaces of (5) intersect
pairwise within the hyperrectangle defined by the d pairs
of bounding hyperplanes, so the intersection must exist
within the hyperrectangle in Rd.

Now, we shall focus on quadratic simplicial meshes,
of which the nodes include the vertices of the simplices,
along with the centers of the edges, faces, etc. For these
meshes, we define centroidality as follows.

Definition 3. A node xi in a mesh is centroidal if the
weighted centroids of its incident elements with respect
to the basis function φi(x) are symmetric pairs about xi.
Node xi is quasicentroidal if it is within O(h2) from the
average of each symmetric pair of weighted centroids.

3

Figure 1. Example quadratic triangular meshes with centroidal (left)
and non-centroidal nodes in the interior.

We say a node is non-centroidal if it is not quasicen-
troidal. Figure 1 shows two example quadratic meshes
with centroidal and non-centroidal nodes, respectively.
The quasicentroidality concept is fundamental from a
numerical-analysis point of view, because it enables error
cancellation in the variational forms. Let uI denote the
interpolation of a smooth function u with the basis func-
tions φi. Let σ denote the collection of elements around
a quasicentroidal node xi, i.e., σ = ∪{τk | xi ∈ τk},
the 1-ring neighborhood of xi. Let Vσ be the volume of
σ, and h the longest edge length in σ. Then, it can be
shown that [2]∣∣∣∣∫

σ

(u− uI)φi dx
∣∣∣∣ ≤ VσO(h4). (6)

As a corollary, L2 projection with quadratic elements
converges at the order of O(h4), assuming the boundary
values are approximated to fourth order accuracy. The
quadratic Galerkin method for the Poisson equation also
converges at the order of O(h4) assuming Dirichlet
boundaries [2].

From the point of view of mesh generation, we define
the following concept about meshes.

Definition 4. A mesh is centroidal if the elements are
symmetric about all of the sub-elements (nodes, edges,
faces, etc.) in the interior of the mesh.

In a centroidal mesh, all the interior nodes (i.e.,
excluding the nodes on Γ) are centroidal. The symmetry
requirement in Definition 4 does not allow mesh grading.
One can define a centroidal mesh in a metric space
and then map it onto the Euclidean space, which leads
to a quasicentroidal mesh, of which the interior nodes
are quasicentroidal. This allows quadratic meshes to
have smooth mesh grading while still enjoying error
cancellation for quadratic Galerkin methods.

In the preceding discussions, we have left out one fun-
damental question: Do centroidal simplicial meshes exist
in all dimensions? For a hyperbox in Rd, it is trivial to
prove the existence of centroidal meshes: The hyperbox
can be tessellated by congruent hyperrectangles, which
form a centroidal mesh with tensor-product elements.
We can subdivide the hyperrectangles into simplices in a

locally symmetric fashion, which will result in centroidal
simplicial meshes. For irregular domains, it is very
difficult, if not impossible, to ensure quasicentroidality
near boundaries. We will revisit this issue in Section V.

IV. WELL-SHAPED CENTROIDAL MESHES

Quasicentroidal meshes have excellent numerical
properties in terms of error cancellation. However, all
quasicentroidal meshes are not equally good for Galerkin
methods, because well-shapedness of elements must also
be taken into account. The elements generated by sub-
dividing hyperrectangles may not produce well-shaped
simplex elements, so the solutions may not have optimal
accuracy in terms of the constant factor of the leading
error term.

In 2-D, regular triangles are space filling, and a mesh
composed of regular triangles in the interior are well-
shaped and centroidal. Such a mesh is optimal for
isotropic problems. For anisotropic problems, we can
introduce smoothly varying metric tensors to grade the
mesh, which would result in quasicentroidal meshes.

In 3-D, regular tetrahedra are not space filling. How-
ever, the 3-D space can be tessellated by the so-
called quasiregular honeycomb, such as the tetrahedral-
octahedral honeycomb; see Figure 2 for an example. In
this tessellation, each tetrahedron is regular with equal
dihedral angles of 70.53°, and each octahedron is also
regular with equal dihedral angles of 109.42◦. All the
faces are equilateral triangles. We can subdivide each
octahedron into two pyramids, and then uniformly subdi-
vide each pyramid into two or four congruent tetrahedra
in a locally symmetric fashion. We refer to the resulting
tetrahedral mesh as TOH-based. In this mesh, every face
has two equal-sized minimum angles of 45◦ or 60◦. In
each tetrahedron, there are three equal-sized minimum
angles of 70.53° for the regular tetrahedra and of 54.71◦

for those from subdividing octahedra. The maximum
angles are 90◦. These elements minimize the maximum
errors in the derivative approximations within a factor of
2 among all tetrahedra, and hence they are nearly optimal
in terms of well-shapedness for isotropic problems. This
optimality is beneficial for not only quadratic elements
but also linear elements. Similar to triangular meshes in
2-D, the meshes can be graded for anisotropic problems
by introducing metric tensors.

Another desirable property of the TOH-based mesh
is that each tetrahedra can be uniformly subdivided
into four regular tetrahedra and one regular octahe-
dron, and each octahedron can be uniformly subdivided
into six regular octahedron and eight regular tetrahedra.
This allows uniform mesh refinement to enable efficient
multigrid methods, which have linear time complexity
for solving linear systems from variational methods.

4

Figure 2. Quasiregular honeycomb with octahedra and tetrahedra [5].

V. NEARLY QUASICENTROIDAL MESHES

In general, quasicentroidality cannot be attained near
the boundary of an irregular domain. From numerical
point of view, this is not an issue, because boundary
nodes are not quasicentroidal for quadratic elements,
so special treatments are required for boundary nodes
in order to achieve uniform fourth-order convergence
in the presence of Neumann boundaries. These treat-
ments would require degree-4 basis functions locally
near the boundary, which are more expensive than using
quadratic elements by a constant factor. For the nodes
near boundaries, if quasicentroidality is lost locally, a
similar treatment can be applied to these nodes. Due
to the surface-to-volume ratio, the additional cost for
these nodes is negligible, and hence optimal performance
can still be achieved. More generally, if a mesh loses
quasicentroidality for O(nα) nodes with α < 1, we
say the mesh is nearly quasicentroidal. From a practical
point of view, near quasicentroidality can enable the
same optimal performance as quasicentroidal meshes,
as long as additional care is taken to ensure uniform
convergence for the non-centroidal nodes.

For irregular domains, the TOH-based meshes are
more adaptive to irregular domains than those obtained
from subdividing cubes. This is because the outer surface
of a TOH-based mesh M is composed of equilateral
triangles. To generate meshes near boundary, we pro-
pose a cut-cell approach as follows. Assuming that the
mesh is sufficiently fine near boundary, we compute the
intersection of the edges with Γ, snap the nodes onto
the surface if they are within h/2 to the boundary, and

tetrahedralize the remainder of the cut-cells. This ensures
that the elements next to the boundaries are quasiuniform
and are reasonably well-shaped, with only small increase
to the maximum angles.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we introduced the concepts of centroidal
and quasicentroidal meshes, which enjoy superconver-
gence in the interior for quadratic Galerkin methods.
These are defined based on the weighted centroids of
the elements, where the weighting functions are the
test functions in the variational methods. In practice,
quasicentroidality may be lost near boundaries and at
some isolated points. This leads to near quasicentroidal
meshes, which still enjoy the same optimal efficiency as
quasicentroidal meshes as long as special care is taken
to ensure uniform convergence.

This work only addressed the theoretical issue mostly
at a conceptual level. We outlined an algorithm for gener-
ating nearly quasicentroidal meshes based on tetrahedral-
octahedral honeycomb in the interior and cut-cells near
boundaries. As a future research direction, we plan to
implement the method and compare it against other mesh
generation techniques in terms of both the efficiency of
mesh generation and the accuracy of variational methods.
We expect the method also generalizes to 4-D based on
quasiregular honeycombs in R4.

In terms of surfaces, there are some interesting open
problems. For spheres, there exist quasiregular tessel-
lation of spheres, such as the tetrakis hexahedron and
disdyakis dodecahedron, which can be used to generate
quasicentroidal meshes. However for genus-k surfaces
with k ≥ 1, it is unclear whether quasiregular tessel-
lations exist to generate quasicentroidal meshes. If the
answer to the question is negative, then what is the
lowest bound of the number of non-centroidal points in
a nearly quasicentroidal mesh on a genus-k surface?

REFERENCES

[1] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessella-
tions: Applications and algorithms. SIAM Review, 41(4):637–676,
1999.

[2] X. Jiao. Backward error analysis of variational methods I:
High-order and super-convergence of Galerkin FEM. 2017. In
preparation.

[3] M. G. Larson and F. Bengzon. The Finite Element Method: Theory,
Implementation, and Applications, volume 10. Springer Science
& Business Media, 2013.

[4] I. D. Mishev. Finite volume methods on Voronoi meshes. Numer-
ical Methods for Partial Differential Equations, 14(2):193–212,
1998.

[5] Wikipedia. Honeycomb (geometry), 2017. Online; accessed 22-
Oct-2017; https://en.wikipedia.org/wiki/Honeycomb_(geometry).

A parallel approach for computing discrete gradients on mulfiltrations

Federico Iuricich1, Sara Scaramuccia2, Claudia Landi3 and Leila De Floriani1

1Department of Geographical Sciences, University of Maryland, College Park (MD), USA.
2Department of Computer Science, Bioengineering, Robotics, and Systems Engineering, University of Genova,

Genova, Italy.
3Department of Sciences and Methods for Engineering DISMI, University of Modena and Reggio Emilia,

Modena-Reggio Emilia, Italy

1 Introduction

Persistent homology is a powerful tool for analyzing
shapes based on their homological features [4]. For com-
puting persistence homology we need a cell complex Γ
(our shape), and a filtering function f : Γ Ñ R. It is
common in applications, especially for the analysis of
scalar fields, to having to deal with multiple filtrations
(i.e., cell complexes with a vector-valued function de-
fined on its vertices). For analyzing this kind of data
Multidimensional Persistent Homology (MPH) [3] has
been defined. Computing MPH is extremely challeng-
ing even with data of modest size and scalable algo-
rithms are needed for extracting this information effi-
ciently. Here, we consider using a discrete gradient field
V [6] as an intermediate representation for computing
MPH on Γ and f . From V we extract its associated
chain complex, represented as a graph G, where: the
nodes are the critical cells of V and, the arcs are ob-
tained by following the gradient paths of V. By follow-
ing our approach for computing V we guarantee that the
corresponding chain complex G shares the same MPH
of Γ, according to f , but it is also composed by fewer
cells. Then, computing MPH on G is much faster than
on Γ.

2 Background

We will discuss our work in terms of triangle meshes, al-
though, all the results are valid for any kind of regular
cell complex. A k-dimensional simplex, or k-simplex, σ
is the convex hull of k ` 1 affinely independent points.
A face τ of σ is the convex hull of any subset of k ´ 1
points of σ (indicated τ ă σ), while σ is a coface of
τ (indicated σ ą τ). A simplicial complex Σ is a col-
lection of k-simplices such that every face of a simplex
in Σ is also in Σ and the intersection of any two sim-
plices of Σ is a face of both. Triangle meshes (or meshes
for brevity) are examples of simplicial complexes: the
vertices, edges, and faces correspond to 0-, 1- and 2-
simplices, respectively. We will denote by Σk the set of

k-simplices in Σ. Given a triangle mesh Σ, a filtration
is a sequence of meshes Σ0 Ă Σ1 Ă ... Ă Σn “ Σ. By
defining a real-valued function on the vertices of Σ it is
possible to induce a filtration by assigning, to each sim-
plex of Σ, the maximum function value of its vertices.
The filtration of Σ is then defined as the sequence of
sub-level complexes Σu “ f´1p´8, us. In this context,
persistent homology [4] is used to study the homological
changes of the sub-level sets Σu “ f´1p´8, us.

The algorithm proposed in this paper retrieves an
acyclic discrete vector field (called discrete gradient for
brevity) over the domain Σ. The relevance of this out-
put has to be seen within the framework of Forman’s
discrete Morse Theory [6]. In discrete Morse Theory, a
(discrete) vector is a pair of simplices pσ, τq such that
σ ă τ . A discrete vector field V is any collection of vec-
tors over a simplicial complex such that each simplex
belongs to at most one vector. Given a discrete vector
field V , if a simplex belongs to no vector, it is called
critical. A V -path is a sequence of vectors pσi, τiq be-
longing to V , for i “ 1, . . . , r, such that, for all indexes
i ď r ´ 1, σi`1 ă τi and σi ‰ σi`1. A V -path might be
closed if σ1 “ σr and trivial if r “ 1. A discrete gradient
V is a discrete vector field whose closed V -path are all
trivial. Forman [6] proves that the homology of Σ is al-
ways isomorphic to the homology of the chain complex
G computed from V . The discrete gradient V can be
adapted to preserve the sub-level structure with respect
to a filtering function. In the univariate setting, The-
orem 4.3 in [8] proves that the persistent homologies
of V also coincides with those of G. For multidimen-
sional persistent homology, this result is guaranteed by
Corollary 3.12 in [1].

3 Computing a discrete vector field in parallel

For ease of exposition, in the reminder of this work we
will focus on a specific class of cell complexes, the sim-
plicial complexes. Let Σ be a d-dimensional simplicial
complex and f : Σ0 ÝÑ Rn a vector-valued function
defined on the 0-simplices (vertices) of Σ. We require

1

the function to be component-wise injective which is
achieved by means of simulation of simplicity [5]. From
the injective function, a new function f̃ “ pf̃0, . . . , f̃nq is
defined on each simplex σ of Σ as, f̃ipσq “ maxvPσ fipvq.
Then, our approach is organized in three steps:

• an indexing schema is computed on the vertices of
Σ and successively extended to all its simplices,

• the lower star of each vertex is split into indepen-
dent sets based on such schema,

• gradient pairs and critical cells are identified in each
independent set and combined to form the output
discrete gradient.

Computing the Indexing schema. In the first step
we compute a well-extensible indexing I by defining a
total order over the vertices of Σ.

Definition 1 An indexing schema I is well-extensible
with respect to function f̃ if and only if, for every two
simplices σ1 and σ2,

f̃pσ1q ĺ f̃pσ2q ùñ Ĩpσ1q ď Ĩpσ2q,

where Ĩpσq :“ maxvPσ Ipvq.

In our approach we produce I by ordering all the ver-
tices with respect to a single and fixed component
i P t1, . . . , nu.

Proposition 1 I is a well-extensible indexing.

Proof. I provides a total order on the vertices so,
f̃pσq ĺ f̃pτq implies that f̃ipσq ď f̃ipτq. That is, there
exists a vertex v P τ such that f̃ipvq is greater than
or equal to all f̃ipwq with w P σ. This implies that
Ipwq ă Ipvq for every w in Σ, and hence Ĩpσq ď Ĩpτq. ˝

Extracting independent sets. From this point ver-
tices are processed one by one (possibly in parallel) and,
for each vertex v P Σ0, the index-based lower star sub-
division LIpvq is computed. Intuitively, LIpvq is the set
of simplices having v has vertex with maximum value
of Ip¨q,

LIpvq :“ tσ P Σ | Ĩpσq “ Ipvqu.

Within a single index-based lower stars we may have
simplices with different values of f̃ . However, in order
to preserve the persistence module, two simplices σ, τ
should be paired if and only if they belong to the same
level-set (i.e., f̃pσq “ f̃pτq). Thus, for each LIpvq we
subdivide the simplices according to f̃ . More precisely,
Kv is created as the quotient of LIpvq obtained through
the equivalence relation σ „ τ if and only if f̃pσq “
f̃pτq. According to the definition of index-based lower
star, we can easily see that each simplex of Σ belongs

to exactly one LIpvq, i.e., the lower star of its maximum
vertex according to I. Moreover we have cat state the
following.

Proposition 2 For any pair of simplices σ, τ , if f̃pσq “
f̃pτq then there exist a unique vertex v such that tσ, τu P
LIpvq (proof omitted for brevity).

That is, if two simplices belong to the same level set,
they will end up in the same indexed-based lower star.
Homotopy expansion. The last step consists in the
actual pairing of cells, within each Λ P Kv performed
by homotopy expansion.

Two simplices, say k-simplex σ and pk`1q-simplex τ ,
are paired via homotopy expansion when σ has no un-
paired faces and τ has only one unpaired face (i.e. σ).
The procedure HomotopyExpansion has no conceptual
differences from the one described in [10] for the unidi-
mensional case, except that we will work with the sim-
plices in Λ and not on the full indexed-based lower star.
Two priority queues PQ0 and PQ1 are used for selecting
which simplex in Λ needs to be paired respectively with
a higher or with a lower dimensional simplex. The pri-
ority queues are organized by listing, in lexicographic
order, the tuples containing the values of I for the ver-
tices of each simplex σ. This ensures that if σ Ĺ τ
in Λ, then σ takes priority over τ . While we refer to
[10] for details on the algorithm, it is important to no-
tice that also here each simplex enters a queue at most
once. Thus the procedure is always linear in the num-
ber of simplices in Λ. Once collected all the gradient
pairs computed on each Λ, we have that each simplex
is either critical or paired with another simplex.

3.1 Analysis and complexity

The input complex is assumed to be a finite d-
dimensional simplicial complex. In the reminder of this
paper we indicate with |¨| the cardinality of a set. Given
a simplicial complex Σ and a simplex σ P Σ, we assume
that f̃pσq can be retrieved in linear time in the number
of the vertices of σ. Moreover, we assume the boundary
and the coboundary of a given simplex σ to be com-
puted offline and stored so that it can be retrieved in
constant time. We indicate with Ω the set of simplices
incident into σ.

We recall that our algorithm performs three steps.
During the computation of the indexing schema, the
vertices are sorted according to a single component
of the input function. Thus, this step takes Op|Σ0| ¨

log |Σ0|q operations.
To split each indexed lower star LIpvq we have to visit

each simplex incident into the vertex (Op|Ω|q).
In the last step HomotopyExpansion is called over

each level set Λ. The maximal size of each queue is |Λ |,

2

which is bounded by |Ω|. We are assuming an heap im-
plementation for the queues so that pushing into, and
removing an element from the queue, is logarithmic in
the length of the queue and popping the first element
out is a constant time operation. As already proved
in [2, 10], each cell in Λ always enters a queue at most
once. Hence, each call of HomotopyExpansion consists
of a number of operations of order Op|Ω| ¨ log |Ω|q.

Homotopy expansion is repeated for each level set Λ,
then we can express the cost of the gradient construction
as Op|Λ | ¨ |Ω| log |Ω|q.

Notice that |Σ0| ď |Λ | ď |Σ| and |Ω| and |Λ | depend
on one another. Indeed, if we consider the extremal sit-
uation where each level set Λ consists of a single cell,
then |Λ | “ |Σ|. However, this would mean that Ω is
empty or, in other words, there would be no actual con-
tribution from HomopotyExpansion. On the other hand,
if each Λ coincides with its own index-based lower star
LIpvq, this means that |Λ | “ |Σ0| and the contribution
of Ω is relevant. If we consider multivariate data in real
world applications where the dimension of the dataset
is generally low (embedded in two or three dimensional
Euclidean spaces), the number of simplices per level set
(i.e., Ω) is always negligible, as well as the number of
total level sets |Λ |. Thus, the complexity is dominated
by the for-cycle (and thus it is linear in the number of
vertices in Σ).

4 Experimental results

In this section we evaluate the advantages of our meth-
ods over the state of the art approach for computing
the discrete gradient [2]. All our experiments have been
performed on a dual Intel Xeon E5-2630 v4 CPU at
2.20Ghz with 64GB of RAM.

4.1 Efficiency of the index-based partition

In [2] a first algorithm has been proposed for computing
a discrete gradient on multivariate data. A topological
sorting is applied to the cells of Σ and pairings are cre-
ated within the lower star of each cell in a sequence.
We will refer to the latter as global approach since it is
based on the construction of a global queue containing
all the simplices of the dataset. This approach is inef-
ficient since it requires all the simplices to be explicitly
encoded. Moreover it does not lead to parallel imple-
mentations. The two algorithms are compared by using
nine different triangle meshes having between 1.3 and
60.9 millions of simplices.

Both approaches have been implemented in C++
based on the MDG library [7]. The latter provides an
efficient encoding for both a simplicial complex and the
discrete gradient. We refer to [11] and to the library’s
documentation for further details. For the sake of this
work, the use of the same data structure guarantees a

fair comparison for the two approaches since the differ-
ences between them can be addressed to the algorithm
solely.

Timings are shown in Figure 1(left). Our approach
takes between 0.89 seconds and 4.8 minutes to finish de-
pending on the dataset and it is generally 7 times faster
than the global approach. We have also implemented a
preliminary parallel version of our algorithm based on
OpenMP. The latter is generally 2 to 3 times faster than
the single thread approach making it, at least, 14 times
faster than the global approach. Other than time ef-
ficiency, our divide-and-conquer strategy also provides
a limited use of memory. The memory consumption
is shown in Figure 1(right) where we are reporting the
maximum peak of memory used by the two algorithms.
Our approach uses at most 10 gigabytes of memory and
it is twice more compact than the global approach.

4.2 Impact on the persistence module computation

In this subsection we are evaluating the impact of pre-
processing a dataset by computing the discrete gradi-
ent for computing multidimensional persistent homol-
ogy. By using different triangle meshes we compute the
discrete vector field and the corresponding chain com-
plex. Then we use the chain complex as input for the
Topcat library [9]. Topcat is currently the only software
available in public domain for computing multidimen-
sional persistent homology on arbitrary filtrations.

Table 1 shows the results obtained by computing the
persistence module of different simplicial complexes (de-
scribed through their boundary matrices) or by using
the boundary matrices of the chain complex G provided
by the discrete gradient.

The actual limits of Topcat show up when working
with relatively small simplicial complexes. The algo-
rithm is affected by both the number of simplices and
the number of steps in the filtration. We get that the
program runs out of memory with filtrations having
2000 steps. The problem is drastically reduced when
using G. All the runs reach the end without running
out of memory. For those datasets where a comparison
is possible we notice that by using G we are twice as
fast and two to four times more compact.

5 Conclusions

We have presented a new approach for computing a
discrete vector field V on a simplicial complex Γ and
a multifiltration f , such that the chain complex com-
puted from V shares the same MPH of Γ according to
f . This is an important first step towards the devel-
opment of new tools for computing MPH on real-world
data. A first prototype of our tool is publicly avail-
able on GitHub (https://github.com/IuricichF/NM_
FormanMultifiltration).

3

https://github.com/IuricichF/NM_FormanMultifiltration
https://github.com/IuricichF/NM_FormanMultifiltration

Simpl. C. Chain C.
Name |Σ| Steps Time Mem. Steps Time Mem.

Sphere
40 8x8 0.3 0.24 5x5 0.18 0.1
244 42x42 4.4 0.86 10x10 0.28 0.2
2884 482x482 - - 92x89 24.3 1.5

Torus
96 16x16 0.5 0.1 9x9 0.25 0.2

4608 768x768 - - 65x66 7.96 2.4
7200 1200x1200 - - 70x80 12.05 3.0

Table 1: Timings and storage cost required for computing the persistence module on a simplicial complex (column
Simpl. C.) and on the chain complex G computed on the corresponding discrete gradient V (column Chain C.)

Figure 1: Comparison of timings and storage required by our algorithm (depicted in blue) and the global approach
(depicted in orange)

References

[1] M. Allili, T. Kaczynski, and C. Landi. Reduc-
ing complexes in multidimensional persistent ho-
mology theory. Journal of Symbolic Computation,
78:61–75, 2017.

[2] M. Allili, T. Kaczynski, C. Landi, and F. Masoni.
Algorithmic Construction of Acyclic Partial Match-
ings for Multidimensional Persistence. In W. G.
Kropatsch, N. M. Artner, and I. Janusch, editors,
Discrete Geometry for Computer Imagery: 20th
IAPR International Conference, DGCI 2017, Vi-
enna, Austria, September 19 – 21, 2017, Proceed-
ings, pages 375–387. Springer International Pub-
lishing, Cham, 2017.

[3] G. Carlsson and A. Zomorodian. The theory of
multidimensional persistence. Discrete and Com-
putational Geometry, 42(1):71–93, 2009.

[4] H. Edelsbrunner and J. Harer. Persistent homology
a survey. Contemporary Mathematics, 0000:1–26,
2008.

[5] H. Edelsbrunner and E. P. Mücke. Simulation of
simplicity: a technique to cope with degenerate

cases in geometric algorithms. ACM Transactions
on Graphics, 9(1):66–104, 1 1990.

[6] R. Forman. Morse Theory for Cell Complexes. Ad-
vances in Mathematics, 134:90–145, 1998.

[7] F. Iuricich. MDG: a C++ library for computing
the multidimensional discrete gradient.

[8] K. Mischaikow and V. Nanda. Morse theory for
filtrations and efficient computation of persistent
homology. Discrete and Computational Geometry,
50(2):330–353, 2013.

[9] Oliver Gäfvert. TopCat: a Java library for com-
puting invariants on multidimensional persistence
modules.

[10] V. Robins, P. J. Wood, and A. P. Sheppard. Theory
and Algorithms for Constructing Discrete Morse
Complexes from Grayscale Digital Images. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 33(8):1646–1658, 2011.

[11] K. Weiss, F. Iuricich, R. Fellegara, and L. De Flo-
riani. A primal/dual representation for discrete
Morse complexes on tetrahedral meshes. Computer
Graphics Forum, 32(3):361–370, 2013.

4

Parallel intersection detection in massive
sets of cubes

W. Randolph Franklin
Rensselaer Polytechnic Institute

Troy, NY, USA
mail@wrfranklin.org

Salles V. G. Magalhães
Universidade Fed. de Viçosa

Viçosa, MG, Brazil
salles@ufv.br

ABSTRACT
We present ParCube, which �nds the pairwise intersec-
tions in a set of millions of congruent cubes. This opera-
tion is required when computing boolean combinations
of meshes or polyhedra in CAD/CAM and additive man-
ufacturing, and in determining close points in a 3D set.
ParCube is very compact because it is uses a uniform
grid with a functional programming API. ParCube is
very fast; even single threaded it usually beats CGAL’s
elapsed time, sometimes by a factor of 3. Also because
it is FP, ParCube parallelizes very well. On an Nvidia
GPU, processing 10M cubes to �nd 6M intersections,
it took 0.33 elapsed seconds, beating CGAL by a factor
of 131. ParCube is independent of the speci�c parallel
architecture, whether shared memory multicore Intel
Xeon using either OpenMP or TBB, or Nvidia GPUs
with thousands of cores. We expect the principles used
in ParCube to apply to other computational geometry
problems. E�ciently �nding all bipartite intersections
would be an easy extension.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for pro�t or commercial
advantage and that copies bear this notice and the full citation on
the �rst page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
BigSpatial’17, November 7–10, 2017, Los Angeles Area, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5494-3/17/11. . . $15.00
https://doi.org/10.1145/3150919.3150921

CCS CONCEPTS
• Theory of computation → Nearest neighbor al-
gorithms; MapReduce algorithms; Computational ge-
ometry; • Computing methodologies→ MapReduce
algorithms;

KEYWORDS
Parallel Programming, Computational Geometry, In-
tersection, Close Points, Near Points, Uniform Grid,
Functional Programming, Thrust, Map-Reduce Algo-
rithms
ACM Reference Format:
W. Randolph Franklin and Salles V. G. Magalhães. 2017. Par-
allel intersection detection in massive sets of cubes. In Pro-
ceedings of BigSpatial’17:6th ACM SIGSPATIAL Workshop on
Analytics for Big Geospatial Data , Los Angeles Area, CA, USA,
November 7–10, 2017 (BigSpatial’17), 1 pages.
https://doi.org/10.1145/3150919.3150921

NOTE
This paperwill be presented at BIGSPATIAL. As allowed
by ACM, a copy is available at https://wrf.ecse.rpi.edu/
p/224-parcube-bigspatial-2017.pdf.

https://doi.org/10.1145/3150919.3150921
https://doi.org/10.1145/3150919.3150921
https://wrf.ecse.rpi.edu/p/224-parcube-bigspatial-2017.pdf
https://wrf.ecse.rpi.edu/p/224-parcube-bigspatial-2017.pdf

Dynamic Orthogonal Range Seaching on the

RAM, Revisited

Timothy M. Chan1 and Konstantinos Tsakalidis2

1Department of Computer Science, University of Illinois at
Urbana-Champaign

1Department of Computer Science and Engineering, Tandon
School of Engineering, New York University

Abstract

We study a longstanding problem in computational geometry: 2-d
dynamic orthogonal range reporting. We present a new data structure
achieving O

(
logn

log logn
+ k

)
optimal query time and O

(
log2/3+o(1) n

)
up-

date time (amortized) in the word RAM model, where n is the number of
data points and k is the output size. This is the first improvement in over
10 years of Mortensen’s previous result [SIAM J. Comput., 2006], which
has O

(
log7/8+ε n

)
update time for an arbitrarily small constant ε.

In the case of 3-sided queries, our update time reduces to O
(
log1/2+ε n

)
,

improving Wilkinson’s previous bound [ESA 2014] of O
(
log2/3+ε n

)
.

This work appeared in the Proceedings of the 33rd International Symposium
on Computational Geometry (SoCG 2017). Link to full version

1

http://drops.dagstuhl.de/opus/volltexte/2017/7229/

Faster Algorithm for Truth Discovery via Range
Cover?

Ziyun Huang1 Hu Ding2 Jinhui Xu1

1 Department of Computer Science and Engineering
State University of New York at Buffalo

{ziyunhua, jinhui}@buffalo.edu
2 Department of Computer Science and Engineering

Michigan State University
huding@msu.edu

1 Overview

Truth discovery is an important problem arising in data analytics, and has re-
ceived a great deal of attentions in recent years in the fields of data mining,
database, and big data [3, 6, 7, 4, 8–10]. Truth discovery seeks to find trustwor-
thy information from a dataset acquired from a number of sources which may
contain false or inaccurate information. There are numerous applications for this
problem. For example, the latest search engines are able to answer user queries
directly, instead of simply listing webpages that might be relevant to the query.
This process involves retrieving answers from potentially a large number of re-
lated webpages. It is quite common that these webpages may provide inaccurate
or inconsistent information. Thus a direct answer to the query needs the search
engine to be able to extract the most trustworthy information from all these
webpages, which is exactly the problem of truth discovery.

Truth discovery is an unsupervised learning problem. Besides the input data,
no prior knowledge about the reliability of each data source is provided. In such
settings, an intuitive approach is to view all data sources equally reliable and
obtain the solution by averaging or majority rule. A major issue of this approach
is that the yielded answer may be quite far away from the truth. This is because
a small number of unreliable data sources could significantly deviate the final
solution. To deal with this issue, truth discovery treats data sources differently
by estimating the reliability for each of them. This greatly increases the level
of challenge for the problem. Moreover, since the truth discovery problem often
occurs in big data scenarios, the number of data sources could be quite large
and the dimensionality of the data could be rather high, which brings another
dimension of challenge to the problem.

A widely accepted geometric modeling of the truth discovery problem is the
follows. Data from each source is formulated as a set of real number attributes,
and thus can be viewed as a vector in Rd, where d is the number of attributes.

? A preliminary version of this work has appeared in the 15th Algorithms and Data
Structures Symposium, WADS 2017.

Each data source is associated with a positive variable (or weight) representing
its reliability. Formally, the truth discovery problem can be defined as follows.

Definition 1. (Truth Discovery [4, 7]). Let P = {p1, p2, . . . pn} be a set of points
in Rd space, where each pi represents the data acquired from the i-th source
among a set of n sources. The truth discovery problem is to find the truth vector
p∗ and wi (i.e., reliability) for each i-th source such that the following objective
function is minimized.

minΣn
i=1wi‖pi − p∗‖2, s.t. Σn

i=1e
−wi = 1. (1)

The meaning of the above truth discovery formulation was discussed in [1]
from an information theory’s point of view. It is shown that the constraint on wi
in Definition 1 ensures that the entropy is minimized when p∗ approaches the
truth vector. For this reason, the problem is also called Entropy based Geometric
Variance problem [1].

Despite extensive studies on this problem, most of the existing techniques are
of heuristic nature, and do not provide any guarantee on the quality of solution.
It is not until very recently that the truth discovery problem has a theoretically
guaranteed solution [1]. This result ensures that a (1 + ε)-approximation of the
problem can be achieved in O(dn2 + (n∆)σnd) time, where n is the number of
input points (i.e., data sources), d is the dimensionality of the space, ∆ is the
spread ratio of the input points (i.e. the ratio of the largest distance between
any two input points to the smallest distance), and σ is any fixed small positive
number. The result is based on an elegant sampling technique called Simplex
Lemma [2] which is capable of handling high dimensional data. A main issue of
this method is that its running time depends on the spread ratio of the input
points, and is polynomial only when the spread ratio is relatively small (i.e.,
∆ = O(

√
n)). This could severely restrict its applicability.

To overcome this main issue, we present in this paper a faster algorithm for
the truth discovery problem. With constant probability, our algorithm achieves
a (1 + ε)-approximation in O(dn2(log n + log d)) time, and is completely inde-
pendent of the spread ratio. Our algorithm is also space efficient, using only
near linear space, while the space complexity of [1] also depends on the spread
ratio. Our algorithm relies on a new data structure called range cover, which is
interesting in its own right. Roughly speaking, range cover is a data structure
designed for a class of optimization problems (in high dimensional space) which
are decomposable into a number of “easier” cases, where each case can be char-
acterized by a parameterized assumption. For example, truth discovery can be
formulated as a problem of finding a truth vector p∗ ∈ Rd from a given set P of
points in Rd so that a certain objective function (the exact formulation will be
discussed later) is minimized. We are able to show that although directly opti-
mizing the objective function is challenging, the problem is much easier to solve
if some additional information (e.g., the distance r between p∗ and P) is known.
Thus, by viewing the additional information as a parameterized assumption, we
can solve the truth discovery problem by searching for the best assumption. The
range cover data structure shows that even though the number of parameterized

assumptions could be very large (or even infinite), it is sufficient to sample only a
small number of assumptions to ensure an approximate solution. This leads to a
small-size data structure (i.e., O(n log n) space) and a faster algorithm for truth
discovery. Since the idea of decomposing problem into cases is not restricted only
to the truth discovery problem, we expect that this data structure will provide
new approaches to other problems.

2 Range Cover Data Structure

In this section, we describe our main technique. the range cover data structure.
Range cover is motivated by several high dimensional optimization problems

(such as truth discovery). In these problems, an input point set P is given in Rd
space, and the objective is to find a point p∗ in Rd so that a certain objective
function is optimized. We would like to characterize all possibilities of p∗ into
a small number of cases so that in each case p∗ is associated with a certain
parametrized assumption which could help solve the problem more efficiently.
For instance, in some optimization problem, p∗ could be much easier to obtain if
we know in advance the nearest neighbor (say p) of p∗ in P and its distance r to
p∗ (i.e., ‖p−p∗‖ = r) for some parameter r. We expect that these parameterized
assumptions form a space with much lower dimensionality than d, and thus the
overall time complexity is low.

In this work, we develop an algorithm to generate a collection A of param-
eterized assumptions about the truth vector p∗, given input point set P . Each
of the item from A is denoted in the form of either NN p∗(v, r) or DOMp∗(v),
which has the following meaning:

Assumption 1 NN p∗(v, r): For a subset v of P , NN p∗(v, r) is an assumption
made about p∗ which says: D(v) ≤ λr for some small constant λ > 0, where
D(v) is the diameter of v, and r ≤ ‖p′ − p∗‖ ≤ (1 + λ)r holds for p′ which
denotes the nearest neighbor of p∗ in v.

Assumption 2 DOMp∗(v): For a subset v of P , DOMp∗(v) is an assumption
made about p∗, which says: there exists a point pv ∈ v such that D(v) ≤ λ‖p∗ −
pv‖ and ‖pv − p∗‖ ≤ ξ‖p−v − p∗‖ for any point p−v ∈ P \ v, where D(v) is the
diameter of v.

Intuitively, NN p∗(v, r) assumes that p∗ has approximate nearest neighbor
set v, and DOMp∗(v) assume that p∗ is very close to points in a subset v of P .
The collection A = {DOMp∗(v1),DOMp∗(v2), . . . ,DOMp∗(vh),NN p∗(v′1, r1),
NN p∗(v′2, r2) . . . ,NN p∗(v′g, rg)} provide a complete coverage for all possible
candidate p∗ ∈ R: for any p∗ ∈ R, at least one of the assumptions listed in
A holds. Thus, if for every case in A, we compute a candidate truth vector
by solving the problem as if the case actually holds, and combine the results
together by trying all the computed truth vectors and pick the one that minimize
the objective function, we obtain the result for the whole problem. Also the size
of A is only O(n log n), making our scheme efficient.

3 Solving All the Cases

We describe briefly how to solve the truth discovery problem under assumption
NN p∗(v, r) or DOMp∗(v) for arbitrary v and r.

Solving DOMp∗(v). If this assumption holds, it is shown that one of the
input point in v will be the (1 + ε)-approximate solution for the truth discovery
problem. Thus we may try all the input points as candidates of the truth vector
candidate. All cases of the form DOMp∗(v) in A are considered by doing this.
It takes O(dn2) time to try all the input points and solves these cases.

Solving NN p∗(v, r). We use v as the approximate location of p∗, and ob-
tain the approximate optimal weights of input points. The approximated weights
combined with the techniques used in [1] enable us to solve the problem ef-
ficiently. For each NN p∗(v, r), it takes O(nd) time to compute the candidate
truth vector.

References

1. Ding, H., Gao, J., and Xu, J.: Finding Global Optimum for Truth Discovery: En-
tropy Based Geometric Variance. Leibniz International Proceedings in Informatics
(LIPIcs), 32nd International Symposium on Computational Geometry (SoCG 2016),
Vol. 51, 34:1-34:16(2016).

2. Ding, H. and Xu, J.: A Unified Framework for Clustering Constrained Data without
Locality Property. Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pp. 1471-1490, January 4-6, 2015, San Diego, California, USA.

3. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: The role
of source dependence. PVLDB, 2(1): 550-561(2009).

4. Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A Survey on
Truth Discovery, CoRR abs/1505.02463(2015).

5. Har-Peled, S.: Geometric approximation algorithms. Vol. 173. Boston: American
mathematical society(2011).

6. Li, H., Zhao, B., Fuxman, A.: The Wisdom of Minority: Discovering And Targeting
The Right Group of Workers for Crowdsourcing. Proc. of the International Confer-
ence on World Wide Web (WWW’14), pp. 165-176(2014).

7. Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., Han, J.: Resolving Conflicts in Heteroge-
neous Data by Truth Discovery and Source Reliability Estimation. Proc. the 2014
ACM SIGMOD International Conference on Management of Data (SIGMOD’14),
pp. 1187-1198(2014).

8. Pasternack, J., Roth, D.: Knowing what to believe (when you already know some-
thing). Proc. of the International Conference on Computational Linguistics (COL-
ING’10), pp. 877-885(2010).

9. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.: Whose Vote Should
Count More: Optimal Integration of Labelers of Unknown Expertise. Advances in
Neural Information Processing Systems (NIPS’09), pp. 2035-2043(2009).

10. Yin, X., Han, J., and Yu, P.S.: Truth discovery with multiple conflicting informa-
tion providers on the web: Proc. of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’07), pp. 1048-1052(2007).

An Efficient Sum Query Algorithm for
Distance-based Locally Dominating Functions?

Ziyun Huang1 Jinhui Xu1

Department of Computer Science and Engineering
State University of New York at Buffalo
{ziyunhua, jinhui}@buffalo.edu

1 Overview

In this paper, we consider the following sum query problem: Given a set P of
points in Rd (where the dimensionality d could be very high) and a function
f(,), the sum query problem is to build a data structure for P so that the
sum of

∑
p∈P f(p, q) can be efficiently computed or approximated for any query

point q in Rd, where f(p, q) is a non-negative distance-based function. We say
that f(p, q) is distance-based if the value of f(p, q) depends only on the distance
between p and q. In other words, f(p, q) can be written as F (‖p, q‖) for some
non-negative real function F (·).

The distance-based sum query problem are frequently encountered in many
applications. A good example is the well known 1-median problem: given a point
set P in Rd, find a point q such that the objective value C(q) =

∑
p∈P ‖q− p‖ is

minimized. C(q) is clearly an example of the distance-based sum query problem
(with respect to the to-be-determined median point q), where each term of the
summation is trivially the Euclidean distance ‖q−p‖ of p and q. The sum query
problem also appears in many other real world applications. For example, the
problem of computing the illumination intensity of a given point can be viewed
as a sum query problem. In such an application, the intensity of the query point
may jointly be determined by the total amount of light received from multiple
light sources. The light contributed by each source is inversely proportional to its
squared distance to the given point (i.e. obeying the inverse squared distance law
in physics). Note that in this case the distance-based functions may be different
for each light source, depending on its base intensity. However, if we view a
light source with base intensity w as a collection of w light sources with “unit”
intensity located at the same place, we may still treat the intensity as a purely
distance-based function.

Several previous results are closely related to some versions of the problem
considered in this paper. They are mainly based on some core-set techniques
[2, 6, 9]. In the 1-median problem, for example, a core-set of a point set P in
Rd is a small-size (weighted) subset of P such that for any q ∈ Rd, the sum∑
p∈P ‖p − q‖ can be approximated by just inspecting the distances between q

? A preliminary version of this work has been accepted to the 28th International
Symposium on Algorithm and Computation (ISAAC 2017).

and points in the core-set. In general, a core set of P with respect to a function
f(p, q) is a small subset of P such that for any q,

∑
p∈P f(p, q) can be estimated

by using only the information of the points in the core-set. For functions f(p, q)
satisfying certain properties, it is possible to construct a core-set for any point
set P efficiently [7].

In this paper, we aim to develop an efficient algorithm for supporting distance-
based functions that have local domination property [5], which means that f(p, q)
can be very large when ‖p− q‖ is small. For example, a distance-based function
obeying the inverse squared distance law (i.e. f(p, q) = w/‖p − q‖2 for some
constant w), is a function having such a property. While the aforementioned
core-set method is useful for a large family of functions f(p, q), it does not di-
rectly apply to functions which have local domination property. This is because
the

∑
p∈P f(p, q) could become infinitely large when q approaches any point in

P , which means that any “traditional” core-set of P will fail if the core-set is a
proper subset of P .

The local domination property imposes additional challenges to the sum
query problem. Particularly, it requires the query algorithm to be able to de-
tect points that are close to the query points. This means that the algorithm
should have certain ability for proximity search. However, in high dimensional
space, highly accurate nearest neighbor search cannot be done very efficiently.
Well-known techniques for high dimensional nearest neighbor search, such as
the Locality Sensitive Hashing (LSH) [8], require almost linear time to achieve a
c-approximate nearest neighbor when c is close to 1 [3]. Thus, for the sum query
problem, we are required to develop an estimation algorithm with high accuracy,
but not allowed to use the high accuracy proximity search techniques.

To deal with the additional challenge caused by the local domination prop-
erty, we first assume that the distance function F satisfies the following local
domination implied properties.

1. F (·) is positive and F (0) could be infinite.
2. F (·) is monotonously decreasing. 1

3. For any constant λ ≥ 1, there exists a constant ∆(λ) ≥ 1, such that F (x) ≤
∆(λ)F (xλ) for any x ≥ 0.

It is worth noting that although our technique is designed for functions with
local domination property, it actually works for any distance-based non-negative
functions. Particularly, our approach is capable of solving the “inverse” version of
the problem, where F (·) is a monotonically increasing function satisfying some
accordingly changed conditions. Since other types of distance-based functions
have already been studied in [7], we focus our investigation on locally dominating
functions in this paper.
Our Result: Our main result for the sum query problem is a novel scheme
based on some sampling and searching techniques, and is capable of reporting

1 Indeed this restriction can be greatly soften. Our scheme applies as long as F (·) is
“not increasing rapidly”, i.e., F (x1) ≤ CF (x2) for some constant C when x1 > x2.
The listed restriction is mainly for ease of presentation.

a (1 + ε)-approximation for each sum query (
∑
p∈P f(p, q) = F (‖p − q‖)) in

Õε,d(n
0.5+c) time with success probability at least 1 − 1/n for any c > 0. The

query algorithm makes use of a soft boundary range reporting data structure
to determine a number of points that are among the closest to the query point
q. The soft boundary range reporting data structure can be computed within
Õε,d(n

1+c) time for any c > 0. The hidden constants in the time complexities
depend only polynomially on d and 1/ε. The error factor ε can be very small
and is assumed to be within the range of [8/

√
n, 1). One major advantage of

our scheme is that the query algorithm runs much faster than the best existing
(1+ε)-approximate nearest neighbor search technique (which takes almost linear
time) in high dimensional space for small enough ε .

1.1 Our Techniques

Our query algorithm consists of 2 main steps.
First step. We identify a number of points PΩ that are among the clos-

est to the query point q, and compute directly their contributions to the sum∑
p∈PΩ

f(p, q). We use a soft boundary range reporting data structure to iden-
tify points that are among the closest to q. Our soft boundary range reporting
scheme solves a different version of range reporting problem than traditional for-
mulations: ideally we would like to report all the O(

√
n) closest points in P to q,

but for performance consideration, we soften our requirement so that, we only
need to guarantee the points that lies within distance Ω(rΩ) to q are reported,
where rΩ denotes the distance from q to its O(

√
n)-th closest point in P .

To solve the range reporting problem, we reduce the reporting problem to
a number of nearest neighbor search queries. Each nearest neighbor query is
performed on a sampled subset of P , which is produced in a preprocessing pro-
cedure. With properly chosen parameters, we are able to show that it suffices
to use a relatively low quality approximate range search procedure to obtain an
accurate solution. The step of the query takes Õ(dn1+α) time for any α > 0.
The size of the reported set PΩ is at most O(

√
n). It takes Õ(dn1+α) time to

preprocess P and build the data structure for this type of range reporting.
Second step. we sample, from the rest of the points in P , a small subset

of points to estimate their contributions to the sum. Intuitively speaking, since
we have already identified a number of points that have the largest contribution
to the sum before sampling, the error incurred by sampling the rest of points
is relatively small and thus controllable. The intuition can be proved by an
involved argument with the use of some concentration inequalities. This step is
also efficient since we only need to sample Õ(

√
n) points.

Finally, we combine the results from the first and the second steps to obtain
an approximate final solution.

1.2 Related Works

As mentioned earlier, the sum query problems can be solved by using core-sets
for distance functions satisfying some “nice” properties. Our work can be viewed

as a complement to those core-set results as it addresses a rather general case
that is hard to solve by using core-sets.

Our scheme makes use of some ideas from range search and top-k indexing.
There are a number of previous results on both problems [11, 10, 4, 1]. Many of
them are not the best fit, especially in high dimensional space, as they cannot
be directly applied to our problem. The special property of our problem enables
us to develop a range search scheme with better performance.

References

1. Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in
three dimensions. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 180–186. SIAM, 2009.

2. Pankaj K. Agarwal, Sariel Har-peled, and Kasturi R. Varadarajan. Geometric ap-
proximation via coresets. In Combinatorial and Computational Geometry, MSRI,
pages 1–30. University Press, 2005.

3. Alexandr Andoni, Piotr Indyk, Huy L Nguy˜ên, and Ilya Razenshteyn. Beyond
locality-sensitive hashing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1018–1028. SIAM, 2014.

4. Boris Aronov and Sariel Har-Peled. On approximating the depth and related
problems. SIAM Journal on Computing, 38(3):899–921, 2008.

5. D. Z. Chen, Z. Huang, Y. Liu, and J. Xu. On clustering induced voronoi diagrams.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages
390–399, 2013.

6. Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean
spaces and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

7. Dan Feldman and Michael Langberg. A unified framework for approximating and
clustering data. In Proceedings of the forty-third annual ACM symposium on The-
ory of computing, pages 569–578. ACM, 2011.

8. Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neigh-
bor: Towards removing the curse of dimensionality. Theory of computing, 8(1):321–
350, 2012.

9. Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, pages 291–300. ACM, 2004.

10. Saladi Rahul and Yufei Tao. Efficient top-k indexing via general reductions. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 277–288. ACM, 2016.

11. Cheng Sheng and Yufei Tao. Dynamic top-k range reporting in external memory. In
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles
of Database Systems, pages 121–130. ACM, 2012.

Approximate Convex Hull of Data Streams

Avrim Blum∗

TTI-Chicago
avrim@ttic.edu

Vladimir Braverman†

Johns Hopkins University
vova@cs.jhu.edu

Ananya Kumar‡

Carnegie Mellon University
skywalker94@gmail.com

Harry Lang§

Johns Hopkins University
hlang8@math.jhu.edu

Lin F. Yang¶

Princeton University
lin.yang@princeton.edu

October 27, 2017

Abstract

Given a finite set of points P ⊆ Rd, we would like to find a
finite subset S ⊆ P such that the convex hull of S approx-
imately covers the original set. More formally, every point
in P is within distance ε from the convex hull of S. Such a
subset is also called an ε-hull or an ε-generating points set
for P . An ε-hull is called optimal if it has minimum cardi-
nality. Computing such a point set gives a sparse dictionary
for the original points and is an important problem in com-
putational geometry, machine learning, and approximation
algorithms.

In many real world applications, the set P is too large
to fit in memory. Streaming algorithms that use sublinear
memory would provide excellent solutions to such situations.
Existing streaming algorithms for this problem give bounds
that only depend on ε but ignore the structure of the data. A
natural question is whether we can do better than state-of-
the-art when the data is well-structured, in particular when
the optimal generating set is small.

Unfortunately, our lower bounds for this problem show

that it is still hard even if the data is well-structured. We

then propose two interesting relaxations of the problem, in

which tighter input-dependent bounds are possible. In the

first relaxation, we consider data in R2 that is randomly

permuted before the algorithm runs. We give an algorithm

that stores only O(opt · log n) points while maintaining an

ε-hull, where opt is the size of an optimal one. In the sec-

∗This work was supported in part by the National Science
Foundation under grant CCF-1525971. Work was done while
the author was at Carnegie Mellon University.
†This material is based upon work supported by NSF

Grants IIS-1447639, EAGER CCF-1650041, and CAREER CCF-
1652257.
‡Now at DeepMind.
§This research was supported by the Franco-American Ful-

bright Commission. The author thanks INRIA (l’Institut na-
tional de recherche en informatique et en automatique) for host-
ing him during the writing of this paper.
¶This material is based upon work supported by the NSF

Grant IIS-1447639. Work was done while the author was at
Johns Hopkins University.

ond relaxation, our approximation only needs to be correct

in most directions. We provide the first, nearly tight, input-

dependent upper bound for this case even for Rd with arbi-

trary constant dimension d.

1 Introduction

Let P be a set of n points in the unit ball Sd−1. Let
CP denote the convex hull of the point set P . An im-
portant question to ask is that whether it is possible to
obtain a small subset S ⊂ Rd such that the Hausdorff
distance between CP and CS is small, i.e., for every
point p ∈ P , p is close to a point in CS and vice versa.
We call such an S an ε-hull to P (with respect to the
convex hull). This question and its variants are fun-
damental in computational geometry, computer vision,
data mining, and many more. Such a set S is called
an ε-coreset or kernel for P , e.g., [AHPV04, AHPV05].
Since every point in P can be approximated by the
convex combination of points in S, it is also called a
generating set [BHR15]. Many different variants of this
problem have been studied in the literature, e.g., one
may require that any directional width (the diameter
of S in a particular direction) of S is a (1± ε) approx-
imation to that of P . There are subtle differences be-
tween these variants, but one can usually change from
one variant to another without much effort. For more
details, please refer to [AHPV05].

The worst case lower bound for the size of S is Ω(
ε−(d−1)/2). Recently, it has been shown in [BHR15]
that one can in fact do much better than the worst
case bound if the size opt of the smallest generating
set for P is small. In their paper, they show that one
can efficiently obtain S of size nearly linear in opt and
at most linear in the dimension d. This result shows the
possibility of overcoming the curse of dimensionality in
high-dimensional computational geometry problems.

1

One concern of the algorithms in [BHR15] is that
they require storing all points of P in memory. The
huge size of real-world datasets limits the applicability
of these algorithms. It is thus a natural question to
ask whether it is possible to obtain an ε-hull of P ,
when P is presented as a data stream, while using a
small amount of memory. That is, is there an efficient
streaming algorithm to obtain the similar guarantees
as in [BHR15]?

In this paper, we provide both negative and posi-
tive results. First, we review previous results on this
problem.

1.1 Related Work

Batch Algorithms for ε-kernels We use the term
batch algorithm for an algorithm that stores the en-
tire set of points in memory. In the batch set-
ting, Bentley, Preparata, and Faust [BPF82] give a
O(1/εd−1) space algorithm for computing an ε-hull of
a set of points. Agarwal, Har-Peled, and Varadara-
jan [AHPV04] use this to give a O(1/εd−1) space al-
gorithm for computing multiplicative approximation

of convex hulls. This was improved to a O(1/ε
d−1
2)

space algorithm [YAPV04, Cha06] for computing an ε-
hull. The time bounds on these algorithms were further
improved [Cha17, SA17]. Recently, Blum, Har-Peled,
and Raichel [BHPR16] give the only known batch al-
gorithms for an ε-hull that are competitive with the
optimal of the given point set.

Streaming Algorithms for ε-kernels with Worst
Case Guarantees Hershberger and Suri [HS04]
give a 2-D one-pass streaming algorithm for ε-hulls
that uses O(1/

√
ε) space. Agarwal, Har-Peled, and

Varadarajan [AHPV04] give a one-pass streaming al-
gorithm for ε-kernels (which is an multiplicative er-

ror version of the ε-hull) that uses (1/ε
d−1
2) logd n

space. Chan [Cha06] removes the dependency on n
and gives a streaming algorithm for ε-kernels that uses
O((1/εd−3/2) logd 1/ε) space. This was then improved

to O((1/ε
d−1
2) log 1

ε) [ZZ11] and the time complexity
was further improved by Arya and Chan [AC14]. Chan
[Cha16] also gives a dynamic streaming (allowing dele-
tions) algorithm based on polynomial methods.

1.2 Our Contributions

In Section 3, we provide lower bounds to show that no
streaming algorithm can achieve space bounds compa-
rable to opt, the optimal size of an ε-hull. In particu-
lar, no streaming algorithm can have space complexity

competitive with f(opt) for any fixed positive func-
tion f in 3 dimensions or higher. This strong neg-
ative result implies only relaxations of the problem
in the streaming model are possible to achieve input-
dependent bounds.

We devise and prove streaming algorithms for two
relaxations of the problem. In Section 4, we show the
first relaxation, in which the points are from R2 and
come in a random order. In Section 5, we show the
second relaxation, in which the points come in an ar-
bitrary order and from d-dimensional space.

In the first relaxation, our algorithm maintains an
initially empty point set S. When our algorithm sees
a new point p, it adds p to S if p is at least distance ε
away from the convex hull of S. Additionally, our algo-
rithm keeps removing points p ∈ S where p is contained
inside the convex hull of S \ {p}, that is, removing p
does not change the convex hull of S. Surprisingly, for
any point stream P , with high probability this algo-
rithm keeps O(opt · log n) points, where n is the size
of P .

In the second relaxation, we only need to be correct
in “most” directions (all but a δ fraction of directions).

Our algorithm picks O(opt
2

δ2
log opt

δ) random unit vec-
tors. For each of these vectors v, we keep the point in
the stream that has maximal dot product with v. We
give a proof based on VC-dimension to show that this
algorithm achieves the desired bound. For the 2D case
we achieve an even stronger bound.

Although our algorithms are simple, it is surprising
that input-dependent bounds are achievable in these
settings. To the best of our knowledge, this is the first
work that gives streaming algorithms for ε-hulls with
space complexity comparable to the optimal approxi-
mation.

2 Preliminaries

Definition 2.1. For any bounded set C ⊂ Rd, we say
a point q is ε-close to C if infx∈C ‖q − x‖ ≤ ε.

Definition 2.2. Given a set of points P ⊆ Rn, S ⊆ P
is an ε-hull of P if for every p ∈ P , p is ε-close to the
convex hull of S.

(a) Set of points (b) ε-hull in red

Figure 1: ε-hull of a set of points.

2

Definition 2.3. Let opt(P, ε) denote the size of a (not
necessarily unique) smallest ε-hull of P .

2.1 Streaming Model

In our model, a streaming algorithm A is given ε ∈
(0, 1) in advance but not the size of the input point
stream P . More formally, we denote the streaming
point stream P as a sequence of points

P = (p1, p2, . . . , pt, . . .)

where pt ∈ Rd is the point coming at time t. Note
that P may have duplicate points. Algorithm A is
given the points in P sequentially, and is required to
maintain a subset S ⊂ P of the points. For each point
p ∈ P , A can choose to add p to S (remembering p)
or ignore p (therefore permanently forgetting p). A
can also choose to delete points in S, in which case
these points are permanently lost. After one-pass of
the stream, we require S to be an ε-hull of the points
set P . A trivial streaming algorithm could just keep all
points it has seen. However, such an algorithm might
not be feasible in the big data regime. Ideally, A should
use space competitive with opt(P, ε).

3 Lower Bounds

3.1 Always-opt Lower Bounds

An always-opt algorithm uses space competitive with
f(opt(P, ε)) for some fixed positive function f at any
time t. Note that this definition is rather permissive,
since it allows an arbitrary function of opt, and allows
the algorithm to maintain an rε hull where r > 1.

Definition 3.1. For r ∈ Z+, we say a streaming al-
gorithm A is always-r-opt if there exists a function
f : Z+ → Z+ such that: if A is run on an arbitrary
point stream P , then after processing all points in P ,
A keeps an rε-hull of P with size at most f(opt(P, ε)).

Theorem 3.1. For all r ∈ Z+, there does not exist an
always-r-opt streaming algorithm in Rn for n ≥ 3.

Proof. See appendix A.

3.2 Sometimes-opt Lower Bounds

We can ask a slightly different question: what if an
algorithm is given a number k in advance, and only
needs to be competitive with opt when opt of the cur-
rent substream falls below k? The algorithm we give
for (ε, δ)-hulls in Section 5 is of this form.

Definition 3.2. A streaming algorithm A is
sometimes-opt if there exists a function f : Z+ → Z+

such that the following holds. Suppose A is given
k ∈ Z+ in advance, and is run on an arbitrary point
stream P with opt(P, ε) ≤ k. At any point, A is al-
lowed to keep at most f(k) points. After processing all
points in P , A keeps an ε-hull of P .

Theorem 3.2. There does not exist a sometimes-opt
streaming algorithm in Rn for n ≥ 3.

Proof. See appendix A.

These lower bounds rule out the possibility of ob-
taining ε-hulls in the streaming model while only using
space comparable to the optimal approximation size.
We thus seek to relax the problem under reasonable
assumptions.

4 2D Random Order Algorithm

In many cases, data points are generated from inde-
pendent identical distributions, for example mixture
models or topic models. In this section we assume a
more general setup: that the points come in a ran-
dom order. More precisely, for all sets of points P ,
every permutation of P must have equal probability
density. The case where the data points are generated
i.i.d. (making no assumptions about the distribution)
is a special case. We assume the points are in 2D.

Definition 4.1. We say a point p is interior to P if p
is in the convex hull of P \ {p}.

The algorithm begins by keeping a set S = {}. For
each point p ∈ P that the algorithm sees, if the dis-
tance from p to the convex hull of S is at most ε, we
discard p. Otherwise, we add p to S (see figure 2).

The algorithm then repeatedly deletes interior points
in S until S has no interior points (see figure 3). It is
easy to show that S is always an ε-hull, but showing
the space bound is more challenging.

Theorem 4.1. There exists a constant c > 0 and a de-
terministic one-pass streaming algorithm A, such that
for any random order input streams P ⊆ R2 containing
at most n points, A maintains a subset S ⊆ P which is
an ε-hull of P at all times. Moreover, with probability
at least 1− 1/n2,

|S| ≤ c · opt(P, ε) · log n.

Since the algorithm is deterministic, this probability
guarantee is over the randomness in the arrival order
of P .

3

(a) Discard p inside
hull

(b) Discard p near
hull

(c) Keep p far from
hull

Figure 2: We keep points p far from the current hull.

(a) Interior points in
red (b) No interior points

Figure 3: We iteratively remove interior points from S.

Proof. For the full proof, see Appendix B - here we give
a sketch. Consider the optimal ε-hull Sopt. Since our
algorithm deletes interior points, we can show it only
keeps points close to the boundary of the convex hull
of Sopt. We split the boundary into opt sections, and
show that with high probability our algorithm keeps
O(log n) points in each section. Since the boundary
is 1-dimensional, we effectively reduce proving the 2D
result, to proving an analogous 1D result for our algo-
rithm.

A corollary of the high probability bound is that
in expectation the algorithm keeps an ε-hull of size
O(opt · log n).

5 (ε, δ)-Hull

In this section we give an algorithm for a relaxation
of ε-hulls, which we call (ε, δ)-hulls. Our results hold
for arbitrary point sets P ⊆ Rd. Intuitively, an (ε, δ)-
hull of P is within distance ε from the boundary of the
convex hull of P in at least 1− δ directions.

Definition 5.1. Given a vector v and a point set P ,
we define the directional extent as

ωv(P) = max
p∈P

p · v

Definition 5.2. If p is a point we define ωv(p) = p·v =
ωv({p})

Definition 5.3. We say a set S maximizes P in v if

ωv(P) = ωv(S)

Note that as per Definition 5.2, S can be either a single
vector or a set of vectors.

Figure 4: Point p maximizes the set of points in direc-
tion u because its projection onto u is the highest.

Definition 5.4. An (ε, δ)-hull is the minimum sized
set S ⊆ P such that if we pick a vector v uniformly at
random from the surface of the unit sphere, Sd−1, S
ε-maximizes P in direction v with probability at least
1− δ, that is,

Pr(|ωv(P)− ωv(S)| > ε) ≤ δ

There is a simple deterministic algorithm that stores
O(kδ) points and gives us an (ε, δ)-hull of a point set P ,
where k is the batch optimal for the ε-hull of P . Here
we focus on higher dimensions.

Suppose we fix the dimension d. We give a random-
ized algorithm that uses n points and with probability
at least 1 − p gives us an (ε, δ)-hull of a point set P ,
where k is the batch optimal for the ε-hull of P , and n
satisfies:

n = O

(
k2

δ2

(
log k + log

1

δ
+ log

1

p

))
Note that the given complexity hides the dependency

on d, the actual time complexity will be multiplied by
some (exponential) function of d.

We sketch our algorithm as follows: Choose n ran-
dom vectors on the unit sphere. For each chosen vector
v we store the point p that maximizes P in direction v,
that is, p · v = ωv(P). This can be done in streaming.

We reduce proving this algorithm in Rd, to proving a
related property in Rd−1. We then use a VC-dimension
based uniform bound to prove this property. A proof
outline of this algorithm is in Appendix C.

4

References

[AC14] S. Arya and T. M. Chan. Better
epsilon-dependencies for offline approxi-
mate nearest neighbor search, euclidean
minimum spanning trees, and epsilon-
kernels. In Proceedings of the Thir-
tieth Annual Symposium on Computa-
tional Geometry, SOCG’14, pages 416:416–
416:425, New York, NY, USA, 2014.
ACM. Available from: http://doi.acm.

org/10.1145/2582112.2582161, doi:10.

1145/2582112.2582161.

[AHPV04] P. K. Agarwal, S. Har-Peled, and K. R.
Varadarajan. Approximating extent mea-
sures of points. J. ACM, 51(4):606–635,
July 2004. Available from: http://

doi.acm.org/10.1145/1008731.1008736,
doi:10.1145/1008731.1008736.

[AHPV05] P. K. Agarwal, S. Har-Peled, and K. R.
Varadarajan. Geometric approximation
via coresets. In COMBINATORIAL AND
COMPUTATIONAL GEOMETRY, MSRI,
pages 1–30. University Press, 2005.

[BHPR16] A. Blum, S. Har-Peled, and B. Raichel.
Sparse approximation via generating point
sets. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 548–557, 2016.

[BHR15] A. Blum, S. Har-Peled, and B. Raichel.
Sparse approximation via generating point
sets. CoRR, abs/1507.02574, 2015. Avail-
able from: http://arxiv.org/abs/1507.

02574.

[BPF82] J. L. Bentley, F. P. Preparata, and M. G.
Faust. Approximation algorithms for
convex hulls. Commun. ACM, 25(1):64–68,
January 1982. Available from: http:

//doi.acm.org/10.1145/358315.358392,
doi:10.1145/358315.358392.

[Cha06] T. M. Chan. Faster core-set constructions
and data-stream algorithms in fixed dimen-
sions. Computational Geometry, 35(1):20
– 35, 2006. doi:http://dx.doi.org/10.

1016/j.comgeo.2005.10.002.

[Cha16] T. M. Chan. Dynamic streaming algo-
rithms for -kernels. In Proc. 32nd Annu.
Sympos. Comput. Geom. (SoCG), 2016.

[Cha17] T. M. Chan. Applications of chebyshev
polynomials to low-dimensional computa-
tional geometry. In Proc. 33rd Annu. Sym-
pos. Comput. Geom. (SoCG), 2017.

[HS04] J. Hershberger and S. Suri. Adaptive
sampling for geometric problems over data
streams. In Proceedings of the Twenty-third
ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems,
PODS ’04, pages 252–262, New York,
NY, USA, 2004. ACM. Available from:
http://doi.acm.org/10.1145/1055558.

1055595, doi:10.1145/1055558.1055595.

[SA17] D. M. M. Sunil Arya, Guilherme D. da Fon-
seca. Near-optimal -kernel construction and
related problems. In Proc. 33rd Annu. Sym-
pos. Comput. Geom. (SoCG), 2017.

[YAPV04] H. Yu, P. K. Agarwal, R. Poreddy, and
K. R. Varadarajan. Practical methods
for shape fitting and kinetic data struc-
tures using core sets. In Proceedings of the
Twentieth Annual Symposium on Compu-
tational Geometry, SCG ’04, pages 263–
272, New York, NY, USA, 2004. ACM.
Available from: http://doi.acm.org/

10.1145/997817.997858, doi:10.1145/

997817.997858.

[ZZ11] H. Zarrabi-Zadeh. An almost space-optimal
streaming algorithm for coresets in fixed di-
mensions. Algorithmica, 60(1):46–59, May
2011. Available from: http://dx.doi.

org/10.1007/s00453-010-9392-2, doi:

10.1007/s00453-010-9392-2.

5

http://doi.acm.org/10.1145/2582112.2582161
http://doi.acm.org/10.1145/2582112.2582161
http://dx.doi.org/10.1145/2582112.2582161
http://dx.doi.org/10.1145/2582112.2582161
http://doi.acm.org/10.1145/1008731.1008736
http://doi.acm.org/10.1145/1008731.1008736
http://dx.doi.org/10.1145/1008731.1008736
http://arxiv.org/abs/1507.02574
http://arxiv.org/abs/1507.02574
http://doi.acm.org/10.1145/358315.358392
http://doi.acm.org/10.1145/358315.358392
http://dx.doi.org/10.1145/358315.358392
http://dx.doi.org/http://dx.doi.org/10.1016/j.comgeo.2005.10.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.comgeo.2005.10.002
http://doi.acm.org/10.1145/1055558.1055595
http://doi.acm.org/10.1145/1055558.1055595
http://dx.doi.org/10.1145/1055558.1055595
http://doi.acm.org/10.1145/997817.997858
http://doi.acm.org/10.1145/997817.997858
http://dx.doi.org/10.1145/997817.997858
http://dx.doi.org/10.1145/997817.997858
http://dx.doi.org/10.1007/s00453-010-9392-2
http://dx.doi.org/10.1007/s00453-010-9392-2
http://dx.doi.org/10.1007/s00453-010-9392-2
http://dx.doi.org/10.1007/s00453-010-9392-2

Online Unit Covering in L2

Anirban Ghosh
School of Computing

University of North Florida
Jacksonville, FL, USA

B anirban.ghosh@unf.edu

Abstract

Given a set of points P in the plane, the classic Unit
Covering (UC) problem asks to compute the mini-
mum number of unit disks (possibly intersecting) re-
quired to cover the points in P , along with a place-
ment of the disks.

In this paper, we study an online version of UC in
L2, which we call as Online Unit Covering (OUC) in
L2, or, simply Online Unit Covering (OUC). In OUC,
the points arrive online sequentially. Once a point p
arrives, a decision needs to be taken - either assign
p to a previously placed disk (if possible) or place a
new disk to cover p since none of the previously placed
disks can cover p. In this setup, once a disk is placed,
its placement cannot be altered in future. We show
that competitive ratio of an optimal deterministic on-
line algorithm for OUC is at least 3 and at most 5.

Keywords: competitive ratio, geometric cover, on-
line algorithm, unit disk.

1 Introduction

The classic problem of Unit Covering (UC) in L2

metric is defined as follows. Given a set P of n points
{p1, . . . , pn} in the Euclidean plane, compute the min-
imum number of unit disks1 (possibly intersecting)
required to cover the points in P , along with a place-
ment of the disks. UC is a well studied problem in
computational geometry. UC is also known by the
name Unit Disk Cover. UC problems find their
applications in wireless networking, facility location,
robotics and other areas of research. Note that the
algorithms for UC can be easily scaled for covering
points using disks of any fixed radius r > 0. In this
paper, we fix r = 1.

UC is known to be NP-hard in L2 metric, re-
fer to [15]. Naturally, several attempts have been

1In this paper, by unit disk we refer to a closed disk of radius
1.

made to design off-line2 approximation algorithms.
The first PTAS was given by Hochbaum and Maass
in [21]. Gonzalez [20] presented two approximation
algorithms in L2 metric; a 2(1 + 1

l)-approximation
algorithm with runtime O(l2n7), where l is an in-
teger and another 8-approximation algorithm with
runtime O(n log s) where s is the number of disks
in the optimal cover. Franceschetti et al. [16] pre-
sented an algorithm with approximation factor 3(1 +
1
l) and runtime O(Kn), where l is a integer and
K is a constant which depends on l. A 2.8334-
approximation algorithm was presented in [18] having
runtime O(n(log n log log n)2). Chang et al. [7] de-
vised a 5-approximation algorithm with runtime
O(nm2), where m is the size of a square enclosing
the point set. Liu and Lu [26] designed a 25/4-
approximation algorithm with runtime O(n log n).
Recently, Biniaz et al. [3] devised an algorithm with
approximation factor 4 and runtime O(n log n).

There are several variants of the UC problem which
are well-studied in computational geometry. Refer
to [1, 2, 5, 9–12, 17, 19, 22, 25] for problem definitions
of some of the variants and related results.

Online algorithms have attracted great attention
in computer science. Refer to [4, 23] for a discussion
on online algorithms. Online problems have numer-
ous areas of application, such as, robotics, operating
systems, scheduling, networks, computational finance
and many others. Online algorithms form an integral
part of interactive computing where data arrives as a
sequence of input portions. Once a data element ar-
rives, an online algorithm must take a decision with
an objective to construct a solution based on the in-
put seen so far. Typically, when a new data element
arrives the solution constructed so far is extended. A
decision taken cannot be changed in future. Nothing
is known in advance about the future of the incoming
data elements. Clearly, the aim should be to always
take decisions which prevents the algorithm from pro-
ducing a bad quality solution in future. Since we can-

2In an off-line setup, the point set P is known in advance as
opposed to online setup.

1

not have the whole input in advance, it is frequently a
challenge to design online algorithms which produce
solutions not too bad in comparison to the ones pro-
duced by their off-line counterparts.

For an optimization problem, the competitive ratio
of an online algorithm A is defined as the worst case
ratio between the cost of the solution found by A and
the cost of an optimal solution. It is analogous to
approximation factor for off-line algorithms.

To the best of our knowledge, the online version of
UC in L2 has not been studied yet. This motivates
us to introduce the problem; we call it Online Unit
Covering (OUC) in L2 or in order to shorten it, just
Online Unit Covering (OUC). Here, points arrive
online, one at a time. When a new point p arrives, we
need to take one of the following two decisions. Either
we assign p to one of the disks, placed previously, or,
we place a new disk in order to cover p (since no other
previously placed disk covers it). At the start, no disk
is placed; the first disk is placed when the first point
arrives. Note that OUC has been studied in L∞ norm
and different variants; refer to [6, 8, 13].

In this paper, we show that any deterministic on-
line algorithm for OUC has competitive ratio at least
3 using a lower bound instance; see Section 2. Lower
bound instance constructions have great importance
in the research of online algorithms since they pro-
vide good estimates to algorithm designers as to what
competitive ratio can be achieved in the best case.
See [14, 24], for instance. On the other hand, we de-
sign a deterministic algorithm with competitive ratio
5. See Section 3.

Notations. Let Di be a unit disk. Then, by ci,
we denote its center. For a point p, we denote its
y-coordinate by y(p).

2 A lower bound for the opti-
mal competitive ratio

In this section, a lower bound for the optimal com-
petitive ratio for OUC is presented. For the off-line
version, the best approximation factor achieved so far
is 2(1+ 1

l), where l is an integer, refer to [20]. Observe
that for large positive l, one can get an approximation
factor close to 2. Naturally one expects that in the
online version, the competitive ratio should be higher
than 2, since, it is not possible to see the whole input
in advance. In this regard, we show that the optimal
competitive ratio is at least 3 in the following theo-
rem.

Theorem 1. The competitive ratio of any determin-
istic online algorithm for OUC is at least 3.

Proof. Consider a deterministic online algorithm A
for OUC. We present an input instance σ to A and

show that the solution A(σ) constructed by it is at
least 3 times worst the solution OPT(σ), constructed
by an optimal off-line algorithm.

Our proof works like a two player game, played by
Alice and Bob. Here, Bob is presenting points to Al-
ice, one at a time. Alice takes the decision whether to
place a new disk or not. If a new disk is required, Alice
decides where to place it. Bob tries to force Alice to
place as many new disks as possible by presenting the
points in a smart way. Alice tries to place a new disk
in a way such that the placed disk may cover other
points presented by Bob in future, thereby reducing
the need of placing new disks quite often.

Refer to the full version of this paper for the input
instance and the analysis.

3 An upper bound for the opti-
mal competitive ratio

In this section, we present a deterministic algorithm
for OUC having competitive ratio 5. This implies
that 5 is also an upper bound of the optimal compet-
itive ratio for any optimal deterministic algorithm for
OUC. In the following, the algorithm is presented; we
named it CENTERS-OUC.

Algorithm CENTERS-OUC: Let S be the set
of unit disks already placed (initially, S is
empty) and p be a point which has arrived.
If p is covered by an unit disk already placed,
then do not take any action. Otherwise, place
a new disk centered at p.

We begin with some observations which will aid us
to analyze the competitive ratio of the algorithm.

Observation 1. Consider two unit disks D1, D2 cen-
tered at c1, c2, respectively, such that c2 ∈ D1. Let
AB be the boundary arc of D1 lying in D2. Then, if
p ∈ AB, every point in the line segment c1p is covered
by D2. Furthermore, |AB| ≥ 2π/3.

Now, we extend our above observation for k unit
disks {D1, . . . , Dk}, which collectively can cover a
given unit disk D. Observation 2 gives us a condi-
tion under which a set of unit disks can cover D.

Observation 2. Consider a set S of unit disks
{D1, . . . , Dk} such that every ci ∈ D, where D is an
unit disk. For every disk Di, let AiBi be the boundary
arc of D lying in Di. If ∪ki=1AiBi = C, where C is the
boundary of D, then D ⊆ ∪ki=iDi. In other words, the
disks in S together cover D.

Next, we present the following observation which
will be used in our proof.

2

Observation 3. Let D1, D2, D3 be three unit disks
such that c2, c3 ∈ D1. If |c1c2| ≤ |c1c3|, then |D1 ∩
D2| ≥ |D1 ∩D3|. In other words, D2 covers a greater
area of D1 than D3 does.

Observation 3 also shows that an unit disk D1 cov-
ers the least part of another unit disk D2 when c1 lies
on the boundary of D2.

Theorem 2. The competitive ratio of any optimal
deterministic online algorithm for OUC is at most 5.

Proof. In this proof, we show that our online algo-
rithm CENTERS-OUC has competitive ratio 5.

Consider an optimal unit disk cover X for the
points arrived so far and let D ∈ X. Then we will
show that CENTERS-OUC uses at most five unit disks
to cover every input point in D. In doing so, we will
assume that no other disk in X covers any input point
in D. If it does, then lesser number of disks may be
placed by our algorithm to cover every input point in
D, but certainly never more.

By Observation 2, it follows that if every point on
the boundary of D is covered by some unit disk cen-
tered in D, then the boundary of D is covered in full
by these disks which also cover D. Hence, we focus
on covering the boundary points of D using disks cen-
tered in D. Our objective is to investigate the worst
case scenario and see how many disks can be placed
in D to cover the input points in D.

By Observation 3, it is clearly evident that inter-
section of a disk Di with D is least when Di is cen-
tered on the boundary of D. So, from now on we
will safely assume that incoming input points arrive
on the boundary of D. If they arrive inside D, then
lesser number of disks may be used by our algorithm,
but never more. Next, we will try to accommodate as
many unit disks we can centered on the boundary of
D using our algorithm CENTERS-OUC.

In the following, we define gap to be a maximal
contiguous portion of the boundary of D which is not
yet covered by any of the placed disks.

Consider the first input point p1 which arrives on
the boundary on D. CENTERS-OUC will place a new
disk D1 centered at p1. Observe that D1 covers one-
third of the boundary of D. In other words, by Ob-
servation 1, the length of the partial boundary of D
in D1 is 2π/3. If no more points arrive in D, we are
done.

Now, two more points p2, p3 arrive on the boundary
of D such that they do not belong to D1. Assume that
for p2, p3, disks D2, D3 need to be placed, respectively.

There are following three cases based on the number
of gaps, G, present after placing D1, D2, D3. It is
shown in the full version of this paper that for G ∈
{0, 1, 2}, we need at most five disks to cover the input

points in D. Also, it is easy to check that G ≥ 3 is
not possible since each disk covers one-third of the
boundary of D.

Hence, we see that in worst case, our algorithm
places at most five disks in order to cover every input
point in D. This concludes our proof.

4 Open directions

We gave a lower bound of 3 for the optimal compet-
itive ratio for OUC. It remains open to investigate
if this lower bound can be improved. On the other
hand, to investigate if there is an online algorithm
with a competitive ratio less than 5 remains open.

References

[1] M. Basappa, R. Acharyya, G. K. Das, Unit
disk cover problem in 2D, J. Discrete Algorithms
33 (2015), 193–201.

[2] M. D. Berg, S. Cabello, S. Har-Peled,
Covering many or few points with unit disks,
Theory Comput. Syst. 45 (2009), 446–469.

[3] A. Biniaz, P. Liu, A. Maheshwari, M. Smid,
Approximation algorithms for the unit disk cover
problem in 2D and 3D, Comput. Geom. 60
(2017), 8–18.

[4] A. Borodin, R. El-Yaniv, Online computa-
tion and competitive analysis, Cambridge Uni-
versity Press, 1998.

[5] H. Brönnimann, M. T. Goodrich, Almost
optimal set covers in finite VC-dimension, Dis-
crete Comput. Geom. 14(4) (1995), 463–479.

[6] T. M. Chan and H. Zarrabi-Zadeh, A ran-
domized algorithm for online unit clustering,
Theory Comput. Syst. 45(3) (2009), 486–496. A
preliminary version in Proc. 5th Workshop on
Approximation and Online Algorithms (WAOA),
LNCS 4368, Springer, 2006, pp. 121–131.

[7] C.-Y. Chang, C.-C. Chen, C.-C. Liu, A novel
approximation algorithm for minimum geometric
disk cover problem with hexagon tessellation, In
Proceedings of the International Computer Sym-
posium, Advances in Intelligent Systems and Ap-
plications - Vol. 1, Springer, (2013), 157–166.

[8] M. Charikar, C. Chekuri, T. Feder, and
R. Motwani, Incremental clustering and dy-
namic information retrieval, SIAM J. Comput.
33(6) (2004), 1417–1440.

3

[9] B. M. Chazelle, D. T. Lee, On a circle place-
ment problem, Computing 36 (1986), 1–16.

[10] F. Claude, G. K. Das, R. Dorrigiv,
S. Durocher, R. Fraser, A. López-Ortiz,
B. G. Nickerson, A. Salinger, An improved
line-separable algorithm for discrete unit disk
cover, Discrete Math. Algorithm. Appl. 02
(2010), 77–87.

[11] M. De, G. K. Das, P. Carmi, S. C. Nandy,
Approximation algorithms for a variant of dis-
crete piercing set problem for unit disks, Inter-
nat. J. Comput. Geom. Appl. 23 (2013), 461–
477.

[12] G. K. Das, R. Fraser, A. Lopez-Ortiz,
B. G. Nickerson, On the discrete unit disk
cover problem, Internat. J. Comput. Geom.
Appl. 22 (2012), 407–419.

[13] A. Dumitrescu, C. D. Tóth, Online unit clus-
tering in higher dimensions, arXiv:1708.02662,
2017.

[14] L. Epstein, R. van Stee, On the online unit
clustering problem, ACM Trans. Algorithms,
7(1), (2010).

[15] R. J. Fowler, M. S. Paterson, S. L. Tan-
imoto, Optimal packing and covering in the
plane are NP-complete, Inform. Process. Lett.
12(3) (1981), 133–137.

[16] M. Franceschetti, M. Cook, J. Bruck, A
geometric theorem for approximate disk covering
algorithms, Technical report, 2001.

[17] R. Fraser, A. López-Ortiz, The within-strip
discrete unit disk cover problem, Theoret. Com-
put. Sci. 674 (2017), 99–115.

[18] B. Fu, Z. Chen, M. Abdelguerfi, An almost
linear time 2.8334-approximation algorithm for
the disc covering problem, In Proceedings of 3rd
International Conference of Algorithmic Aspects
in Information and Management, Springer, 2007,
pp. 317–326.

[19] H. Ghasemalizadeh, M. Razzazi, An im-
proved approximation algorithm for the most
points covering problem, Theory Comput. Syst.
50 (2012), 545–558.

[20] T. F. Gonzalez, Covering a set of points in
multidimensional space, Inf. Process. Lett. 40
(4) (1991), 181–188.

[21] D. S. Hochbaum, W. Maass, Approximation
schemes for covering and packing problems in im-
age processing and VLSI, J. ACM 32(1) (1985),
130–136.

[22] H. Kaplan, M. J. Katz, G. Morgenstern,
M. Sharir, Optimal cover of points by disks in a
simple polygon, SIAM J. Comput. 40(6) (2011),
1647–1661.

[23] R. M. Karp, On-line algorithms versus off-line
algorithms: How much is it worth to know the
future?, In IFIP Congress (1), 1992, (Vol. 12, pp.
416–429).

[24] J. Kawahara, K. M. Kobayashi, An improved
lower bound for one-dimensional online unit clus-
tering, Theoret. Comput. Sci. 600 (2015), 171–
173.

[25] C. Liao, S. Hu, Polynomial time approxima-
tion schemes for minimum disk cover problems,
J. Comb. Optim. 20 (2010), 399–412.

[26] P. Liu, D. Lu, A fast 25/6-approximation
for the minimum unit disk cover problem,
arXiv:1406.3838, 2014.

4

Online Unit Covering in L2

Anirban Ghosh
School of Computing

University of North Florida
Jacksonville, FL, USA

B anirban.ghosh@unf.edu

Abstract

Given a set of points P in the plane, the classic Unit Covering (UC) problem asks to compute the minimum
number of unit disks (possibly intersecting) required to cover the points in P , along with a placement of the
disks.

In this paper, we study an online version of UC in L2, which we call as Online Unit Covering (OUC) in
L2, or, simply Online Unit Covering (OUC). In OUC, the points arrive online sequentially. Once a point p
arrives, a decision needs to be taken - either assign p to a previously placed disk (if possible) or place a new
disk to cover p since none of the previously placed disks can cover p. In this setup, once a disk is placed, its
placement cannot be altered in future. We show that competitive ratio of an optimal deterministic online
algorithm for OUC is at least 3 and at most 5.

Keywords: competitive ratio, geometric cover, online algorithm, unit disk.

URL for the full version: https://arxiv.org/abs/1710.00954

5

An O(n log n)-Time Algorithm for the k-Center Problem in Trees⋆

Haitao Wang1 and Jingru Zhang2

1 Department of Computer Science, Utah State University, Logan, UT 84322, USA,
haitao.wang@usu.edu

2 Department of Computer Science, Marshall University, Huntington, WV 25755, USA,
jingru.zhang@marshall.edu

Abstract. We consider a classical k-center problem in trees. Let T be a tree of n vertices and every
vertex has a nonnegative weight. The problem is to find k centers on the edges of T such that the
maximum weighted distance from all vertices to their closest centers is minimized. Megiddo and Tamir
(SIAM J. Comput., 1983) gave an algorithm that can solve the problem in O(n log2 n) time by using
Cole’s parametric search. Since then it has been open for over three decades whether the problem can
be solved in O(n log n) time. We present an O(n log n) time algorithm for the problem and thus settle
the open problem affirmatively.

⋆ The full paper of this abstract can be found at https://arxiv.org/abs/1705.02752.

Subquadratic-Space Query-Efficient

Data Structures for Realizable Order Types

Jean Cardinal∗, Timothy M. Chan†, Stefan Langerman‡, Aurélien Ooms§

October 27, 2017

Abstract

Realizable order types and abstract order types are combinatorial analogues of line
arrangements and pseudoline arrangements. They only store information about the
relative orientation of triples of lines and pseudolines. We give an optimal encoding
for abstract order types that allows efficient query of the orientation of any triple: the
encoding uses O(n2) bits and an orientation query takes O(logn) time in the word-
RAM model. We show how to shorten the encoding to o(n2) bits for realizable order
types. We show how to attain o(logn) query time at the expense of an extra O(logε n)
factor in the size of the encoding. For realizable order types, the encoding remains
subquadratic in size.

1 Introduction

At SoCG’86, Chazelle asked [22]:

“How many bits does it take to know an order type?”.

This question is of importance in Computational Geometry for the following two rea-
sons. First, in many algorithms dealing with sets of points in the plane, the only relevant
information about the points is the orientation (clockwise or counterclockwise) of the triples
of points in the set [13]. Second, computers as we know them can only handle numbers with
finite description and we cannot assume that they are going to handle arbitrary real num-
bers without some sort of encoding. The study of robust algorithms is focused on ensuring
the correct solution of problems on finite precision machines (see the Chapter on this issue
in The Handbook [30]).

The orientation of an input triple ((x1, y1), (x2, y2), (x3, y3)) corresponds to the sign of
the determinant ∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ .
∗jcardin@ulb.ac.be, Université libre de Bruxelles (ULB). Supported by the “Action de Recherche Con-

certée” (ARC) COPHYMA, convention number 4.110.H.000023.
†tmc@illinois.edu, University of Illinois at Urbana-Champaign.
‡slanger@ulb.ac.be, Université libre de Bruxelles (ULB). Directeur de recherches du Fonds de la Recherche

Scientifique-FNRS.
§aureooms@ulb.ac.be, Université libre de Bruxelles (ULB). Supported by the Fund for Research Training

in Industry and Agriculture (FRIA).

1

mailto:jcardin@ulb.ac.be
mailto:tmc@illinois.edu
mailto:slanger@ulb.ac.be
mailto:aureooms@ulb.ac.be

(a) Realizable order type. (b) Abstract order type.

Figure 1: Pappus’s configuration

The set of all orientations is usually referred to as the order type of the point set. A
great deal of the literature in computational geometry deals with this notion [1–12, 14–
23, 25–29], and the list goes on. The order type of a point set has been further abstracted
into combinatorial objects known as (rank-three) oriented matroids [16]. The chirotope
axioms define consistent systems of signs of triples [10]. From the Topological Representation
Theorem [11], all such abstract order types correspond to pseudoline arrangements, while,
from the standard projective duality, order types of point sets correspond to straight line
arrangements.

In this contribution, we are interested in compact data structures for order types. We
consider both order types that are realizable as point sets, and abstract order types, that is,
order types realizable as pseudoline arrangements. We wish to design data structures using
as few bits as possible that can be used to quickly answer orientation queries.

Abstract order types are much more numerous than realizable order types: there are
2Θ(n2) abstract order types [14] and only 2Θ(n log n) realizable order types [9, 20]. Hence
information theory tells us that we need quadratic space for abstract order types whereas
we only need linearithmic space for realizable order types. This discrepancy stems from
the algebraic nature of realizable order types. As an example, Pappus gives a configuration
where eight triples of concurrent straight lines force a ninth, whereas the ninth triple cannot
be enforced by pseudolines [26, 29] (see Figure 1).

An obvious idea for storing an order type of a set of points (aside from explicitly storing
all

(
n
3

)
orientations) is to store the coordinates of the points, and answer orientation queries

in constant time by computing the determinant. While this should work in many practical
settings, it cannot work for all point sets. Perles’s configuration shows that some arrange-
ment of points, containing collinear triples, forces at least one coordinate to be irrational [24]
(see Figure 2). Even for points in general position, it is well known that some arrangements
require doubly exponential coordinates, hence coordinates with exponential bitsizes [23].

Goodman and Pollack defined λ-matrices that can be used for encoding realizable order
types using O(n2 log n) bits [18]. They asked if the space requirements can be moved closer
to the information theoretic lower bounds. Felsner and Valtr [14, 15] show how to encode
abstract order types optimally via the wiring diagram of their corresponding allowable se-
quence (as defined in [17]). However, it is not known how to decode the orientation of one
triple from any of those encodings in, say, sublinear time. Moreover, since the information
theoretic lower bound for realizable order types is only Ω(n log n), we must ask if this space
bound is approachable for those order types if we wish simultaneously to keep orientations
queries reasonably efficient.

2

Figure 2: Perles’s configuration

2 Our Results

We give the first optimal encoding for abstract order types that allows efficient query of
the orientation of any triple: the encoding uses O(n2) bits and a query takes O(log n) time
in the word-RAM model. Our data structure is far from being space-optimal for realizable
order types and we can hope to save some space while keeping the queries fast. We show
how to reduce the size of our data structure to subquadratic for realizable order types. We
further refine our data structure so as to reduce the query time to sublogarithmic. This
improvement is applicable for both abstract and realizable order types at the cost of an extra
O(logε n) factor in the space complexity. For realizable order types, the encoding remains
subquadratic in size.

Our data structure is the first subquadratic encoding of realizable order types that allows
efficient query of the orientation of any triple. We know of no subquadratic constant-degree
algebraic decision tree for the related problem of deciding whether a point set contains a
collinear triple. Any such decision tree would yield another subquadratic encoding for real-
izable order types. We see our results as a stepping stone towards subquadratic nonuniform
algorithms for this related problem.

References

[1] Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating order types
for small point sets with applications. Order, 19(3):265–281, 2002.

[2] Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. On the crossing number
of complete graphs. In Proceedings of the eighteenth annual symposium on Computa-
tional geometry, pages 19–24. ACM, 2002.

[3] Oswin Aichholzer, Jean Cardinal, Vincent Kusters, Stefan Langerman, and Pavel Valtr.
Reconstructing point set order types from radial orderings. International Journal of
Computational Geometry & Applications, 26(03n04):167–184, 2016.

[4] Oswin Aichholzer, Matias Korman, Alexander Pilz, and Birgit Vogtenhuber. Geodesic
order types. Algorithmica, 70(1):112–128, 2014.

3

[5] Oswin Aichholzer and Hannes Krasser. The point set order type data base: A collection
of applications and results. In CCCG, volume 1, pages 17–20, 2001.

[6] Oswin Aichholzer and Hannes Krasser. Abstract order type extension and new results
on the rectilinear crossing number. In Proceedings of the twenty-first annual symposium
on Computational geometry, pages 91–98. ACM, 2005.

[7] Oswin Aichholzer, Vincent Kusters, Wolfgang Mulzer, Alexander Pilz, and Manuel
Wettstein. An optimal algorithm for reconstructing point set order types from radial
orderings. In International Symposium on Algorithms and Computation, pages 505–516.
Springer, 2015.

[8] Oswin Aichholzer, Tillmann Miltzow, and Alexander Pilz. Extreme point and halving
edge search in abstract order types. Computational Geometry, 46(8):970–978, 2013.

[9] Noga Alon. The number of polytopes configurations and real matroids. Mathematika,
33(1):62–71, 1986.

[10] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M
Ziegler. Oriented matroids, encyclopedia of mathematics, vol. 46, 1993.

[11] Jürgen Bokowski, Susanne Mock, and Ileana Streinu. On the Folkman-Lawrence
topological representation theorem for oriented matroids of rank 3. Eur. J. Comb.,
22(5):601–615, 2001.

[12] Jürgen Bokowski, Jürgen Richter-Gebert, and Werner Schindler. On the distribution
of order types. Computational Geometry, 1(3):127–142, 1992.

[13] Herbert Edelsbrunner. Algorithms in combinatorial geometry, volume 10. Springer
Science & Business Media, 2012.

[14] Stefan Felsner. On the number of arrangements of pseudolines. In Proceedings of the
twelfth annual symposium on Computational geometry, pages 30–37. ACM, 1996.

[15] Stefan Felsner and Pavel Valtr. Coding and counting arrangements of pseudolines.
Discrete & Computational Geometry, 46(3):405–416, 2011.

[16] Jon Folkman and Jim Lawrence. Oriented matroids. Journal of Combinatorial Theory,
Series B, 25(2):199–236, 1978.

[17] Jacob E Goodman. Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete
Mathematics, 32(1):27–35, 1980.

[18] Jacob E Goodman and Richard Pollack. Multidimensional sorting. SIAM Journal on
Computing, 12(3):484–507, 1983.

[19] Jacob E Goodman and Richard Pollack. Semispaces of configurations, cell complexes
of arrangements. Journal of Combinatorial Theory, Series A, 37(3):257–293, 1984.

[20] Jacob E. Goodman and Richard Pollack. Upper bounds for configurations and poly-
topes in Rd. Discrete & Computational Geometry, 1:219–227, 1986.

[21] Jacob E Goodman and Richard Pollack. The complexity of point configurations. Dis-
crete Applied Mathematics, 31(2):167–180, 1991.

4

[22] Jacob E Goodman and Richard Pollack. Allowable sequences and order types in discrete
and computational geometry. In New trends in discrete and computational geometry,
pages 103–134. Springer, 1993.

[23] Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate representation
of order types requires exponential storage. In STOC, pages 405–410. ACM, 1989.

[24] Branko Grünbaum. Convex Polytopes. Springer, 2005.

[25] Alfredo Hubard, Luis Montejano, Emiliano Mora, and Andrew Suk. Order types of
convex bodies. Order, 28(1):121–130, 2011.

[26] Friedrich Levi. Die teilung der projektiven ebene durch gerade oder pseudogerade. Ber.
Math.-Phys. Kl. Sächs. Akad. Wiss, 78:256–267, 1926.

[27] Yoshitake Matsumoto, Sonoko Moriyama, Hiroshi Imai, and David Bremner. Matroid
enumeration for incidence geometry. Discrete & Computational Geometry, 47(1):17–43,
2012.

[28] Jaroslav Nešetřil and Pavel Valtr. A ramsey property of order types. Journal of
Combinatorial Theory, Series A, 81(1):88–107, 1998.

[29] Gerhard Ringel. Teilungen der ebene durch geraden oder topologische geraden. Math-
ematische Zeitschrift, 64(1):79–102, 1956.

[30] Chee K. Yap. Robust geometric computation. In Handbook of Discrete and Computa-
tional Geometry, 2nd Ed., pages 927–952. Chapman and Hall/CRC, 2004.

5

Lightweight Sketches for Mining Trajectory Data

Maria Astefanoaei* Panagiota Katsikouli* Mayank Goswami** Rik Sarkar*

*University of Edinburgh
**City University of New York

m.s.astefanoaei@sms.ed.ac.uk, p.katsikouli@sms.ed.ac.uk, mayank.goswami@qc.cuny.ny, rsarkar@inf.ed.ac.uk

Abstract
Mining trajectory data can be expensive in large
datasets, due to the cost of computing distances be-
tween trajectories. We develop two complementary
lightweight sketches or summaries for trajectories. The
first sketch is geometry-based and takes into account the
embedding of the trajectory, whereas the other sketch is
purely shape-based.

Our first sketch consists of results of intersecting a tra-
jectory with a random set of disks in the plane. This
simple mechanism yields a short bit vector that can be
used to practically estimate more traditional measures
like Hausdorff and Frechet distance between trajecto-
ries. On real trajectory data, using bit vectors of only
60 bits, we find that the Hamming distance between the
sketches shows strong correlation with the Hausdorff
and Frechet distances.

Our second sketch is independent of scaling, transla-
tions and rotations. It consists of measuring the turns
made by the tangent vector of a trajectory. After find-
ing the optimal rotation, we compare two trajectories
based on this turn-angle metric. We show how to use
dimension-reduction methods to reduce the space us-
age of this sketch.

The sketches can be further used to apply local-
ity sensitive hashing on the trajectories, and achieve
high pruning ratio for nearest neighbour searches. The
sketch mechanism has additional desirable qualities
such as ease of implementation in resource constrained
environments, and in streaming data. Its performance
degrades gracefully with memory constraints, sensing
errors and missing data.

1 Introduction

The proliferation of mobile and GPS enabled devices
have given rise to large databases containing trajecto-
ries of individuals. Collective data from many users can
provide fine grained information about social behavior
and interactions, traffic, infrastructure services etc.

Mining trajectory data requires efficient algorithms
for basic operations such as distance computation and
nearest neighbor queries. Commonly used distance
measures like Hausdorff and Fréchet [2] distances are

expensive compute in large datasets. In this work, we
develop a simple sketching mechanism to easily com-
pare trajectories and speed up the essential operations
of distance estimation and near neighbor search.

In related works, trajectory processing has tradition-
ally been treated from the simplification perspective,
where the goal is to construct an approximate curve
with fewer vertices, such as in the Douglas-Peucker
Algorithm [8], and other methods with stronger com-
pression guarantees [9, 1]. More recent methods
have generalized the simplification problem to preserve
speed, time, direction and other motion related infor-
mation [13, 12], or focused on computing simplifications
online [11].

The purpose of these methods is to store enough in-
formation to reconstruct the orginal trajectory to a high
accuracy. In contrast, our objective is to store enough
information to simply determine if two trajectories are
likely to be similar. We show that on real trajectories, a
simple hashing strategy suffices to detect closeness.

Motivations. There are many domains where trajec-
tory mining techniques can be applied. Transportation
and traffic engineering are natural applications. Trajec-
tory data can be used to understand typical routes taken
by users, and thus improve public transport infrastruc-
ture [14]. In geographic information systems, they can
be used to automatically infer road segments and cross-
ings [5]. They can be used to optimize bus routes [14]
and taxi deployments [15] and infrastructure for elec-
trical vehicles [7]. sIn a long term perspective, as ride-
sharing and self driving vehicles become common, both
efficiency and benefits of these systems can be improved
through better understanding of travel patterns of users.

Our contributions. We develop two different sketching
methods that reflect the proximity and shapes of trajec-
tories trajectories respectively.

1. Proximity Sketching If two trajectories are gener-
ally close, then in a randomly chosen neighborhood, the
presence of one trajectory will likely imply presence of
the other. A neighborhood that intersects one trajectory
but not the other will be relatively rare. On the other
hand, for two trajectories that are generally far from
each other, common neighborhoods will be rare. This
intuition is shown in Figure 1, where we use circular

1

disks to represent randomly chosen neighborhoods. A
disk intersecting a trajectory but missing a nearby one is
relatively rare. This is a form of Locality Sensitive Hash-
ing for trajectories, where each disk intersection acts as
a hash function.

Figure 1. An example of random disk neighborhoods intersecting tra-
jectories. Similar trajectories usually either both intersect a particular
disk or both do not.

We show that under some realistic assumptions that
model trajectories with clear start and destinations, this
property can be used to provably distinguish between
similar and dissimilar trajectories with high probability.
We define a measure of distance based on the disk inter-
sections and experiments on real data show that a rel-
atively small number of random disks (about 60 disks)
suffice to obtain a fair estimate of the distance between
two trajectories in a city; it shows high correlation with
the Hausdorff and Fréchet distance measures.

In nearest neighbour queries the sketches can be used
to effectively prune the data and reduce the cost of
searching, without any substantial loss in accuracy. The
method is also amenable to use in practical distributed
settings such as sensor and mobile computing.
2. Shape sketching In many applications, we only care
about the “shape” of the trajectory, and not about how it
is embedded in the ambient space. In such shape-based
recognition or searching applications, if a trajectory T2
is a translated and/or rotated and/or scaled version of
trajectory T1, we ideally want to consider them to be
the same. Notice that the previous metrics such as the
Hausdorff metric or the Frechet distance are not invari-
ant under such changes. Motivated by [3], we consider a
metric that arises from the “turns” made by a trajectory.
We define this metric in Section 3, and then we show
how to compute lightweight sketches using dimension-
reduction methods and build the database for compar-
ing trajectories.

2 Disk Intersection Distance
We define a trajectory T as a sequence of embedded
vertices T = {v0, v1, . . . vn}. In the most general case
they can be quite arbitrary, but practical trajectories
are often more well behaved. Consider, for example,
trajectories corresponding to trips taken by passengers
in taxi cabs or buses. Trajectories of such trips have
well defined start and end points and they make clear
progress in a direction; they do not backtrack long sec-
tions. Our interest therefore, is in trajectories that con-

sistently achieve an efficient displacement for the user
compared to the local length.

We define the R-offset of a trajectory T, denoted by
Aoff(T, R), as the area of the region within Euclidean
distance at most R form T. For a trajectory of length l
the area of the offset changes depending on the angle α
between successive straight segments. As α decreases,
the total area of the offset decreases, meaning that sharp
turns reduce the area of the offset. In particular, sharp
turns at a scale comparable to R will cause a greater re-
duction of the area, while small noisy fluctuations, even
if sharp, will not affect a large change.

Based on this idea, we define the class of trajectories
that we consider in our problem:

Definition 2.1 (Progressive trajectory). We say that a
trajectory T of length l is ε-progressive if the area of its
R−offset is

(1− ε)(2Rl + πR2) ≤ Aoff(T, R) ≤ (1 + ε)(2Rl + πR2),

that is, at most an ε factor away from the area of the
R-offset of the straight line of length l.

2.1 Disk Intersection Sketch and Trajectory
Distances

We define our sketch of a trajectory as the record of its
intersection with D random discs on a map:

Definition 2.2 ((D, R)-Disk Intersection Sketch). The
Disc Intersection Sketch (DIS) of a trajectory T is the
binary vector S(T) = d0d1 . . . dD−1 of length D, defined
in terms of a set of D random but fixed disks. The
vector element di = 1 if the disk i intersects trajectory
T, else it is 0.

Correspondingly, we define the distance between
trajectories as the hamming distance between their
sketches:

Definition 2.3 ((D, R)-Disk Intersection Distance dD,R).
The Disk Intersection Distance (DID) between two tra-
jectories T1, T2 is the Hamming distance between their
(D, R) Disk Intersection Sketches. That is, the number
of indices with different entries: |{i : d1,i 6= d2,i}|.

Suppose we are mining trajectories in a region of area
A, and for two trajectories T1 = {v0, v1, . . . vp} and
T2 = {u0, u1, . . . uq}, ` = p + q is the total size of the
two trajectories. For simplicity, we are assuming that
the boundaries of the region are at a distance of at least
R from any vertex of T1 or T2. Then We can show that:

Theorem 2.4. For Hausdorff distance H(T1, T2) < 2R,
the (D, R) Disk Intersection Distance satisfies

E[dD,R(T1, T2)] ≤
4πD`R

A
H(T1, T2).

2

The implication of the theorem is that, when the Haus-
dorff distance is small, then beyond factors of constants
and known parameters, the DID is bounded by the
Hausdorff distance.

On the other hand, we are also interested in cases
where at least significant portions of the trajectories are
far from each other. Which leads us to the property:

Theorem 2.5. If in ε-progressive trajectories T1 and T2
there exist subtrajectories of total length at least l where
each vertex is at a distance of least 2R from the other
trajectory, then:

E[dD,R(T1, T2)] ≥ D
2(1− ε)(2Rl + πR2)

A
.

DID is therefore a robust measure – it relies on large
portions of the trajectories being well separated to as-
sign a large distance between them and is not sensitive
to a few outliers.

3 Turn-based metric
In order to define the metric, we first need to talk about
how the trajectories are represented. Scale invariance
demands that it should be possible for two trajectories
of different lengths to be distance zero in our metric,
thus requiring some kind of normalization. We normal-
ize all our trajectories to be length one. In what fol-
lows, a trajectory T denotes a piecewise linear1 curve
T : [0, 1]→ R2.

Given a trajectory T, we define a function ΘT(s) (sup-
ported on [0, 1]) that measures the turn-angle as in [3].
ΘT(0) is the angle that the forward tangent at the start-
ing point T(0) makes with the x-axis (or any fixed ori-
entation). ΘT(s) similarly denotes the angle at the point
T(s). For piece-wise linear trajectories, the function Θ
will have jumps at the vertices (or turning points) of
the trajectory. It decreases with left-hand turns and in-
creases with right-hand turns2.

Because we will only be using the function ΘT(s) to
compare a trajectory T to other trajectories, it is clear
that our metric will be translation-invariant. Next, we
notice that rotating a trajectory T amounts to a shift
of ΘT(s). To take rotations into account, we need to
match the trajectories upto such shifts. Given two tra-
jectories T1 and T2, we define their distance3 to be
d(T1, T2) := minθ E(T1, T2, θ), where E(T1, T2, θ) =(∫ 1

0 |ΘT1(s)−ΘT2(s) + θ|2
)1/2

.

1The definition given makes sense for smooth trajectories too.
However, our data structure only works on piece-wise linear trajec-
tories.

2Note that for simple closed trajectories (or simple polygons),
Θ(s + 1) = Θ(s) + 2π.

3The fact that d is a metric follows from Minkowski inequality
(|| f + g|| ≤ || f || + ||g||) applied to the L2 norm, and we omit the
proof here.

3.1 The Sketching algorithm

We discretize [0, 1] into a set S of D points, for some
large D. We will restrict the preimage of any vertex of a
trajectory T : [0, 1] → R2 to lie in S. In other words, our
trajectories are only allowed4 to “turn” at points in S.

For each trajectory T we compute the function ΘT(.)
as a D-dimensional vector by computing it on every
s ∈ S. We also compute the value V(T) :=

∫ 1
0 ΘT(s)ds.

Simple calculus reveals that argmin E(T1, T2, θ) is θ∗ =
V(T1) − V(T2). Thus, given the vectors ΘTi (.) and the
values V(Ti) for i = 1, 2, we can calculate the distance.

We now show how to represent sketches in a much
more compact way, while still being able to compute a
good approximation of the distance between two trajec-
tories. Since storing vectors of length D may be pro-
hibitive, we use the Johnson-Lindenstrauss lemma [6].
We denote by w(Ti) the D-dimensional vector repre-
senting Ti. By the Johnson-Lindenstrauss lemma [6],

there exists a linear map f : RD → RD
′
, where D

′
=

O(
log n

ε2), such that for any two trajectories Ti and Tj

(1 ≤ i, j ≤ n), || f (w(Ti)) − f (w(Ti))||2 is within 1± ε
times ||w(Ti)− w(Ti)||2.

However, because we want our metric to be rotation-
invariant, what we want is to approximate ||w(Ti) −
w(Tj) + θ∗.1||2, where θ∗ = V(Ti)− V(Tj) and 1 is the
vector of ones. We note that we have stored the val-
ues V(Ti) and V(Tj), and we also have the linear map
f . By linearity, f (w(Tj) + θ∗.1) = f (w(Tj)) + f (θ∗.1),
which in turn equals f (w(Tj)) + θ∗ f (1) and so we can
just store f (1) and the reduced sketches after applying
the JL transform. Thus we have proved:

Theorem 3.1. Given n trajectories Ti : [0, 1] → R2 that
only turn on a discrete set of points S ⊂ [0, 1] and an
ε > 0, one can store sketches of the n trajectories us-
ing O(

n log n
ε2) space in total. Given a pair (i, j), one can

compute from these sketches in O(
log n

ε2) time a 1± ε ap-
proximation of the turn-angle-distance d(Ti, Tj).
We remark that if one wants ε = 0, the space usage will
be n|S|, as dimension reduction cannot be used.

The above data structure returns the distance be-
tween any two input trajectories. In many applications
one may be interested in nearest neighbor queries, i.e.,
given as query a trajectory T, return the nearest (among
T1, · · · , Tn) trajectory to T, where nearest is w.r.t. to the
turn-angle metric. Because this metric is translation, ro-
tation and scale invariant, this is essentially a database
of “trajectory shapes”.

The exact nearest neighbor problem does not allow ef-
ficient (sublinear in n) query time, and so here we look
at the c-approximate nearest neighbor problem, where

4Although this sounds like a limitation of our method, a dense-
enough discretization S does not alter the distance computation dras-
tically, and is akin to the snap-to-grid simplification used often in com-
putational geometry and vision.

3

the algorithm must return a trajectory whose distance
to the query trajectory T is at most c times the distance
of T to its nearest trajectory. Because of the way we de-
sign our sketches, we can use an LSH-based approxi-
mate nearest neighbor data structure ([10]), giving rise
to the following theorem.
Theorem 3.2. Given n trajectories Ti : [0, 1] → R2 that
only turn on a discrete set of points S ⊂ [0, 1], a c > 1,
and an ε > 0, one can construct a data structure re-
quiring O(n1+1/c2

+
n log n

ε2) space. Given a query tra-

jectory T, the data structure returns in O(n1/c2
) time a

trajectory Ti such that d(T, Ti) is at most c(1 + ε) times
minj d(T, Tj).

4 Experiments
We tested the algorithm on commonly used public
datasets [4, 16]. On real data, the disk intersection
distance shows high correlation with Hausdorff and
Frechet distances (Fig. 2).

(a) (b)

Figure 2. Correlation with DID. The red dots are the mean for each
bucket, shaded area shows 5 to 95 percentile. (a) Hausdorff distance.
(b) Fréchet distance.

In other experiments, we found that DID is an ef-
fective way of pruning data for near neighbor search.
When pruning away 95% of all trajectories from the
search space, it preserves the nearest neighbor in 60%
of cases and one of the two nearest neighbors in 90% of
cases. Thus, a more accurate algorithm can then be ap-
plied to a small dataset to find near neighbors in most
cases. In experiments on computational time, this ap-
proach naturally outperforms using simple Hausdorff
or Frechet distance based nearest neighbor search by a
large margin.

5 Conclusion

We have presented two complementary approaches to
trajectory sketching. The natural next step is to develop
a combined approach that can simultaneously incorpo-
rate shape and proximity of trajectories to produce more
accurate and faster processing.

References
[1] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang.

Near-linear time approximation algorithms for curve

simplification. In Proceedings of the 10th Annual European
Symposium on Algorithms, ESA ’02, pages 29–41, London,
UK, UK, 2002. Springer-Verlag.

[2] H. Alt and M. Godau. Computing the fréchet distance be-
tween two polygonal curves. International Journal of Com-
putational Geometry & Applications, 5(01n02):75–91, 1995.

[3] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem,
and J. S. Mitchell. An efficiently computable metric for
comparing polygonal shapes. Technical report, COR-
NELL UNIV ITHACA NY, 1991.

[4] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici,
and A. Rabuffi. CRAWDAD dataset roma/taxi (v. 2014-
07-17). Downloaded from http://crawdad.org/roma/

taxi/20140717, July 2014.
[5] Y. Chen and J. Krumm. Probabilistic modeling of traffic

lanes from gps traces. In Proceedings of the 18th SIGSPA-
TIAL International Conference on Advances in Geographic In-
formation Systems, pages 81–88. ACM, 2010.

[6] S. Dasgupta and A. Gupta. An elementary proof of a the-
orem of johnson and lindenstrauss. Random Structures &
Algorithms, 22(1):60–65, 2003.

[7] J. Dong, C. Liu, and Z. Lin. Charging infrastructure plan-
ning for promoting battery electric vehicles: An activity-
based approach using multiday travel data. Transporta-
tion Research Part C: Emerging Technologies, 38:44–55, 2014.

[8] D. Douglas and T. Peucker. Algorithms for the reduc-
tion of the number of points required to represent a dig-
itized line or its caricature. The Canadian Cartographer,
11(2):112–122, 1973.

[9] H.Imai and M. Iri. Polygonal approximations of a curve-
formulations and algorithms. Computational morphology,
1988.

[10] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on The-
ory of computing, pages 604–613. ACM, 1998.

[11] P. Katsikouli, R. Sarkar, and J. Gao. Persistence based
online signal and trajectory simplification for mobile de-
vices. In Proceedings of the 22nd ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information
Systems, pages 371–380. ACM, 2014.

[12] C. Long, R. C.-W. Wong, and H. V. Jagadish. Direction-
preserving trajectory simplification. Proc. VLDB Endow.,
6(10):949–960, Aug. 2013.

[13] N. Meratnia and A. Rolf. Spatiotemporal compression
techniques for moving point objects. In Advances in
Database Technology-EDBT 2004, pages 765–782. Springer,
2004.

[14] S. Ngamchai and D. J. Lovell. Optimal time transfer in
bus transit route network design using a genetic algo-
rithm. Journal of Transportation Engineering, 129(5):510–
521, 2003.

[15] H. Tang, M. Kerber, Q. Huang, and L. Guibas. Locating
lucrative passengers for taxicab drivers. In Proceedings of
the 21st ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, pages 504–507.
ACM, 2013.

[16] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining inter-
esting locations and travel sequences from gps trajecto-
ries. In Proceedings of the 18th international conference on
World wide web, pages 791–800. ACM, 2009.

4

http://crawdad.org/roma/taxi/20140717
http://crawdad.org/roma/taxi/20140717

Calculating the Dominant Guard Set of a Simple Polygon

Eyüp Serdar Ayaz∗ Alper Üngör∗

Abstract

Within a simple polygon, a point p is said to dominate
another point q, if the visibility polygon of q is a sub-
set of the visibility polygon of p. A point that is not
dominated by others is called a dominant point. An op-
timal solution for an art gallery problem can be chosen
among dominant points only. In this paper, we present
an algorithm that finds all dominant points in a sim-
ple polygon. Our algorithm works in O(n4 log n) time
which is an improvement over the previous algorithm
that works in O(n5), where n is the number of vertices
of the input polygon.

1 Introduction

A relation that is reflexive, transitive and anti-
symmetric is called an inclusion relation in set theory.
Domination relation between two points in the concept
of visibility is the inclusion relation with respect to the
visibility polygons of those points. For a set of points
that guards a polygon, we can replace a guard g with
another guard g′ if g′ dominates g. Therefore, we can
replace a possible guard set G with another guard set
G′ that only includes the dominant points.
Domination concept for visibility polygons have been

studied on art gallery problems on discrete domains [2,7]
(as dominant regions and light atomic visibility poly-
gons respectively) and continuous domains [1] as well
as on watchman tours [3, 5]. For a given polygon, an
O(n5) time algorithm to find the set of dominant points
is given in [1] . In the same paper, this algorithm is used
in an iterative scheme to refine the locations of possi-
ble guards to approach the art gallery problem. Here,
we propose a new algorithm to calculate the set of all
dominant points in O(n4 log n) time.

2 Preliminaries

The input for dominant guard set problem is a simple
polygon P ⊂ R2 with n vertices. Two points p, q ∈ P
see each other if the line segment pq does not intersect
with the outside of P . If a point p in P sees a reflex
vertex v of P and the tangential ray −→pv continues in P
after hitting v then p sees past v. If the outer region is

∗CISE Department, University of Florida, Gainesville
[ayaz,ungor]@cise.ufl.edu

on the left (right) of the tangent, then v sees past left
(right) v. For an edge −→e of P in the counter-clockwise
orientation, the closure of the half-plane on the left of −→e
is denoted as lc(−→e). For two points p, v ∈ P such that
p sees past left (right) v, the closure of the half-plane
on the right (left) of −→pv is denoted as lc(p, v).
The set of points in P that can be seen from a point

p ∈ P is called the visibility polygon of p, denoted as
V(p). The set of points that sees all the points in a
polygon is called the kernel of that polygon. The kernel
of V(p) is called the visibility kernel of p, denoted as
VK(p) (See Figure 1). The importance of the visibility
kernel is that if a guards sees p, then it is guaranteed to
see all point in VK(p), and there are no other points in
P that satisfies this guarantee.

p

Figure 1: V(p) is shown as the union of shaded areas.
VK(p) is the dark shaded area. Point p sees past all
reflex vertices, two of them on the left, two of them on
the right.

Let p be a point on P . E(p) denotes the set of edges
of P of which p sees at least one interior point. R(p)
denotes the set of reflex vertices of P that are seen past
from p. Then VK(p) is calculated as the intersection of
O(n) half-planes [6] :

VK(p) =
∩

v∈R(p)

lc(p, v) ∩
∩

e∈E(p)

lc(−→e) (1)

2.1 Dominant guard set

A point p ∈ P is called a dominant point, if ∄q ∈ P
such that V(p) ⊂ V(q). The dominant guard set for P ,
denoted as DG(P), is the set of all dominant points in
P (See Figure 2).

1

Figure 2: Thick lines and shaded areas indicate DG(P)

For star-shaped polygons, dominant guard set con-
sists of the points in the kernel of the polygon. Since
all of the kernel points have the same visibility polygon,
which is P itself, a point in the polygon is dominant
only if that point is in the kernel. We can calculate the
kernel of a star-shaped polygon with an O(n)-time al-
gorithm [9]. Therefore, we consider the case where P is
not star-shaped as an input of our algorithm.

We rely on the visibility kernel concept to determine
whether a point is a dominant point. If a point q ∈ P
is in the visibility kernel of another point p ∈ P , then
any point that sees p also sees q. In other words, if q ∈
VK(p), then V(p) ⊆ V(q). Then, we have the following
lemma:

Lemma 1 [1] A point p ∈ P is a dominant point if
and only if ∀q ∈ VK(p) we have V(p) = V(q).

Consider the following arrangement, denoted as
A(P), consisting of three types of line segments:

1. Extensions of the edges at reflex vertices.

2. Extensions of line segments between two reflex ver-
tices that see each other.

3. The line segments between two reflex vertices that
see past left each other or see past right each other.

Maximal contiguous regions that do not include line seg-
ments of the subdivision and the boundary of P are
called the cells of A(P). The intersection points of the
line segments among themselves and with ∂P are called
the vertices of A(P) and the open line segments between
two vertices of A(P) are called the edges of A(P). (See
Figure 3). The complexity of the vertices, edges and
cells of A(P) is at most O(n4).

2

p1

p

v

v1 v

p2

3

3

Figure 3: Subdivision of a polygon P , A(P). v1p3 is of
Type 1, v1p1 and v2p2 are of Type 2, v1v3 is of Type 3.

The cells and the edges have the same dominancy
properties, which means if a point in a cell (or on an
edge) of A(P) is a dominant point, then all points in
that cell (on that edge) are also dominant points [1].
Our algorithm relies on the arrangement construction
as well as the following lemma.

Lemma 2 [1] Let p be a dominant point in a polygon
P . Then, at least one of the following statements is
correct:
(i) VK(p) = {p}.
(ii) p is in the kernel of P .
(iii) p is on a Type 3 line segment r1r2 and VK(p) ∩
{r1, r2} = ∅.

3 The algorithm

We first review the algorithm presented in [1]:
1. Calculate A(P) in O(n4) time using the algorithm
described in [4].
2. For each cell of A(P), choose an arbitrary point p in
the cell. Then:
2.1 Calculate VK(p) by calculating V(p) [8] and the ker-
nel of V(p) [9] in linear time.
2.2 If VK(p) = {p}, then the whole cell is in DG(P).
Otherwise, none of the points in the cell is in DG(P).
3. Use step 2 for the Type 1 and 2 line segments of

2

A(P).
4. Choose an arbitrary point p on each arrangement
edge on a Type 3 line segment r1r2. Then:
4.1 Calculate VK(p) in linear time.
4.2 If VK(p) = {p}, then all points on the edge are in
DG(P).
4.3 If VK(p) ⊂ r1r2 and r1, r2 /∈ VK(p), then all the
points on VK(p) are dominant points (with identical
visibility polygons, see Figure 4).

r1
r2

p1
p2

Figure 4: All points on the line segment p1p2 are domi-
nant. Their visibility kernels are p1p2 and their visibility
polygons are identical.

To improve the running time of the algorithm, we
use the similarity of the properties of neighboring cells
to calculate the dominant guard set. Below we explain
these properties.
For calculating whether a point p in a cell that has

the property VK(p) = {p}, we do not need to calculate
the visibility kernel directly. We only need to find a
constant number of the reflex vertices p sees past and
calculate the intersection of the half planes induced by
these reflex vertices according to the equation (1).
Another observation we use is that two points in the

neighbor cells see past the same reflex vertices except
one. The counter-clockwise order of the reflex vertices
two points in the neighbor cells sees past left (right) is
also the same. A Type 1 line segment seperates two
neighbor cells by seeing past property. Points on one
side of the line segment see past the reflex vertex that
induces the Type 1 line segment and the points on the
other side only see it. A Type 2 line segment sepa-
rates two neighbor cells by the visibility. Points on one
side see both the reflex vertices that induce the Type
2 line segment and points on the other side see only
one of those reflex vertices. A Type 3 line segment may
change the orientation of the visibility kernel with re-
spect to two points on neighbor cells. If the largest
angle α between a point p and two consecutive reflex
vertices p sees pass is less than π, then VK(p) = {p},
i.e., it is zero dimensional. If α is greater than π, VK(p)
can be two dimensional. If α = π, then VK(p) can be

at most one dimensional which should be taken care of
seperately.
We use four balanced binary search trees (BBST) to

record the reflex vertices a point p in a cell sees past:
UpperLeft records the reflex vertices with higher x co-
ordinates p sees past left. LowerLeft similarly records
the reflex vertices with lower x coordinates p sees past
left. UpperRight and LowerRight are the symmetric
versions of the previous two BBSTs. The nodes of each
BBST are in the counter-clockwise order with respect
to the point they are seen by. For each BBST, extract-
ing minimal and maximal elements take O(log n) time
as well as inserting, removing and searching a reflex ver-
tex.

For a point p in a cell, VK(p) = {p} if and only if the
intersection of the half planes induced by the minimal
and maximal elements of each BBST is also equal to p.

To make our arrangement suitable for the BBSTs, we
insert horizontal line segments next to each reflex vertex
until they hit the boundary on the left and on the right
and call this Type 4 line segments. These line segments
are in the order of n which do not change the complexity
of the arrangement which is O(n4).
Then, starting from an arbitrary cell, preferably a

boundary cell, we fill the four BBSTs for that cell.
Then, we use breath first search (BFS) from that cell
to spread to the neigboring cells (the cells that have a
common arrangement edge). We manipulate the BB-
STs while traversing the cells according to the type of
the arrangement edge between the cells. Here are the
actions for each type:

• Type 1 & 2: If the reflex vertex the newly
visited cell starts (stops) to see past is on the
UpperLeft, insert (remove) that reflex vertex to
(from) UpperLeft. Do the same for the other three
BBSTs.

• Type 3: No update is needed on BBSTs.

• Type 4: Remove the reflex vertex that induced
by the line segment from UpperLeft (LowerLeft)
BBST and insert it to the LowerLeft (UpperLeft)
BBST. Do the same for the symmetric cases,
LowerRight and UpperRight.

After each action, we need to recalculate the intersec-
tion of (at most) eight half planes. If the intersection
consists of only one point, then the whole cell is in Dom-
inating Guards Set. The boundary of the cells are also
included except the A(P) edges on Type 3 line segments
on the boundary of the cell.
We do the same analysis on the A(P) edges on the

Type 3 line segments according to Lemma 2. The num-
ber of A(P) edges is also O(n4), so the complexity does
not change.

Each action takes O(log n) time. Since there are
O(n4) cells, the total time complexity is O(n4 log n).

3

References

[1] E. S. Ayaz and A. Üngör. An iterative refinement scheme
of dominating guards and witnesses for art gallery prob-
lems. In Canadian Conference on Computational Geom-
etry (CCCG), Book of Abstracts, pages 168–174, 2016.

[2] A. Bottino and A. Laurentini. A nearly optimal sen-
sor placement algorithm for boundary coverage. Pattern
Recognition, 41(11):3343–3355, 2008.

[3] S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the
shortest watchman route in a simple polygon. Proc. Algo-
rithms and Computation: 4th International Symposium
(ISAAC), pages 58–67, 1993.

[4] B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. J. ACM,
39(1):1–54, Jan. 1992.

[5] W.-P. Chin and S. Ntafos. Shortest watchman routes in
simple polygons. Discrete & Computational Geometry,
6(1):9–31, 1991.

[6] K. Chwa, B. Jo, C. Knauer, E. Moet, R. van Oostrum,
and C. Shin. Guarding art galleries by guarding wit-
nesses. Int. J. Comput. Geometry Appl., 16(2-3):205–
226, 2006.

[7] P. J. de Rezende, C. C. de Souza, S. Friedrichs, M. Hem-
mer, A. Kröller, and D. C. Tozoni. Engineering Art Gal-
leries, pages 379–417. Springer International Publishing,
Cham, 2016.

[8] B. Joe and R. B. Simpson. Corrections to lee’s visi-
bility polygon algorithm. BIT Numerical Mathematics,
27(4):458–473, 1987.

[9] D. T. Lee and F. P. Preparata. An optimal algorithm for
finding the kernel of a polygon. J. ACM, 26(3):415–421,
July 1979.

4

Perfect Polygons∗

Hugo A. Akitaya† Erik D. Demaine‡ Martin L. Demaine‡ Adam Hesterberg‡

Joseph S.B. Mitchell§ David Stalfa¶

For a given polygon P (possibly with holes), we let
g(P) denote the minimum number of guards (points
within P) in a visibility cover of P , so that every point
of P is seen (via a straight line segment within P) by
one of the g(P) guards. The Art Gallery Problem is
to compute g(P); this is a known NP-hard problem,
even for a simple polygon P (with no holes). The
Art Gallery Theorem gives a worst-case tight upper
bound on g(P) in terms of n, the number of vertices
of P , and h, the number of holes of P . For simple
polygons (h = 0), the classic result is that g(P) ≤
bn/3c, while for a polygon with h holes, the extended
result is that g(P) ≤ b(n + h)/3c; in both cases, the
bounds are tight, as examples exist that achieve the
upper bounds.

The witness number, w(P), of P is the maximum
number of independent witness points that can be
packed into P , where two points p ∈ P and q ∈ P are
independent if their visibility polygons, V P (p) and
V P (q), are disjoint (so that no single guard in P can
see both p and q). The use of w(P) was introduced
in [1], where it was used for finding lower bounds
on g(P), since clearly g(P) ≥ w(P), which can help
in evaluating heuristic methods for computing small
guard sets. We say that a polygon P is perfect if
w(P) = g(P). (There are examples of simple poly-
gons having n = 6 vertices that are not perfect, with
g(P) = 2, w(P) = 1. In general, there can be a large
gap, with w(P) = 1 and g(P) = Ω(n), for simple
polygons P .)

In this paper, we study the complexity of the prob-
lem of determining if a given polygon P is perfect. We
study the problem in a very special kind of polygon,
namely a connected union of non-overlapping line seg-

∗Research on this paper was supported in part by the
NSF awards CCF-1422311 and CCF-1423615, and the Science
Without Borders scholarship program.

†Department of Computer Science, Tufts University, Med-
ford, MA

‡CSAIL, MIT, Cambridge, MA
§Department of Applied Mathematics and Statistics, State

University of New York at Stony Brook, Stony Brook, NY
¶Department of Computer Science, Northeastern Univer-

sity, Boston, MA

= ε

Figure 1: Thin polygon whose interior is the union of line
segments in the limit when ε→ 0.

ments. We call such polygons thin (see Fig. 1). We
show that the problem is in P if P is the union of line
segments of 2 different orientations. We also show
that the problem already becomes NP-hard if P is
the union of line segments of 3 different orientations.

Theorem 1. Deciding whether a given thin polygon
P whose interior is the connected union of n line
segments of 2 different orientations can be done in
O(n2.5) time.

Proof. We show that we can compute w(P) and g(P)
in polynomial time by reducing to problems in bipar-
tite graphs. Create a graph G in which vertices are
line segments that form P , and two vertices are con-
nected by an edge if the corresponding line segments
intersect. Clearly, G is bipartite, because there are
only two orientations of line segments and a segment
can only intersect segment in a different direction.

The optimal witness set contain points whose vis-
ibility is a single line segment, i.e., non-intersection
points, or else we could move a witness point at a
intersection without affecting the optimality of the
solution. By choosing to place a witness in a line seg-
ment we create a constrain enforcing that intersect-
ing line segments should not contain another witness
point. Hence, finding w(P) corresponds to finding
the maximum independent set in G, which can be
done in O(n2.5) time [2].

Similarly, we can assume that, in an optimal guard
set, every guard is placed at intersection points, or
else we can move a guard at a non-intersection point
and increase its visibility region. The visibility region
of a guard is then the union of line segments that con-
tain the intersection point on which that guard lies.

Hence, finding g(P) corresponds to finding the min-
imum edge cover of G, which can be done in O(n2)
time by greedily expanding a maximal matching.

Theorem 2. Deciding whether a given polygon P is
perfect is NP-hard.

Proof sketch. We reduce from 3SAT-3 which is NP-
hard [3] An instance of 3SAT-3 consists of a set
V = {x1, . . . , xn} of n variables and a boolean for-
mula φ in 3CNF with m clauses, each of the form
(li ∨ lj ∨ lk) where each literal lw, w ∈ {i, j, k} is a
copy or a negated copy of xw. Additionally, a vari-
able appears in at most 3 3SAT asks whether there
exist an assignment from V to {true, false} so that
φ evaluates to true. Every 3SAT instance can be
represented as a bipartite graph between V and the
set of clauses. We transform a drawing of such graph
into a thin polygon P that is perfect if and only if
the 3SAT instance admits a positive solution.

xi

xi

(a) (b) (c) (d)
li

li

lj

lj

li

lk

ljxi

xi

xi

xi

Figure 2: (a) Variable, (b) wire, (c) clause, and (d)
crossover gadgets. The arrows indicate the direction from
a variable to an adjacent clause. Black dots indicate the
intersection point between gadgets.

Consider the planarization of such drawing by re-
placing every edge crossing by a vertex. Refer to
Fig. 2. We replace every variable vertex, clause
vertex, and crossing vertex by a variable, clause,
and crossover gadgets respectively. Clauses incident
to only two variables are obtained by omitting the
line segment labeled li in Fig. 2(c). The drawing
must be scaled so that no two gadgets intersect. In
Fig. 2, green dots represent an optimal guard set
while blue/cyan or red/magenta dots represent pos-
sible choices for a locally optimal witness set. Small
black dots represent where the corresponding gadget
intersect a wire gadget and vice versa. Then, con-
nect two gadgets whose corresponding vertices are
adjacent using a chain of one or more copies of the
wire gadget, so that gadgets only intersect at the rel-
evant black dots. Each wire gadget can be scaled
and/or reflected in axis-aligned directions. Note that
the wire gadget is the same for positive and negative
literals, but using a different orientation as shown in

Fig. 2(b). Fig. 2(a) shows the black dots that can
intersect wires carrying positive or negative literals.
Since every variable vertex is max-degree-3, we can
always assign degree(xi) black dots where the wire
gadgets will intersect the variable gadget to a corre-
spondent edge in the drawing incident to xi so that
the wires occur in the same circular order around the
variable gadget as the edges occur around xi. An
example of a complete reduction is shown in Fig. 3.

x3 x4x1 x2

Figure 3: Reduction from the instance φ = (x1 ∨ x2 ∨
x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4).

Notice that the green point set is the global optimal
for the guard set, because each gadget individually
requires at least the same amount of guards as the
number of green dots on them, and no such required
guard can be shared with an adjacent gadget, except
for the wire gadget. However, since a chain of wire
gadgets connect two other gadgets, sharing guards
between different adjacent wire gadgets is never ben-
eficial. The local choice in the witness set encode the
boolean value of variables. Next, we show that the
produced instance is a perfect polygon if and only if
the 3SAT-3 instance is satisfiable.

First assume that P is a perfect polygon. No-
tice that no line segment is completely visible to
more than one guard. Then, every guard can see
at most one witness since the witness set is indepen-
dent. Since P is perfect, every guard sees exactly one
witness. For each variable gadget, if a guard sees a
witness in a horizontal line segment, then the other
guard in the gadget should also see a witness in a
horizontal segment, or else the witness set is not in-
dependent. The same argument applies for a witness
in a vertical line segment. The wire gadgets incident

to viable sets should then contain a witness in a hor-
izontal or vertical segment according to the variable
gadget. If a wire corresponds to a positive (resp., neg-
ative) literal, then its witness appear before its guard
using the direction from variables to clauses if the
adjacent variable has its witnesses in vertical (resp.,
horizontal) line segments. We say that such wires
carry a true value. For a crossover gadget shown in
Fig. 2(d), if the wire attached to the upper left black
dot carries a true value, then the leftmost guard sees
a witness in the horizontal segment and, therefore,
the bottommost guard sees a witness in the segment
at 45◦. Then, the wire attached to the bottom right
black dot also carries a true value. Similarly, we show
that if the wire attached to the upper right carries a
true value, then so does the wire attached to the
lower left. If the above case happens, then the guard
at the three-way intersection must see a witness in
either a horizontal or vertical segment. Then there
must exist a witness in each of the three segments
containing a red dot and, hence, the lower left wire
also carries a true value. Using similar arguments,
for every clause gadget, the guard at the three-way
intersection must see a witness and then there must
exist at least one wire incident to the gadget that car-
ries a true value. Then, we can use the witness set
of P to obtain a truth assignment that satisfies the
3SAT-3 instance.

Now, assume that the 3SAT-3 instance is satis-
fiable. For every variable xi assigned true (resp.,
false) place a witness at every red (resp., blue) point
in Fig. 2(a). Do the same for every wire gadget car-
rying a literal of such variable. For every crossover
gadget involving literals of xi and xj as in Fig. 2(d),
place a witness at every magenta point if the literal
lj evaluates true. Otherwise, place a witness at ev-
ery cyan point. If li evaluates true, place a witness
at every red point. Else, if lj evaluates true place a
witness at every point marked with a blue star and
dots. Else, place a witness at every point marked
with a blue square and dots. For every clause gad-
get, choose an incident literal that evaluates to true.
Place a witness in the line segment that intersects the
wire gadget of the corresponding literal. If the chosen
literal is lj (resp., lk), place a witness in the vertical
(resp., horizontal) line segment containing the three-
way intersection. For each of the two guards placed
at two-way intersections in the clause gadget, place
a witness in one of the incident line segments so that
the visibility polygons of witness are disjoint. By
construction the set of witness is independent and
every guard sees exactly one witness. Hence, P is

perfect.

References

[1] Amit, Yoav, Joseph SB Mitchell, and Eli Packer. Locat-
ing guards for visibility coverage of polygons. Interna-
tional Journal of Computational Geometry & Applications
20(05), pp.601-630.

[2] Clark, Brent N., Charles J. Colbourn, and David S.
Johnson. Unit disk graphs. Discrete mathematics 86(1-3),
pp.165-177.

[3] Papadimitriou, Christos, and Mihalis Yannakakis. Opti-
mization, approximation, and complexity classes. In Pro-
ceedings of the twentieth annual ACM symposium on The-
ory of computing. (pp. 229-234). ACM.

Efficient Approximations for the Online Dispersion Problem ∗

Jing Chen† Bo Li† Yingkai Li†
†Department of Computer Science, Stony Brook University

Stony Brook, NY 11794, USA
{jingchen, boli2, yingkli}@cs.stonybrook.edu

Abstract

The dispersion problem has been widely studied in computational geometry and facility
location, and is closely related to the packing problem. The goal is to locate n points (e.g.,
facilities or persons) in a k-dimensional polytope, so that they are far away from each other and
from the boundary of the polytope. In many real-world scenarios however, the points arrive and
depart at different times, and decisions must be made without knowing future events. Therefore
we study, for the first time in the literature, the online dispersion problem in Euclidean space.

There are two natural objectives when time is involved: the all-time worst-case (ATWC)
problem tries to maximize the minimum distance that ever appears at any time; and the cumu-
lative distance (CD) problem tries to maximize the integral of the minimum distance throughout
the whole time interval. Interestingly, the online problems are highly non-trivial even on a seg-
ment. For cumulative distance, this remains the case even when the problem is time-dependent
but offline, with all the arriving and departure times given in advance.

For the online ATWC problem on a segment, we construct a deterministic polynomial-
time algorithm which is (2 ln 2 + ε)-competitive, where ε > 0 can be arbitrarily small and the
algorithm’s running time is polynomial in 1

ε . We show this algorithm is actually optimal. For the
same problem in a square, we provide a 1.591-competitive algorithm and a 1.183 lower-bound.
Furthermore, for arbitrary k-dimensional polytopes with k ≥ 2, we provide a 2

1−ε -competitive

algorithm and a 7
6 lower-bound. All our lower-bounds come from the structure of the online

problems and hold even when computational complexity is not a concern. Interestingly, for the
offline CD problem in arbitrary k-dimensional polytopes, we provide a polynomial-time black-
box reduction to the online ATWC problem, and the resulting competitive ratio increases by
a factor of at most 2. Our techniques also apply to online dispersion problems with different
boundary conditions.

∗An extended abstract of this paper appeared at the 44th International Colloquium on Automata, Languages,
and Programming (ICALP’17). We thank Joseph Mitchell for motivating us to study the online dispersion problem.
We thank Esther Arkin, Michael Bender, Rezaul A. Chowdhury, Jie Gao, Joseph Mitchell, Jelani Nelson, and the
participants of the Algorithms Reading Group at Stony Brook for helpful discussions, and several anonymous reviewers
for helpful comments. A full version is available at http://arxiv.org/abs/1704.06823.

1

Edge conflicts can increase along minimal rotation-distance paths

Sean Cleary

⇤
Roland Maio

†

Abstract

There are no known e�cient algorithms to calcu-
late distance in the one-skeleta of associahedra,
a problem that is equivalent to finding rotation
distance between rooted binary trees or the flip
distance between polygonal triangulations. One
measure of the di↵erence between trees is the
number of conflicting edge pairs, and a natural
way of trying to find short paths is to minimize
successively this number of conflicting edge pairs
using flip operations in the corresponding trian-
gulations. Though it is quite common for the
number of conflicts to decrease along a geodesic
(a minimal length path) connecting two trian-
gulations, we describe examples that show that
the number of such conflicts does not always de-
crease along geodesics. Thus, a greedy algorithm
that always chooses a transformation that re-
duces conflicts will not produce a geodesic in all
cases. Further, there are examples of increasing
size showing that the number of conflicts can in-
crease by any specified amount.

⇤
Dept. of Math, City College of New York, City Uni-

versity of New York, cleary@sci.ccny.cuny.edu

†
Dept. of Computer Science, City College

of New York, City University of New York,

rolandmaio38@gmail.com

1 Introduction

Rooted binary trees arise across a range of areas,
from phylogenetic trees representing genetic re-
lationships to e�cient organizational structures
in large datasets. In the setting of rooted bi-
nary trees with a natural right-to-left order, such
as those corresponding to binary search trees, a
widely-considered distance is rotation distance.
The rotation distance d(S, T) between two trees
S and T is the minimum number of rotations
needed to transform the tree S to the tree T .
There is a natural bijection between rooted bi-
nary trees with n internal nodes (or n+1 leaves)
and triangulations of a marked regular polygon
with n+2 sides. The operation that corresponds
to rotation at a node for binary trees corresponds
to an edge-flip between triangulations. Thus,
rotation distance between two trees is exactly
equivalent to a corresponding edge-flip distance
between triangulations. The associahedron of
size n is a combinatorial object capturing many
aspects of Catalan objects, including triangula-
tions, trees, and bracketed expressions. Here,
we work entirely in the one-dimensional skeleton
and neglect the higher dimensional faces in the
face lattices of associahedra.

There are no known polynomial-time algo-
rithms to find shortest paths in associahedra
graphs or to find distances between vertices in
those graphs. There are a number of approx-

1

imation algorithms [1, 4] for rotation distance.
Two edges are said to be conflicting if it is not
possible for them to be part of the same trian-
gulation, due to the two edges crossing.

Here, we investigate connections between edge
conflicts and finding geodesics in the setting of
ordered trees, or equivalently of triangulations
of polygons. We describe example triangula-
tion pairs of size 8 and larger where there is no
geodesic along which the total number of con-
flicts between the triangulations uniformly de-
creases or even remains the same, ruling out the
success of greedy algorithms. Further, we show
that the required increase of conflicts along a
geodesic can grow to any specified increase k for
triangulation pairs of size k + 7 and larger.

2 Background and definitions

We consider the marked regular (n + 2)-gon P
with edges labelled as R for a marked root edge
and then consecutively counter-clockwise from 0
to n. A triangulation T of P is a collection of
n� 1 non-crossing edges from vertices of P that
separate P into n triangles. An edge flip on T
is the process of taking two triangles that share
an interior edge, thus forming a quadrilateral Q,
and replacing the interior diagonal of Q that lies
in T with the other diagonal of Q to form a new
triangulation T 0. For each n, the relevant associ-
ahedron graph is the graph whose vertices are tri-
angulations of the regular (n+2)-gon and whose
edges connect vertices that di↵er by a single edge
flip. The edge flip distance from a triangulation
S to a triangulation T of the same size is the min-
imal length path in the associahedron graph. Al-
ternatively, we can regard the vertices of the size
n associahedron graph as rooted binary trees of

size n interior nodes with n+1 leaves numbered
from 0 to n, with the edges connecting vertices
whose trees di↵er by a single rotation (left or
right) at an interior node. To any triangulation,
there is a well-known natural dual construction
giving rise to the tree description.

Remarkable work of Sleator, Tarjan and
Thurston [6] showed that the upper bound for
distance between vertices for n � 11 is 2n � 6,
and furthermore that that upper bound is re-
alized for all n larger than some very large N .
Recent work of Pournin [5] showed that in fact
the upper bound is realized for all n � 11.
There are no known polynomial-time algorithms
to compute rotation distance, although rotation
distance has been shown to be fixed parameter
tractable by Cleary and St. John [3] and there
are a number of approximation algorithms.

Two edges s and t are said to be conflicting if it
is not possible for them to be present in the same
triangulation; equivalently, if the edges cross as
chords connecting vertices in the relevant poly-
gon. For example, a chord from vertex 5 to 8 is
in conflict with a chord from vertex 3 to 6, which
can be seen as one of the intersections of the red
chords and blue chords in Figure 1 if we number
the vertices as the counterclockwise ends of the
numbered edges. The number of conflicts for a
pair of triangulations S and T is the sum of the
conflicts between the pairs of edges, which gives
a semi-metric on the set of triangulations.

3 Conflicts along geodesics

There are a range of conflict-based greedy al-
gorithms to reduce conflicts to try to find a
geodesic from a given triangulation S to a given

2

target triangulation T .

Such algorithms will always give a path from S
to T , and this results in an upper bound for the
edge-flip distance. However, this path is not nec-
essarily a geodesic path so the distance from S to
T may be less than various greedy conflict-based
algorithms may find. There are multiple ways
in which such a greedy algorithm to reduce con-
flicts can fail to find a geodesic. It may be that
there are several choices among the neighbors of
Si with the same number of conflicts, and at least
one of them does not begin a geodesic path from
Si to T . Or it may be that none of the neighbors
with minimal conflicts begins a geodesic path.
Broadening the notion to allow choices where
the number of conflicts is not necessarily mini-
mal but merely equal or smaller than the current
number of conflicts gives many more possibili-
ties. But even algorithms that consider reducing
conflicts (not necessarily minimally) or keeping
conflicts constant will not always find a geodesic
path because of examples of the following type:

Theorem 1 For any n at least 8, there are ex-

amples of triangulation pairs (S, T) of size n
where every geodesic � from S to T with � =
{S = S0, S1, S2, . . . , Sk = T} has the property

that S1 has more conflicts with T than S has

with T .

Thus, any algorithm that attempts to find
geodesics by either minimizing conflicts, at least
reducing conflicts, or keeping conflicts at least
non-increasing will not find any geodesic from S
to T .

This particular example is not symmetric, in
that if we proceed instead from T toward S re-
ducing conflicts, we do find a geodesic. How-
ever, we can construct triangulation pair exam-

Figure 1: The triangulations used to prove The-
orem 1 superimposed, with S in blue and T in
dotted red. There are 27 conflicts in the pair
(S, T) which can be seen as the 27 intersections
between the triangulations.

ples that do have this property from both ends.

Theorem 2 There are examples of triangula-

tion pairs (U, V) where for all geodesic paths �
from U to V or from V to U there is a step where

the number of conflicts increases along �.

The particular triangulation proving Theorem
1 shows that conflicts can rise along geodesics
by one. In fact, for increasingly large triangula-
tion pairs, conflicts along geodesics can rise by
an arbitrary amount. We use methods similar
to analyses in Cleary, Rechnitzer, and Wong [2]
and Cleary and St. John [4] to bound distances
sharply. A one-o↵ edge in S in a triangulation
pair (S, T) is an edge that is not common to S
and T but which flips directly to an edge in T .
By [6], for any one-o↵ edge, there is a geodesic
from S to T that begins with that edge flip. A
triangulation pair of size n (with n � 1 edges)

3

with no common edges and no one-o↵ edges must
have distance at least n as each edge flip can cre-
ate at most one new common edge, and if there
are no one-o↵ edges present then it will take at
least n steps to transform S to T . With this we
can show that conflicts can rise along a geodesic
by any specified amount.

Theorem 3 For any positive k, there are ex-

amples of triangulation pairs (S, T) of size n �
k + 7 where every geodesic � from S to T with

� = {S = S0, S1, S2, . . . , Sk = T} has the prop-

erty that S1 has k more conflicts with T than S
has with T .

Asymptotically, the fact that the number of
conflicts can rise by n� 7 is remarkable in light
of the fact that the greatest number of conflicts
a single edge can have is n � 1 if it crosses all
other edges in the other triangulation.

Again, we can concatenate two triangulations
to create larger more symmetric examples where
the number of conflicts must increase in either
direction by any specified amount.

Theorem 4 For any positive k and any n �
2k+14 , there are examples of triangulation pairs

(S, T) of size n where every geodesic � from S to

T or from T to S has a step along the geodesic

where the number of conflicts increases by k.

Thus, there are large pairs where the number
of conflicts along geodesics must rise in a sin-
gle step an amount proportional to the size for
geodesics in either direction.

We do note that this kind of behavior where
every geodesic has an increase in conflicts along
the path somewhere are somewhat rare, with

these 28 equivalence classes of conflict-increasing
examples of size 8 occurring from among the
117,260 equivalence classes of edge-flip distance
problems of size 8, for example.

References

[1] Jean-Luc Baril and Jean-Marcel Pallo. E�-
cient lower and upper bounds of the diagonal-
flip distance between triangulations. Infor-

mation Processing Letters, 100(4):131–136,
2006.

[2] Sean Cleary, Andrew Rechnitzer, and
Thomas Wong. Common edges in rooted
trees and polygonal triangulations. Electron.
J. Combin., 20(1):Paper 39, 22, 2013.

[3] Sean Cleary and Katherine St. John. Ro-
tation distance is fixed-parameter tractable.
Inform. Process. Lett., 109(16):918–922,
2009.

[4] Sean Cleary and Katherine St. John. A
linear-time approximation for rotation dis-
tance. J. Graph Algorithms Appl., 14(2):385–
390, 2010.

[5] Lionel Pournin. The diameter of associahe-
dra. Adv. Math., 259:13–42, 2014.

[6] Daniel D. Sleator, Robert E. Tarjan, and
William P. Thurston. Rotation distance, tri-
angulations, and hyperbolic geometry. J.

Amer. Math. Soc., 1(3):647–681, 1988.

4

Optimal Safety Patrol Scheduling Using Randomized
Traveling Salesman Tour

Hao-Tsung Yang, Shih-Yu Tsai, Kin Sum Liu, Shan Lin, and Jie Gao

Stony Brook University

Abstract—In this paper, we consider the problem of designing
schedules for a patroller to guard a given set of n sites in
a strategic setting modeled as the attacker-defender game. It
belongs to the general framework of security games and the
main challenge here is to explicitly model the time spent moving
between the sites and the scalability issue, as the strategy space
contains exponentially many schedules even with a finite time
horizon. The traveling salesman tour visits all sites with the
highest frequency but is deterministic and could be exploited by
the attacker. Random tours are most unpredictable but could be
substantially inefficient in visiting the sites. Instead, we formulate
the randomized TSP problem and provide solutions that achieve
a nice tradeoff between frequency in visiting the sites and
unpredictability for the strategic setting. We provide a rigorous
analysis of the randomized TSP and show how to solve for the
best defender strategies under this family of tours. Evaluations
demonstrate the effectiveness of our solutions compared to other
alternatives using both artificial data and a real-world crime
dataset.

INTRODUCTION

Public safety is crucial to everyday life. When responding
to events of a criminal nature, it is necessary to consider game
theoretic models and strategic behaviors. Modeling crimes by
a game theory model is rooted at Nobel Prize laureate Gary
Becker’s theory [1]. The choice to commit a crime depends on
the expected utility of the crime relative to the utility possibly
obtained by using the time and resources at other activities. A
perceived increase in the likelihood of being caught will deter
certain offenders from engaging in criminal activities. This
theory led to the adoption of policing plans that emphasize
on preventative actions such as increased police presence,
patrolling hotspots, among others [2].

Incorporating strategic behaviors in fighting against crimes
is first done in the paradigm-shifting research area of security
games (see [3] for a survey of the recent work). In this
setting the security problem is modeled as a Stackelberg game,
consisting of a defender with a limited set of resources to
protect a set of targets and an attacker who casts attacks
after learning the defender’s strategy and conducting careful
planning. A pure strategy for the defender is a deterministic
schedule of the resources. A pure strategy of an attacker is a
specific attack on one target. It is clear that a pure strategy for a
defender is not optimal as the attacker can exploit the strategy
and launch an attack at the weakest link. Therefore a better
strategy for the defender is to launch a mixed strategy which is
a probabilistic distribution on pure strategies. In this setting,
the goal is to compute a Stackelberg equilibrium, a mixed
strategy for the defender that maximizes the defender’s utili-

ties, under the condition that the attacker knows the defender’s
strategy and chooses the best response strategy. The framework
has been enriched by considering various extensions such
as uncertainties and bounded rationality of adversaries, and
has rendered a number of effective schedules in real-world
settings for protecting airport, ports, harbors, and national
forests. Despite the great success, in [3] three challenges were
mentioned for further advancing security game, the first one
being the issue of scalability.

Most of the settings in the studied security games are
combinatorial in nature and the space of pure strategies for the
defender is naturally all possible ways of allocating resources
to the locations to be guarded. For example in one of the first
application scenarios at the LAX airport, the strategy space
is composed of combinatorial decisions of placing guards at
checkpoints. The time needed for a guard to move between
these checkpoints is neglected. In some other scenarios, the
target is mobile but follows a fixed trajectory (along with a
straight line) with a fixed schedule. The defender adopts mo-
bile patrollers but the defender’s strategy space is discretized
and represented by a path in a graph [4]. In these work, the
overhead of switching between these pure strategies (i.e., the
police officer moves from one target location to another target
location) is often ignored.

There were good reasons to ignore the overhead of switch-
ing between the pure strategies. Consider the airport guarding
scenario. If the domain is small the time needed to move from
one checkpoint to the other is indeed negligible compared to
the time spent for guarding. Moreover,

When mobility is explicitly modeled the strategy space may
be large. To handle the scalability issue most methods use
heuristic functions with some reduction techniques which are
largely dependent on the specific scenarios [7], [8], [6], [9].
For example, pure strategies were generated with columns
independently to avoid the combinatorial explosion of the
search space [10], [8]. But here the assumption is that the
attacker has no ability to observe the defender’s position
during the patrol phase.

Our Contribution In this paper, we take a look at the family
of patrol scheduling problems. Consider a campus setting
when a police officer’s task is to tour around campus parking
lots and check for illegal parking. Many campuses, including
ours, ask the police officer to follow a fixed schedule. And it
is not surprising that users gradually observe the movement
patterns and start to exploit that which hurts the effectiveness

of patrolling.
In our setting, we assume that the time spent moving is non-

negligible. This is indeed the case with campus patrolling. We
also assume that the attacker can observe both the strategies
of the defender as well as current defender location during the
patrol, as is used in [11], [12], [13]. Additionally, the attacker
is flexible to decide when and where to launch the attack, for
how long (i.e., the period of illegal parking) to maximize the
attacker’s utility.

When motion is explicitly modeled, finding the patrol routes
is immediately related to the classical traveling salesman
problem. On one hand, the shortest traveling salesman tour
is the most efficient route – it visits each location most
frequently, without considering the strategic aspect. But such
a route is unique (when there is no degeneracy) and thus
is totally predictable. Users can park for long hours right
after the police officer leaves the location. On the other hand,
we can imagine stochastic tours that are less predictable, but
unless designed carefully, a random tour may be much longer
than the optimal TSP tour. This leads to less frequent visits
to each location and could hurt the system performance as
well. Furthermore, the total number of possible schedules can
be infinite if we consider an infinitely long time horizon.
Even if we limit ourselves in periodic schedules, the total
number of possible schedules can be exponential in the number
of parking lots, which makes solving the Stackelberg game
difficult. Therefore, an interesting problem is to consider how
to balance the two aspects – that each location shall be visited
sufficiently frequently, while the next location to visit by the
police officer is maximally unpredictable. We call this problem
the randomized TSP problem.

In this paper, we provide a few solutions for the randomized
TSP and apply them to the safety patrol problem. For the
randomized TSP, we consider two settings, when the loca-
tions have uniform weights or non-uniform weights. Here the
weights are used to model the importance of a location or
different safety requirements. In one of our evaluations, we
use the crime rate at Denver, CO to generate the weights for
each district. Regions of a higher crime rate are visited more
frequently. This is realized by minimizing the weighted length
of the interval between two consecutive visits to the same site
as one of the evaluation metrics. The second evaluation metrics
measures how predictable is the next site to visit (quantified
by the entropy of the distribution of the next site to visit).

When the weights on the sites are the same, we modify the
TSP tour and introduce randomness – by touring around TSP
with a probability 1−p we may skip the next site. By varying
p we show that there is a tradeoff between how frequent the
sites are visited versus how predictable is the next site to visit,
from the attacker’s perspective. When the weights are not the
same, we will show how to generate a tour that adjusts to
the different weights. The final solution is a collection of sub-
tours, where each tour is a TSP tour on sites of similar weights.
The final patrol schedule is produced by first randomizing
on the different TSP tours and on each subtour use random
skipping to further reduce the chance to predict the next site. In

this paper, we provide rigorous analysis on the two evaluation
metrics for the family of tours we generate, with different p.

One of the nice things about the randomized TSP solutions
is the compact representation. We run the security game
optimization on this family of tours, which is parameterized
by mainly a single parameter p. Depending on the payoff
parameters of the security game (e.g., how much could one
benefit from illegal parking for a unit of time, versus how
much penalty one received with a parking ticket), the best
strategies can be computed by choosing the best value p for
this family. Intuitively, if the penalty of a ticket is higher
relative to the benefit of illegal parking, the adversary will
tend not to take chances, in order to maximize his/her expected
payoff. This leads to the defender’s strategy of taking a smaller
value of p. That is, the probability of skipping the next city on
the TSP tour is higher, which makes the expected time till the
next visit to be longer but less predictable. If we consider the
distribution of the time till the next visit, it will be fatter but
lower. This will be more effective into ‘scaring’ the attacker
away. Simulations show that there are no scalability issues in
our algorithms and our solution is adaptive to various payoff
functions using both artificial and real-world datasets. We also
show that our solutions are much better (achieving reduced
expected payoff for the attacker) than with other baselines such
as the deterministic TSP solution, random walk or random
permutations.

REFERENCES

[1] R. A. Posner, “The law and economics movement: from bentham to
becker,” The Origins of Law and Economics: Essays by the Founding
Fathers, 2005.

[2] N. Billante, “The beat goes on: Policing for crime prevention,”
http://www.cis.org.au/IssueAnalysis/ia38/ia38.htm, 2003.

[3] T. H. Nguyen, D. Kar, M. Brown, A. Sinha, A. X. Jiang, and M. Tambe,
“Towards a science of security games,” in New Frontiers of Multidisci-
plinary Research in STEAM-H, B. Toni, Ed., 2016.

[4] F. Fang, A. X. Jiang, and M. Tambe, “Optimal patrol
strategy for protecting moving targets with multiple mobile
resources,” in Proceedings of the 2013 International Conference
on Autonomous Agents and Multi-agent Systems, ser. AAMAS ’13.
Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2013, pp. 957–964. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2484920.2485072

[5] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway, M. Tambe,
C. Western, P. Paruchuri, and S. Kraus, “Deployed armor protection:
the application of a game theoretic model for security at the los angeles
international airport,” in Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems: industrial
track. International Foundation for Autonomous Agents and Multiagent
Systems, 2008, pp. 125–132.

[6] E. Shieh, M. Jain, A. X. Jiang, and M. Tambe, “Efficiently solving
joint activity based security games,” in Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence. AAAI Press,
2013, pp. 346–352.

[7] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule,
and G. Meyer, “Protect: A deployed game theoretic system to protect
the ports of the united states,” in Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume
1. International Foundation for Autonomous Agents and Multiagent
Systems, 2012, pp. 13–20.

[8] M. Jain, D. Korzhyk, O. Vaněk, V. Conitzer, M. Pěchouček, and
M. Tambe, “A double oracle algorithm for zero-sum security games
on graphs,” in The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1. International Foundation
for Autonomous Agents and Multiagent Systems, 2011, pp. 327–334.

[9] N. Basilico, N. Gatti, and F. Amigoni, “Patrolling security games:
Definition and algorithms for solving large instances with single patroller
and single intruder,” Artificial Intelligence, vol. 184, pp. 78–123, 2012.

[10] M. Jain, E. Kardes, C. Kiekintveld, F. Ordónez, and M. Tambe, “Security
games with arbitrary schedules: A branch and price approach.” in AAAI,
2010.

[11] N. Basilico, N. Gatti, and F. Amigoni, “Leader-follower strategies
for robotic patrolling in environments with arbitrary topologies,” in
Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2009, pp. 57–64.

[12] B. Bošanskỳ, V. Lisỳ, M. Jakob, and M. Pěchouček, “Computing time-
dependent policies for patrolling games with mobile targets,” in The
10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 3. International Foundation for Autonomous Agents
and Multiagent Systems, 2011, pp. 989–996.

[13] Y. Vorobeychik, B. An, M. Tambe, and S. P. Singh, “Computing
solutions in infinite-horizon discounted adversarial patrolling games.”
in ICAPS, 2014.

[14] K. S. Liu, T. Mayer, H. T. Yang, E. Arkin, J. Gao, M. Goswami, M. P.
JohnsonS, N. KumarP, and S. Lin, “Joint sensing duty cycle scheduling
for heterogeneous coverage guarantee.”

[15] K. S. Liu, J. Gao, S. Lin, H. Huang, and B. Schiller, “Joint sensor
duty cycle scheduling with coverage guarantee.” in MobiHoc, 2016, pp.
11–20.

[16] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[17] N. Christofides, “Worst-case analysis of a new heuristic for the travel-
ling salesman problem,” Graduate School of Industrial Administration,
Carnegie Mellon University, Technical Report 388, 1976.

[18] J. Min and T. Radzik, “Bamboo garden trimming problem,” in SOFSEM
2017: Theory and Practice of Computer Science: 43rd International
Conference on Current Trends in Theory and Practice of Computer
Science, Limerick, Ireland, January 16-20, 2017, Proceedings, vol.
10139. Springer, 2017, p. 229.

On the Density of Triangles with Periodic Billiard Paths

Ramona Fae Charlton
fae.charlton@gmail.com

Abstract

We consider the classic open problem of whether every triangle has a periodic billiard path. While this has
been shown for rational-angled triangles [Masur86], the irrational case remains open. Finding periodic billiard
paths is an easy exercise for acute triangles, a long computer-aided case analysis when the maximum angle is at
most 100◦ [Schwartz08], and beyond that very little is known.

We examine the inequalities characterizing the set of triangles over which a given billiard path is periodic. We
prove polynomial upper bounds on their rate of change, and use these bounds to derive positive radii within
which a periodic billiard path must remain valid. We perform a computer search for periodic billiard paths on
randomly selected triangles over a fixed rational grid, and use the radius bounds to show (under a Bayesian model
with constant prior, assuming the uniformity of the selected grid points but otherwise unconditionally) that the
likelihood that ≥ 98% of all obtuse triangles admit a periodic billiard path is > 0.99999.

Background

A natural way to model a billiard path on a triangle is
as a straight line in the plane, along which the triangle
is repeatedly reflected. A billiard path is then periodic
if it ever reaches the same relative point on a triangle
with the same orientation (see Figure 1). This is equiv-
alent to the usual model, but is easier to visualize and
compute with, so we will use it exclusively.

The basis on which the problem can be systemati-
cally analyzed is this: each reflection of the triangle
through its edges changes the angle of the edges by
integer multiples of the triangle’s vertex angles. Induc-
tively, any sequence of reflections will yield a triangle
whose orientation differs by an integer linear combina-
tion of the vertex angles. If those angles are irrational,
then the only way such a combination can equal zero
– that is, the only way for two triangles to have the
same orientation – is if the coefficients in the linear
combination are also zero. That means that if a se-
quence of reflections produces a final triangle with the
same orientation as the first, then the same will be true
for all initial triangles, regardless of geometry. Since a
periodic billiard path must pass through the interior
of the reflection edges, and the vertices arising from
reflection are continuous functions of the original tri-
angle coordinates, any such path remains valid for all
triangles in an open neighborhood.

This is a constructive argument: given a periodic
billiard path on a particular triangle, one can derive
the algebraic constraints on the triangle vertices such
that a trajectory with the same combinatorial type
is still a periodic path. [Schwartz08] explored this
approach, exhibiting several paths and path families
which remain periodic over a relatively large range, the
union of which covered all triangles with maximum

(a) A periodic billiard path as a ray reflected off the triangle’s
boundary

(b) The same path visualized by reflecting triangles along a
straight line

Figure 1

angle less than 100◦.
Unfortunately, this approach doesn’t scale well: the

combinatorial length of a periodic path increases with
the maximum angle of the triangle. This increases the
computation cost for analysis and, more importantly,
dramatically decreases the radius within which the path
is periodic, meaning the number of different cases re-
quired to substantially increase the current 100◦ bound
is (probably) intractable.

Our Results

We derive new bounds on the derivatives of the con-
straint functions for periodic paths. Our bounds depend

1

polynomially on the combinatorial length of the path
(i.e. the number of reflections), but not at all on the
path itself. This means that given any periodic path
on a triangle, and without any further analysis beyond
a single evaluation of the constraint functions, we im-
mediately have an explicit radius within which every
triangle is guaranteed to have a periodic billiard path.

We apply these bounds experimentally to derive for-
mal lower bounds on the density of triangles with peri-
odic billiard paths, by showing that for a large fraction
of triangles we can exhibit an explicit path.

Constraint bounds

An edge path E is a sequence E1...n of n edge in-
dices {1, 2, 3} through which a triangle T is to be re-
flected. TriE(T, i) is the ith triangle in the reflected
sequence when starting from T , defined inductively
as TriE(T, 0) = T and TriE(T, i) = the reflection of
TriE(T, i− 1) through edge Ei.

An edge path is closed if its final triangle TriE(T, n)
is generically (for all T) of the same orientation as the

first TriE(T, 0). The offset
−→
OffE(T) of a closed edge

path E on triangle T is the vector offset from the first
triangle TriE(T, 0) to the last one TriE(T, n).

Given a closed edge path, the question of whether it
admits a periodic billiard path on a particular triangle
can be answered by linear inequalities on the vertices
of the reflected triangles: does any path parallel to−→
OffE(T) remain strictly inside the union of the reflected
triangles ∪iTriE(T, i) (as in Figure 1b)? We choose to
think of edge paths as starting from the base edge of
an initial oriented triangle and proceeding upward, so
we call the ordered vertices bounding the reflections
the left boundary and right boundary, and denote the
sequences by (Lefti) and (Righti). While their precise
coordinates depend on T , combinatorially they are a
function only of the edge path itself. In particular, the
length of each sequence depends only on E.

The constraint functions ψi,j for a closed edge path E
on a triangle T are polynomials computing (a positive
multiple of) the margin between the left and right
boundary vertices when moving along the path’s offset:

ψi,j(E, T) = 〈
−→
OffE(T)⊥,Lefti − Rightj〉 (1)

where i and j range over the lengths of the left and

right boundary sets, and
−→
OffE(T)⊥ is the rotation of

−→
OffE(T) by π/2. There is a periodic billiard path on T
through E if and only if ψi,j(E, T) > 0 for all i and j.

Given E and a T with rational vertex coordinates,
the constraint functions can be evaluated explicitly to
determine if E yields a periodic billiard path on T .
Given only E, variables can be substituted for T ’s coor-
dinates to yield generic polynomial constraints that are

satisfied only on the set of triangle coordinates for which
E gives a periodic billiard path. This is, in outline, the
method underlying the results of [Schwartz08].

To simplify formulas in what follows we without loss
of generality consider triangles whose longest edge (the
base) lies on a fixed unit interval, so that any two
triangles differ only in the coordinates of their apex.
We then have:

Theorem 1. Given triangles T1, T2 with apexes a1, a2

and a closed edge path E of length n, let `min be the
length of the shortest edge of T1 and define ψi,j as in
Equation 1. Then∣∣ψi,j(E, T1)− ψi,j(E, T2)

∣∣ ≤ (n+ 2)3‖a1 − a2‖
8`min

(2)

for all i and j.

Corollary 1. Given triangle T1 with apex a1 having
a periodic billiard path along a closed edge path E of
length n, let `min be the length of the shortest edge of T1,
and set ψmin = mini,j [ψi,j(E, T)]. Then every triangle
T2 with apex a2 such that

‖a1 − a2‖ ≤
8`minψmin

(n+ 2)3
(3)

also has a periodic billiard path along E.

Given a periodic billard path on a triangle with
rational vertices, Corollary 1 gives an explicit radius
within which the apex of the triangle can be perturbed
while preserving the billiard path.

Experimental Results

We now wish to obtain a lower bound on the fraction of
obtuse triangles that admit periodic billiard paths. As
above, we set the longest edge to be a fixed unit-length
base. By symmetry, we also assume the shortest edge
is the one lying clockwise of the base. Our problem
space is thus the set of possible apexes within a radius-
1/2 quarter-circle. With this parameterization, the
“fraction” of obtuse triangles with periodic paths is
taken to mean the relative measure within that quarter-
circle of the set of apexes admitting a periodic path.

Our approach is to fix a rational grid covering the
problem space and select apexes uniformly at random
from the grid, then search for periodic billiard paths for
the chosen apexes. If a path is found, and Corollary 1
shows that it remains valid up to a radius larger than
the grid spacing, then all the triangles nearest to that
grid point are guaranteed to have periodic billiard paths,
and we call that apex a success. A high rate of success
gives us a Bayesian lower bound on the probability that
in fact a high proportion of all obtuse triangles admit
periodic billiard paths.

2

Grid spacing 2× 10−14

Apex count 2500
Success count 2479

Path length

Min 14
Max 28572
Avg 288.1

Path validity radius

Min 1.45× 10−14

Max 1.3× 10−3

Mult. Avg 8.6× 10−7

Table 1: Experimental results

Once a periodic path is found, it is easy to indepen-
dently verify its correctness and radius, so the proba-
bilities we derive are conditioned only on the source of
randomness used to generate the apex set. We used
libbsd’s arc4random running on Ubuntu Linux 17.04,
which we consider robust enough for problems of this
nature, but it would be straightforward to reproduce
the experiment using any desired source.

Our numeric results are in Table 1, with a scatter
plot in Figure 2. Given the preceding, we consider this
to be strong empirical evidence for the assertion that
most obtuse triangles admit periodic billiard paths.
Specifically, if we assume the uniformity of our test
coordinates and compute the conditional probability of
the success rate we have:

Confidence Bound 1. Assuming a constant prior on
the fraction of obtuse triangles that admit a periodic
billiard path, and given an experimental outcome at
least as good as the one in Table 1, the likelihood that
≥ 98% of obtuse triangles admit a periodic billiard path
is > 0.99999.

Both the likelihood and the proportion of triangles
may be readily increased by repeating the experiment
with a higher trial count and search depth.

Proof Sketch

We now outline the proof of Theorem 1. Set T = T1,
a = a1. As above, let (Lefti) and (Righti) denote the
left and right boundaries of T ’s reflections along E.

If there is a periodic billiard path, it must lie parallel

to the edge path’s offset
−→
OffE(T) = Leftfinal − Left0.

This means it lies perpendicular to
−→
OffE(T)⊥, so given

points p1 and p2 we can measure their mutual dis-
tance orthogonal to the offset via the dot product

Figure 2: A scatter plot of the trial outcomes. Successful
points denote a cyclic billiard path that is valid
up to a positive radius greater than the spacing
of the apex grid.

〈
−→
OffE(T)⊥, p2 − p1〉, which is positive if and only if
p2 lies to the left of p1 when traveling in the direction

of
−→
OffE(t). From this we get the constraint functions

ψi,j of Equation 1.
Let us telescope the boundary representation of the

offset:

−→
OffE(T) = Leftfinal − Left0

=

final∑
i=1

(Lefti − Lefti−1)
(4)

The elements of this sum are edge vectors along the
boundary. Focusing on these edges, we define:

−−→
Lefti = Lefti − Lefti−1

−−−→
Righti = Righti − Righti−1

(5)

Every boundary vertex can then be expressed as a sum
of edge vectors from the first points:

Lefti = Left0 +
∑
j≤i

−−→
Leftj

Righti = Right0 +
∑
j≤i

−−−→
Rightj

(6)

Since the operation ⊥ is linear, it commutes with this
form, so we also have:

−→
OffE(T)⊥ =

∑
i

−−→
Left⊥i =

∑
i

−−−→
Right⊥i (7)

3

Combining these gives us the following expression for
the constraint functions:

ψi,j(E, T) =

〈∑
k

−−→
Left⊥k ,

∑
k≤i

−−→
Leftk

〉

+

〈∑
k

−−−→
Right⊥k ,

∑
k≤j

−−−→
Rightk

〉 (8)

This suggests many simplifications using the fact that
the inner product of a vector with its orthogonal is zero.
All we will use for now is that (since both i and j are
bounded by the number of reflections n) we can expand
both sides of the inner products by distributivity into
a sum

ψi,j(E, T) =

N∑
k

〈v⊥k , wk〉 (9)

where the vk, wk are elements of
−−→
Left or

−−−→
Right and N

is at most (n+ 2)2/4. This is not completely trivial: an
n2/2 bound is immediate, but the extra 1/2 factor is
obtained by more careful analysis of path length, which
we omit here.

For the rest, we can rewrite Equation 9 in angle form:

ψi,j(E, T) =

N∑
k

‖vk‖‖wk‖ cos(θk) (10)

where θk is the angle between v⊥k and wk. Recall that
the angle of edges produced by repeated reflection varies
by integer combinations of the triangle’s vertex angles
α{1,2,3}, so θk = π/2 +

∑
i ck,iαi for integers (ck,i).

Induction shows the difference in any two edge angles
is at most n/2 individual rotations, so we may choose∑

i

∣∣ck,i∣∣ ≤ n/2.

Now vary the apex a by an infinitesimal offset
−−→
d(a),

and let d(r) =
∥∥∥−−→d(a)

∥∥∥ be the (positive) infinitesimal

change in distance from a. Let d(αi) be the change in
angle i of T , and let d(α)max be the largest-magnitude
change in any angle of T . Then the change of angle θk
can also be bounded:

∣∣d(θk)
∣∣ ≤ n

∣∣d(α)max

∣∣
2

(11)

by the coefficient bound above.

Either of the base angles have their variation
∣∣d(αi)

∣∣
bounded by d(r)

`min
, so the change in the apex angle

∣∣d(α3)
∣∣

is at most 2d(r)
`min

. Substituting this for d(α)max gives:

∣∣d(θk)
∣∣ ≤ nd(r)

`min
(12)

We now differentiate Equation 10 and substitute

these inequalities, obtaining:

d(ψi,j) ≤ d(r)

(
n+ 2

`min

)(
(n+ 2)2

4

)

=
d(r)(n+ 2)3

4`min

(13)

Again there is a missing factor of 1/2 in this argument.
The 8 in the denominator in the full theorem comes
from rewriting the preceding expressions to omit the
apex angle α3. This can be done without breaking any
of the bounds, but it requires lengthier bookkeeping,
so we again omit it here.

Conclusion

Our results give the first quantitative empirical evidence
that a high proportion of obtuse triangles have periodic
billiard paths. Though our methods can’t extend to the
full conjecture that all triangles do, some improvements
and extensions still suggest themselves:

• Our experiments have yielded a larger and more
diverse set of example billiard paths than was
previously available. Examination of these paths
reveal common structures that in some cases are
amenable to analysis; exploring these might allow
better heuristics for finding periodic paths, or (if
one is optimistic) even unconditional algorithms
for some classes of triangles.

• Observations during testing lead us to believe that
the remaining failure cases in our dataset are lim-
ited by the grid density we chose: most of them
have periodic billiard paths whose radius is too
low. A denser grid, or one that grew progressively
denser as it approached the base, would proba-
bly have a greater success rate for very narrow
triangles.

• Our heuristic for finding periodic billiard paths was
relatively naive, essentially just testing random
vectors from a promising distribution. While this
was enough to succeed on most inputs, it seems
likely that more principled selection would do even
better.

References

[Masur86] Masur, Howard. Closed Trajectories for
Quadratic Differentials with an Application to Bil-
liards. Duke Math. J. 53 (1986), 307–313.

[Schwartz08] Schwartz, Richard Evan. Obtuse Trian-
gular Billiards II: 100 Degrees Worth of Periodic
Trajectories. Experiment. Math. 18 (2009), no. 2,
137–171.

4

FWCG 2017, Stony Brook, NY, November 3–4, 2017

Nearest Neighbor Condensation with Guarantees

Alejandro Flores V.∗ David M. Mount†

Abstract

The problem of nearest-neighbor (NN) condensation
deals with reducing the training-set P for the NN-rule
classifier. We propose a new NN condensation algo-
rithm called RSS, and prove that selects a subset of size
at most O(k log ∆), where k is the number of points in
the decision borders of P , and ∆ its spread. Similarly,
we show that a state-of-the-art algorithm called MSS,
selects a subset of size at most O(k). To the best of
our knowledge, these are the first bounds on the sizes
of point sets generated by NN condensation algorithms.
Additionally, we proof the probability of correctly clas-
sifying a query point with ε-ANN using RSS, grows ex-
ponentially with respect to the size of the RSS set.

1 Introduction

Consider a training-set P ⊂ Rd of n points, where each
point p ∈ P belongs to one of a set of discrete classes,
denoted l(p). The goal of nonparametric classification
techniques, is to accurately predict the class of new
points. Among the most well-known techniques is the
nearest-neighbor (NN) rule, which given a query point
q ∈ Rd, assigns it the class of its nearest neighbor in P ,
denoted NN(q).

Despite its simplicity, the NN rule exhibits good clas-
sification accuracy. Theoretical results show that its
probability of error is bounded by twice the Bayes prob-
ability of error (the minimum of any decision rule).
However, the NN rule is often criticized on the basis
of its memory requirements, as P must be stored to an-
swer queries. For this reason, we consider the problem
of Nearest Neighbor Condensation: selecting a subset of
P that maintains its classification performance.

2 Related work

Consider the Delaunay triangulation of P . Points with
at least one neighbor of a different class are called bor-
der points, while others are called internal points. One
approach for NN condensation is to select the set of bor-
der points of P . This is called Voronoi condensation [7].

∗Department of Computer Science, University of Maryland,
College Park, MD afloresv@cs.umd.edu
†Department of Computer Science, University of Maryland,

College Park, MD mount@cs.umd.edu

Unfortunately, a straightforward algorithm is impracti-
cal in high-dimensional spaces. For the planar case, an
output-sensitive algorithm was proposed [3], which runs
in O(n log k) time when k is the number of border points
in P . Yet, it remains an open problem whether this is
possible for higher dimensions.

There are other properties that can be used to con-
dense P . First, let’s introduce the concept of enemy ;
an enemy of a point p ∈ P is any point in P of different
class, and the nearest enemy of p is denoted as NE(p).
Now, let R ⊆ P we say that:

• R is a consistent subset of P iff for every point
p ∈ P , its NN in R is of the same class as p (i.e., p
is correctly classified by R).
• R is a selective subset of P iff for every point p ∈ P ,

its NN in R is closer to p than is NE in P . Clearly,
selectiveness implies consistency.

It has been shown that both problems of finding
minimum-size consistent and selective subsets are NP-
complete [8]. Therefore, many heuristics have been pro-
posed to find subsets with such properties (for a compre-
hensive survey see [6]). Among them, CNN [4] was the
first algorithm proposed for computing consistent sub-
sets. It has been widely used, despite its worst-case cu-
bic running time, and being order-dependent1. Recent
efforts resulted in FCNN [1] and MSS [2], which produce
consistent and selective subsets respectively. Both algo-
rithms run in O(n2) time, and are order-independent.
Unfortunately, to the best of our knowledge, no bounds
are known for the size of the subsets generated by any
of these algorithms.

Moreover, condensation can introduce problems dur-
ing classification. In general, these algorithms focus on
selecting border points, as they are key in maintaining
the classification accuracy on exact NN queries. How-
ever, we argue that keeping internal points can be bene-
ficial when performing approximate NN queries, increas-
ing the chances of correct classification, and reducing
the query time [5].

3 Relaxed Selective Subset

We propose an algorithm for NN condensation called
RSS, or Relaxed Selective Subset (See Algorithm 1).
First let’s introduce some extra notation. Let d(p, q)

1Order-dependence means the resulting subset is determined
by the order in which points are considered by the algorithm.

mailto:afloresv@cs.umd.edu
mailto:mount@cs.umd.edu

27th Fall Workshop on Computational Geometry, 2017

(a) Dataset (104 pts) (b) CNN (281 pts) (c) FCNN (222 pts) (d) MSS (233 pts) (e) RSS (627 pts)

Figure 1: An illustrative example of the subsets selected by CNN, FCNN, MSS, and RSS.

be the distance between any two points p, q ∈ Rd,
and dNE(p) be the nearest enemy distance of any point
p ∈ P , defined as dNE(p) = d(p,NE(p)).

Algorithm 1: Relaxed Selective Subset

Input: Initial point set P
Output: Condensed point set RSS ⊆ P

1 Let {pi}ni=1 be the points of P sorted in increasing
order of NE distance dNE(pi)

2 RSS← φ
3 foreach pi ∈ P , where i = 1 . . . n do
4 if ¬∃ r ∈ RSS such that d(pi, r) < dNE(r) then
5 RSS← RSS ∪ {pi}

6 return RSS

RSS runs in O(n2) time, and it is order-independent
as points are sorted before being considered. Moreover:

Theorem 1 RSS is a selective subset of P .

This places RSS among state-of-the-art algorithms for
NN condensation. However, how do these algorithms
compare in terms of the size of their selected subsets?
While other algorithms tend to select border points (or
points close to the decision borders), the idea behind
RSS is to also select internal points following a partic-
ular strategy. Figure 1 illustrates the way RSS selects
points in comparison with other NN condensation al-
gorithms. In the following theorems, we formalize the
bounds on the size of RSS and MSS.

Theorem 2 Let k be the number of border points of P ,
and ∆ the spread of P . Then, |RSS| ≤ O(k log ∆).

Theorem 3 Let k be the number of border points of P .
Then, |MSS| ≤ O(k).

While RSS can select more points than MSS, we argue
that these extra points are beneficial during classifica-
tion. These internal points will increase the probability
of correct classification when using ε-approximate NN
queries. This intuition is formalized as follows:

Theorem 4 Let point q ∈ Rd be drawn uniformly at
random from the minimum enclosing ball of P , where P
has k border points and spread ∆. Then, the probability
of equally classifying q with RSS, using both exact and
ε-approximate NN queries (for ε ≤ 2), is bounded by:

Pr
[
l(NNRSS(q)) = l(ANNRSS(ε, q))

]
≥ k2Ω(

|RSS|
k)

∆d

References

[1] F. Angiulli. Fast nearest neighbor condensation for large
data sets classification. Knowledge and Data Engineer-
ing, IEEE Transactions on, 19(11):1450–1464, 2007.

[2] R. Barandela, F. J. Ferri, and J. S. Sánchez. Deci-
sion boundary preserving prototype selection for nearest
neighbor classification. International Journal of Pattern
Recognition and Artificial Intelligence, 19(06):787–806,
2005.

[3] D. Bremner, E. Demaine, J. Erickson, J. Iacono,
S. Langerman, P. Morin, and G. Toussaint. Output-
sensitive algorithms for computing nearest-neighbour
decision boundaries. In F. Dehne, J.-R. Sack, and
M. Smid, editors, Algorithms and Data Structures: 8th
International Workshop, WADS 2003, Ottawa, Ontario,
Canada, July 30 - August 1, 2003. Proceedings, pages
451–461, Berlin, Heidelberg, 2003. Springer Berlin Hei-
delberg.

[4] P. Hart. The condensed nearest neighbor rule (corresp.).
IEEE Trans. Inf. Theor., 14(3):515–516, Sept. 1968.

[5] D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y.
Wu. Chromatic nearest neighbor searching: A query
sensitive approach. Computational Geometry, 17(3):97 –
119, 2000.

[6] G. Toussaint. Open problems in geometric methods for
instance-based learning. In J. Akiyama and M. Kano,
editors, JCDCG, volume 2866 of Lecture Notes in Com-
puter Science, pages 273–283. Springer, 2002.

[7] G. T. Toussaint, B. K. Bhattacharya, and R. S. Poulsen.
The application of voronoi diagrams to non-parametric
decision rules. Proc. 16th Symposium on Computer Sci-
ence and Statistics: The Interface, pages 97–108, 1984.

[8] A. V. Zukhba. NP-completeness of the problem of pro-
totype selection in the nearest neighbor method. Pattern
Recognit. Image Anal., 20(4):484–494, Dec. 2010.

On the Complexity of Random Semi Voronoi Diagrams

Chenglin Fan1 and Benjamin Raichel1

1Department of Computer Science, University of Texas at Dallas
cxf160130@utdallas.edu, benjamin.raichel@utdallas.edu

Abstract

In the standard Voronoi diagram each site is visible to
all the points in the plane. Here we consider the Semi
Voronoi Diagram [CLX10], where instead each site is
visible to some given half plane whose boundary passes
through the site. The worst case complexity of such
diagrams is Θ(n2) [FLWZ14]. Here we show that when
the direction of the half plane for each site is random,
then with high probability the Semi Voronoi Diagram
has near linear complexity, and in the full version of the
paper we later show the expected complexity is Θ(n).

1 Introduction

The Voronoi diagram is a fundamental structure in
Computational Geometry, with applications through-
out the sciences. Given an input consisting of a set of n
points in the plane, called sites, the standard Voronoi
diagram partitions the plane into cells, where each cell
is the subset of points in the plane sharing the same
closest site under standard Euclidean distance. Many
variations of this basic structure have been considered,
including (i) sites consisting of other geometric objects,
(ii) weighted or other distance function, (iii) higher di-
mensions and surfaces, (iv) sites other than the nearest
one, and many and more. The topic of Voronoi dia-
grams if far to broad to survey here, and so we refer
the reader to the book of Aurenhammer et al. [AKL13].

Here we consider a variant of the Voronoi diagram
where the visibility of each site is constrained. Many
previous visibility restrictions have been considered,
for example, Aurenhammer and Stöckl [AS91] stud-
ied the so called Peeper’s Voronoi diagram, where sites
are only visible through a given segment lying outside
the convex hull of the sites. In this paper we con-
sider the so called Visibility Restricted Voronoi Dia-
gram (VRVD) [FLWZ14, ASXZ14], where each site is

only visible about a given angle around that site (i.e. a
region bounded by two rays emanating from the site).
These diagrams, for example, model scenarios where
the site has a restricted field of view, such as may be
the case with various optical sensors or human vision.
When the visible region for each site is a half plane
whose boundary passes through the site (i.e. a visible
angle of π/2), such diagrams were originally studied
under the name Semi Voronoi Diagrams [CLX10].

The worst case complexity of the standard Voronoi
diagram is linear in the number of sites, and a num-
ber of generalizations of the Voronoi diagram retain
this desirable property. In particular, Klein [Kle89]
introduced the notion of abstract Voronoi diagrams,
outlining a simple set of general axioms, capturing a
large class of Voronoi diagrams with linear worst case
complexity. Unfortunately, there are also many natu-
ral generalizations of Voronoi diagrams for which the
worst case complexity grows significantly. To combat
this many previous works have shown, that by assum-
ing some form of randomness in the input, the expected
complexity of some of these diagrams remains linear.
While the worst case complexity of higher dimensional
Voronoi diagrams is Θ(ndd/2e), Dwyer [Dwy89] showed
if the sites locations are sampled uniformly from a d di-
mensional ball, the expected complexity is Θ(n). For
geodesic Voronoi diagrams on so called Realistic Ter-
rains, introduced by Aronov et al. [AdBT08], the worst
case complexity is Θ(m+n

√
m) (where m is the terrain

complexity), however, Driemel et al. [DHR16] showed
if the site locations are sampled uniformly from the
terrain then the expected complexity is Θ(n+m). For
multiplicative weighted Voronoi diagrams, the worst
case complexity is Θ(n2) [AE84], however, an expected
O(n log2(n)) bound was shown if the weights were ran-
domly permuted amongst the sites [HR15, CHR16]. (A
similar result for the union complexity of randomly ex-
panded segments was shown by [AHKS14].)

1

In this paper we continue this line of research for
the Semi Voronoi diagram. Such diagrams have Θ(n2)
worst case complexity [FLWZ14]. (Actually they show
this tight bound for the more general VRVD.) Here we
show, however, if the visibility half plane for each site
is randomly sampled then the complexity is near linear
with high probability, and moreover is linear in expec-
tation. (The linear expectation bound is left to the full
version of the paper.) Our proof can easily be extended
to show that the more general VRVD has expected lin-
ear complexity (assuming the angle for each site is at
least a constant), although we omit the details here.

2 Preliminaries

The standard Voronoi diagram: Let S =
{s1, s2, ..., sn} ⊂ R2 be a set of n point sites in the
plane. Let ‖x− y‖ denote the Euclidean distance from
x to y, and for two sites p, q ∈ S let β(p, q) denote their
bisector, that is the set of points x in plane such that
‖p− x‖ = ‖q − x‖. Any site p ∈ S induces a distance
function fp(x) = ‖p− x‖ defined for any point x in the
plane. For any subsetX ⊂ S, the Voronoi cell of p with
respect to X, Vcell(p,X) = {x ∈ R2 | ∀q ∈ X fp(x) ≤
fq(x)}, is the subset of points in the plane sharing p as
their closest site in X. We define the Voronoi diagram
of X, denoted V(X), as the partition of the plane into
Voronoi cells induced by the minimization diagram of
the set of distance functions {fp | p ∈ X}.

One can view the union, U , of the boundaries of the
cells in the Voronoi diagram as a planar graph. Specif-
ically, define a Voronoi vertex as any point in U which
is equidistant to three sites in S (which happens at the
intersection of bisectors). For simplicity, we make the
general position assumption that no point is equidis-
tant to four or more sites in the plane. Furthermore,
define a Voronoi edge as any maximal connected subset
of U which does not contain a Voronoi vertex. (Note
that in order for each edge to have two endpoints we
must include the “point” at infinity, i.e. the graph is
defined on the stereographic projection of the plane
onto the sphere.) The complexity of the Voronoi di-
agram is then defined as the total number of Voronoi
edges, vertices, and cells. As the cells in the stan-
dard Voronoi diagram are simply connected sets, which
are the faces of a straight line planar graph where ev-
ery vertex has degree three, the overall complexity is
Θ(n). (It is also known that diagrams allowing much
more general bisectors, called abstract Voronoi dia-

grams [Kle89], also have linear complexity.)

kth order Voronoi diagram: In our analysis we
will make use of the kth order Voronoi diagram. Let
S be a set of n point sites in the plane. Then the kth
order Voronoi diagram of S is the partition of the
plane into cells such that each cell is the locus of points
which have the same set of k nearest sites of S (the
ordering of these k sites by distance to the query point
can vary within the cell). It is not hard to see that
this again defines a straight line partition of the plane
into cells where the edges on the boundary of a cell are
composed of bisector pieces. It is well known that the
worst case complexity of this diagram is Θ(k(n− k))
(see [AKL13, Section 6.5]).

Semi Voronoi Diagram: In this paper we investi-
gate the expected complexity of the Semi Voronoi di-
agram. As before let S = {s1, s2, ..., sn} be a set of n
point sites in the plane. Additionally, let H(si) be some
closed half plane associated with si, whose boundary
passes through si. We use L(si) to denote the bound-
ing line of the half plane H(si). For any point x in the
plane and any site si ∈ S, we say that x and si are
visible to each other precisely when x ∈ H(si). Given
a point x in the plane, let S(x) = {si ∈ S | x ∈ H(si)}
denote the set of sites which are visible to x.

For any subset X ⊂ S, define the Semi Voronoi cell
of p with respect toX as, SVcell(p,X) = {x ∈ R2 | ∀q ∈
S(x) ‖x− p‖ ≤ ‖x− q‖}. Note it is possible there
exists points in the plane which are not visible by any
site in S, however, this technicality can be avoided by
adding a pair of sites far away from S which combined
can see the entire plane. As before the Semi Voronoi
cells define a straight line partition of the plane, where
now the edges on the boundary of a cell are either por-
tions of a bisector or of a half plane boundary. In the
worst case, the Semi Voronoi diagram of such a set of
sites can have quadratic complexity [FLWZ14].

Probabilistic Model: We consider Semi Voronoi di-
agrams where the set of sites S = {s1, . . . , sn} is al-
lowed to be any fixed set of n points in general posi-
tion. For each site si, the line bounding the half plane
of si, L(si), is allowed to be any fixed line in R2 pass-
ing through si. Such a line defines two possible visible
closed half spaces. We assume that independently for
each site si, one of these two spaces is sampled uni-
formly at random (i.e. each has 1/2 probability).

2

Observation 2.1. An alternative natural input as-
sumption would be to assume that the normal of the
half plane for each site is sampled uniformly at random
from [0, 2π). Note that our model is strictly stronger,
that is any bound we prove for our model will also imply
the same bound for this alternative formulation. This is
because one can think of sampling normals from [0, 2π),
as instead first sampling directions for the bounding
lines from [0, π), and then next sampling one of the
two sides of each line for the normal.

3 The Expected Complexity of
Random Semi Voronoi Diagrams

3.1 The probability of covering the plane

As it will be used in our later calculations, we first
bound the probability that for a given subset X of k
sites of S that there exists a point in the plane which
is not visibile to any site in X. Namely,

Pr

 ⋃
xi∈X

SVcell(xi, X)

 6= R2


Lemma 3.1. For any set X = {x1, . . . , xk} of k sites
Pr
[
(
⋃
xi∈X SVcell(xi, X)) 6= R2

]
= O(k2/2k).

Proof: Consider the arrangement of the k bounding
lines L(x1), . . . , L(xk). Let F denote the set of faces
in this arrangement (i.e. the connected components of
the complement of the union of lines), and note that
|F| = O(k2). Observe that for any face f ∈ F and
any fixed site xi ∈ X, either every point in f is visi-
ble by xi or no point in f is visible by xi. Moreover,
the probability that face f is not visible by site xi is
Pr[H(xi) ∩ f = ∅] ≤ 1/2. Hence the probability that a
face f is not visible by any of the k sites is

Pr

 ⋃
xi∈X

H(xi) ∩ f = ∅

 ≤ 1/2k.

Hence by the union bound the probability that at
least one face in F is is not visible by any sites in X is

Pr

 ⋃
xi∈X

SVcell(xi, X)

 6= R2


≤
∑
f∈F

Pr

 ⋃
xi∈X

H(xi) ∩ f = ∅

 = O

(
k2

2k

)

3.2 A Simple Near Linear Bound

Ultimately we can show that the expected complexity
of a random Semi Voronoi diagram is linear, however,
here we show that Lemma 3.1 implies a near linear
bound which also holds with high probability. Specif-
ically, we say that a quantity is bounded by O(f(n))
with high probability, if for any constant α there exists
a constant β, depending on α, such that the quantity
is at most β · f(n) with probability at least 1− 1/nα.

Lemma 3.2. Let S = {s1, . . . , sn} ⊂ R2 be a set of
n sites, where each site has a corresponding line L(si)
passing through si. For each si, sample a half plane
H(si) uniformly from the set of two half planes whose
boundary is L(si) (i.e. each has 1/2 probability). Then
the expected complexity of the Semi Voronoi diagram
on S is O(n log3 n), and moreover this bound holds with
high probability.

Proof: Let k = c log n, for some constant c. Consider
the kth order Voronoi diagram of S. We first trian-
gulate this diagram so that the boundary of each cell
has constant complexity (Note triangulating does not
asymptotically change the number of cells.) Fix any
cell ∆ in this triangulation, which in turn fixes some
(unordered) set X of k-nearest sites. By Lemma 3.1,

Pr

 ⋃
xi∈X

SVcell(xi, X)

 6= R2

 = O(k2/2k)

= O((c log n)2/2c logn) = O(1/nc−ε
′
),

for any arbitrarily small value ε′ > 0. Thus with poly-
nomially high probability for every point in ∆ its clos-
est visible site will be in X. Now let T be the set of
all O(k(n− k)) = O(n log n) triangles in the triangula-
tion of the kth order diagram. Observe that the above
high probability bound applies to any triangle ∆ ∈ T .
Thus taking the union bound we have that with prob-
ability at least 1 − 1/nc−(1+ε) (where ε > ε′ > 0 is an
arbitrarily small value), simultaneously for every trian-
gle ∆, every point in ∆ will be visible by one of its k
closest sites. Let e denote this event happening (and
e denote it not happening). Conditioning on e hap-
pening, there are only O(k) = O(log n) relevant sites
which contribute to the Semi Voronoi diagram in any
cell ∆. Thus the total complexity of the Semi Voronoi
diagram restricted to any cell ∆ is at most O(log2 n),
as the Semi Voronoi diagram has worst case quadratic
complexity [FLWZ14]. (Note that as ∆ is a triangle, we

3

can ignore added complexity due to clipping the Semi
Voronoi diagram of these sites to ∆.) On the other
hand, if e happens, then the worst case complexity of
the Semi Voronoi diagram is still O(n2).

Now the complexity of the Semi Voronoi diagram is
bounded by the sum over the cells in the triangulation
of the complexity of the diagram restricted to each cell.
Thus the above already implies that with high proba-
bility the complexity of the Semi Voronoi diagram is
O
(∑

∆∈T log2 n
)

= O(n log3 n). As for the expected
value, by choosing c sufficiently large we have,

E[|SV(S)|]
=E

[
|SV(S)|

∣∣ e]Pr[e] + E
[
|SV(S)|

∣∣ e]Pr[e]

=O

(∑
∆∈T

log2 n

)
Pr[e] +O(n2)Pr[e]

=O(n log3 n)Pr[e] +O(n2)Pr[e]

=O(n log3 n)Pr[e] +O(n2) · (1/nc−(1+ε))

=O(n log3 n) +O(1/nc−(3+ε)) = O(n log3 n).

The above proof worked by partitioning the plane
based on the kth order Voronoi diagram, for k =
c log n, and then arguing that for all cells simultane-
ously one of the k nearest neighbors will be visible.
Rather than using a fixed kth order diagram, if one is
more careful, and allows k to vary then one can argue
that the expected complexity of the Semi Voronoi dia-
gram is in fact linear. The details are omitted here due
to space, however, they will be posted to the arXiv at
a later date.

Theorem 3.3. Let S = {s1, . . . , sn} ⊂ R2 be a set of
n sites, where each site has a corresponding line L(si)
passing through si. For each si, sample a half plane
H(si) uniformly from the set of two half planes whose
boundary is L(si) (i.e. each has 1/2 probability). Then
the expected complexity of the Semi Voronoi diagram
on S is Θ(n).

References

[AdBT08] B. Aronov, M. de Berg, and S. Thite. The
complexity of bisectors and Voronoi dia-
grams on realistic terrains. In 16th Annual
European Symposium on Algorithm (ESA),
pages 100–111, 2008.

[AE84] F. Aurenhammer and H. Edelsbrunner.
An optimal algorithm for constructing the

weighted voronoi diagram in the plane. Pat-
tern Recognition, 17(2):251–257, 1984.

[AHKS14] P. Agarwal, S. Har-Peled, H. Kaplan, and
M. Sharir. Union of random minkowski
sums and network vulnerability analysis.
Discrete & Comput. Geometry, 52(3):551–
582, 2014.

[AKL13] F. Aurenhammer, R. Klein, and D.T. Lee.
Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific, 2013.

[AS91] F. Aurenhammer and G. Stöckl. On the
peeper’s voronoi diagram. SIGACT News,
22(4):50–59, September 1991.

[ASXZ14] F. Aurenhammer, B. Su, Y. Xu, and
B. Zhu. A note on visibility-constrained
voronoi diagrams. Discrete Applied Mathe-
matics, 174:52–56, 2014.

[CHR16] H. Chang, S. Har-Peled, and B. Raichel.
From proximity to utility: A Voronoi parti-
tion of pareto optima. Discrete & Compu-
tational Geometry, 56(3):631–656, 2016.

[CLX10] Y. Cheng, B. Li, and Y. Xu. Semi Voronoi
diagrams. In Computational Geometry,
Graphs and Applications (CGGA), pages
19–26, 2010.

[DHR16] A. Driemel, S. Har-Peled, and B. Raichel.
On the expected complexity of Voronoi dia-
grams on terrains. ACM Trans. Algorithms,
12(3):37:1–37:20, 2016.

[Dwy89] R. Dwyer. Higher-dimensional Voronoi dia-
grams in linear expected time. In Proc. 5th
Annual Symposium Computational Geome-
try (SOCG), pages 326–333, 1989.

[FLWZ14] C. Fan, J. Luo, W. Wang, and B. Zhu.
Voronoi diagram with visual restriction.
Theor. Comput. Sci., 532:31–39, 2014.

[HR15] S. Har-Peled and B. Raichel. On the com-
plexity of randomly weighted multiplicative
Voronoi diagrams. Discrete & Computa-
tional Geometry, 53(3):547–568, 2015.

[Kle89] R. Klein. Combinatorial properties of ab-
stract Voronoi diagrams. In Int. Workshop
on Graph-Theoretic Concepts in Computer
Science (WG), pages 356–369, 1989.

4

Efficient algorithms for computing a minimal homology basis

Tamal K. Dey1†, Tianqi Li1‡, and Yusu Wang1§

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, 43214

1 Introduction

Many applications in science and engineering require computing some “features" such as “holes" and “tunnels"
in a shape that is finitely represented by a simplicial complex. A concise definition of these otherwise vague notions
can be obtained by considering homology groups and their representative cycles. In particular, a one-dimensional
homology basis, that is, a maximally independent set of cycles in the 1-skeleton of the input simplicial complex can
be taken as a representative of the “holes" and “tunnels" present in the shape. However, instead of any basis, one
would like to have a homology basis whose representative cycles are small under some suitable metric, thus bringing
the “geometry” into picture along with topology.

When the input complex is a graph with n vertices and m edges, a number of efficient algorithms have been
designed to compute a minimal cycle basis [1, 4, 7, 9, 10]. The best known algorithm for this case runs in O(m2n/
log n + n2m) [10]. For the special case of a combinatorial 2-manifold with weights on the edges, Erickson and
Whittlesey [6] gave an O(n2logn+ gn2 + g3n)-time algorithm to compute a minimal homology basis where n is the
total number of simplices and g is the rank of the first homology group. Dey et al. [5] and Chen and Friedman [3]
generalized the results above to arbitrary simplicial complexes. Busaryev et al. [2] improved the running time of this
generalization from O(n4) [5] to O(nω + n2gω−1) where ω < 2.3728639 [?] is the matrix multiplication exponent.
This gives the best known O(n1+ω) worst-case time algorithm when g = Θ(n). In Section 3, combining the divide
and conquer approach of [9] with annotations [2], we develop an improved algorithm to compute a minimal 1-
dimensional homology basis for an arbitrary simplicial complex in only O(n2g + nω) time. Considering g = Θ(n),
this gives the first O(n3) worst-case time algorithm for the problem.

We can further improve the time complexity if we allow for approximations. In Section 4, we present two algo-
rithms to compute an approximate minimal homology basis: one is a (2k−1)-approximation in timeO(kn1+1/kg polylog n+
nω) where k is a positive integer, and the other is a 2-approximation algorithm running in O(nω

√
n log n) expected

time.

2 Background and notations

In this paper, we are interested in computing a minimal basis for the one dimensional homology group of a simplicial
complex over the field Z2.

Homology We are concerned with the homology bases of Hd and particularly in H1 (more formally below). We
use g to denote the 1-st Betti number of K, which is the dimension of vector space H1.

– A set of cycles C1, · · · , CL, with L = rank(Z1), that generates the cycle space Z1 is called its cycle basis.
– For any 1-cycle c, let [c] denote its homology class. A set of homology classes {[C1], ..., [Cg]} that constitutes a

basis of H1 is called a homology basis. For simplicity, we also say a set of cycles {C1, C2, · · · , Cg} is a homology
basis if their corresponding homology classes {[C1], [C2], · · · , [Cg]} form a basis for H1(K).

– Let µ : Z1 → R+ ∪ 0 be a size function that assigns a non-negative weight to each cycle C ∈ Z1. A cycle or
homology basis C1, · · · , Cg is calledminimal if

∑g
i=1 µ(Ci) is minimal among all basis of Z1 or H1(K) respectively.

Annotation. To compute a minimal homology basis of a simplicial complex K, it is necessary to give a way to
represent and distinguish homology classes of cycles. Here we use annotation based on [2]. An annotation for a
d-simplex is a g-bit binary vector, where g = rank(Hd(K)). The annotation of a cycle z, which is the sum of
annotations of all simplices in z, provides the coordinate vector of the homology class of z in a pre-determined
homology basis.
† tamaldey@cse.ohio-state.edu
‡ li.6108@osu.edu
§ yusu@cse.ohio-state.edu

Definition 2.1. (Annotations). [2] Let K be a simplicial complex and Kd be the set of d-simplices in K. An an-
notation for d-simplices is a function a : Kd → (Z2)

g with the following property: any two d-cycles z and z′ are
homologous if and only if ∑

σ∈z
a(σ) =

∑
σ∈z′

a(σ)

Given an annotation a, the annotation of any d-cycle z is defined by a(z) =
∑
σ∈z a(σ).

Proposition 2.1 ([2]) There is an algorithm that annotates the d-simplices in a simplicial complex with n sim-
plices in O(nω) time.

3 An efficient algorithm for minimal homology basis

In this section, we briefly describe an algorithm to compute a minimal homology basis using edge annotation [2]
and divide-and-conquer technique [9]. More details will appear in the full version of the paper

Let K be a simplicial complex with n number of total simplices.1 Assume that the edges in K are weighted
with non-negative weights. Given any homology basis {C1, . . . , Cg} with g = rank(H1(K)), the size µ(C) of a cycle
C ∈ Z1(K) is defined to be the total weights of its edges. Thus the problem of computing a minimal homology basis
of H1 is to find a basis C = {C1, C2, · · · , Cg} such that the sum of

∑g
i=1 µ(Ci) is the smallest.

We describe the algorithm to compute a minimal homology basis. First we need to annotate all edges using the
algorithm mentioned in [2]. Then we compute a candidate set G of cycles that includes a minimal homology basis.
We use the shortest path tree approach proposed in [5, 6].

Proposition 3.1 [5, 6] The candidate set G has O(n2) cycles and admits a minimal homology basis.

We compute a minimal homology basis from the candidate set G. We modify the divide and conquer approach
of [9] which computes a minimal cycle basis of a graph with non-negative weights. The algorithm uses an auxiliary
set S of g-bit support vectors [9] to select a minimal homology basis from the candidate set G.

Before describing the algorithm, we define the function m : S × G → {0, 1} with m(S,C) = 〈S, a(C)〉 where
〈·, ·〉 is the inner product over Z2. We say a cycle C is orthogonal to a support vector Si if m(Si, C) = 0 and is
non-orthogonal if m(Si, C) = 1.

Now we describe the algorithm choosing a minimal homology basis from G, namely, selecting C1, · · · , Cg
iteratively from G and adding to the minimal homology basis. During the procedure, the algorithm always finds
cycles Ci where 1 ≤ i ≤ g and maintains a set of support vectors S1, S2, · · · , Sg with the following properties:

(1). S1, S2, · · · , Sg forms a basis of {0, 1}g.
(2). When C1, C2, · · · , Ci−1 have already been computed, m(Si, Cj) = 0, j < i.
(3). When C1, C2, · · · , Ci−1 have already been computed, Ci is chosen so that Ci is the shortest cycle withm(Si, Ci) =

1.

We have the following theorem to support our algorithm (proof will appear in the full version of the paper).

Theorem 3.1. The set {C1, C2, · · · , Cg} computed by maintaining properties (1), (2) and (3) is a minimal homol-
ogy basis.

In order to maintain property 2, we need to update the support vectors Si, · · · , Sg after computing Ci. We
initialize each support vector Si so that only the ith bit is set to 1. Following from [9], we have two procedures,
ExtendBasis(i, k) which extends the current partial basis {C1, · · · , Ci−1} by adding k new cycles, and Update(i,
k) to maintain property (2). To compute a minimal homology basis, we run ExtendBasis(1, g).

The procedure ExtendBasis(i, k) is implemented as follows. If k > 1, it first recursively calls ExtendBa-
sis(i,bk/2c) to add bk/2c cycles to the current partial basis. Then it calls the procedure Update(i, k) which uses the
already updated support vectors Si, · · · , Si+bk/2c−1 to update Sl so that m(Sl, Cj) = 0,∀j < i+ bk/2c, i+ bk/2c ≤
l ≤ i + k − 1. Finally, it calls ExtendBasis(i + bk/2c, dk/2e) to add the remaining dk/2e cycles to the basis. If
k = 1(base case), it calls ShortestCycle(Si) to choose the shortest cycle satisfying property (3).

We now describe Update(i, k). It updates Sj to Ŝj = Sj +
∑bk/2c−1
t=0 αjtSi+t where i + bk/2c ≤ j ≤ i +

k − 1 aiming to guarantee property (1) and (2). We just need to determine the coefficients αj1, ..., αjbk/2c so that

1 We are only interested in 1-dimensional homology basis, so we assume K contains simplices of dimension at most 2.

m(Ŝj , Ct) = 0, t = i, ..., i+bk/2c−1. Modified from Kavitha et al. [9], we can compute those coefficients and update
the vectors Ŝj in time O(nkω−1)(The details will appear in the full version of the paper).

We also compute m(Sj , e) to m(Ŝj , e) for i + bk/2c ≤ j ≤ i + k − 1 and every edge e which helps in
procedure ShortestCycle(·). From the analysis above, it follows that for every edge e, m(Ŝj , e) = m(Sj +∑bk/2c−1
t=0 αjtSi+t, e) = m(Sj , e) +

∑bk/2c−1
t=0 αjtm(Si+t, e), i + bk/2c ≤ j ≤ i + k − 1. Using matrix multiplication,

m(Ŝj , e) can be updated in time O(nkω−1) where i+ bk/2c ≤ j ≤ i+ k − 1.

Base case for selecting a shortest cycle. We implement the procedure ShortestCycle(Si) to compute the shortest
cycle Ci non-orthogonal to Si, i.e. the shortest cycle Ci satisfyingm(Si, Ci) = 1. Instead of computing the annotation
of each cycle directly which increases the time complexity, we use the label technique [10]. Let Πp(u) for any vertex
u ∈ vert(K) denote the unique tree path in Tp from p to u. Then we prove that m(Si, C(p, e)) = m(Si, Πp(u)) +
m(Si, Πp(v)))+m(Si, e). For a fixed p ∈ vert(K), we can compute the label m(Si, Πp(u)) for every vertex u in O(n)
time. It follows that in O(n2) time one can compute m(Si, C) for all cycles C ∈ G and select the shortest cycle.

We summarize our result in the following theorem.

Theorem 3.2. For a simplicial complex K, there exists a minimal homology basis that can be computed in time
O(n2g + nω).

4 An approximate minimal homology basis of H1(K)

In this section, we briefly present two algorithms for approximating a minimal 1-dimensional homology basis.
The details will appear in the full version of the paper. Here the approximation is defined as follows.

Definition 4.1 (Approximate minimal homology basis). Suppose C∗ is a minimal homology basis for H1(K),
and let `∗1 ≤ `∗2 ≤ · · · ≤ `∗g denote the sequence of sizes of cycles in C∗ sorted in non-decreasing order. A set of
g cycles C′ is a t-approximate minimal homology basis for H1(K) if (i) {[C], C ∈ C′} form a basis for H1(K);
and (ii) let `1, . . . , `g denote the sequence of sizes of cycles in C′ in non-decreasing order; then for any i ∈ [1, g],
`∗i ≤ `i ≤ t · `∗i .

(2k − 1)-Approximation algorithm. The high-level framework of this approximation algorithm is the same as the
algorithm described in Section 3. The only change is that in the approximation algorithm, we need to replace
the base case ShortestCycle(i) which computes a shortest cycle Ci after a partial basis {C1, . . . , Ci−1} with
AproximateCycle(i) where we will compute a cycle Ai which only approximates the size of Ci.

We briefly describe the procedure ApproximateCycle(i) modified from [9, Section 2]. For every i, we construct
an auxiliary graph Gi. For each vertex v in K, we make two copies of it in the graph Gi, v+ and v−. For every edge
e = (u, v) in K(1), if m(Si, e) = 1 then we add edges (u+, v−) and (u−, v+) to Gi; otherwise we add edges (u+, v+)
and (u−, v−) to Gi. A shortest cycle C with m(Si, C) = 1 corresponds to a shortest path between two copies of
some vertex v in Gi minimizing over all v. Instead computing the shortest path connecting some v+ and v−, we
now compute the (2k − 1)-approximate shortest path using the algorithm from [11] for each vertex v and take the
minimum as the cycle Ai.

Theorem 4.1. Using the above algorithm to replace CycleBasis(·) in Section 3, we obtain an algorithm that
outputs a (2k − 1)-approximate minimal homology basis in time O(kn1+1/kg polylog n + nω), where k ≥ 1 is an
integer.

2-Approximation algorithm. We now present an algorithm to compute a 2-approximate minimal homology basis. In
the high level, we will first compute a set of candidate set G′ of cycles that guarantees to contain a 2-approximate
minimal homology basis. We then extract the 2-approximate basis from the candidate set.

To construct the candidate set G′, we first apply the algorithm by Kavitha et al. [8] which can compute a smaller
candidate set G′ of O(n

√
n log n) cycles guaranteed to contain a 2-approximate minimal cycle basis (not homology

basis) for graph K(1) (i.e, 1-skeleton of the complex K) in O(n
√
n log3/2 n) expected time. We then prove that such

a candidate set G′ also contains a 2-approximate minimal homology basis. Now what remains is to describe how to
compute such an approximate basis from the candidate set G′. We use a matrix M to represent the annotations of
all cycles in G′ where each column represents a cycle sorted in non-decreasing order. We prove that such a matrix
M can be computed in time O(nω

√
n log n). Then a 2-approximate minimal homology basis can be extracted from

M using Gaussian elimination. Therefore the following theorem holds.

Theorem 4.2. The algorithm above computes a 2-approximate minimal homology basis of the 1-dimensional ho-
mology group H1(K) of a simplicial complex with non-negative weights in O(nω

√
n log n) expected time.

References

1. Glencora Borradaile, Erin Wolf Chambers, Kyle Fox, and Amir Nayyeri. Minimum cycle and homology bases of surface-
embedded graphs. Journal of Computational Geometry, 8(2):58–79, 2017.

2. Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K Dey, and Yusu Wang. Annotating simplices with a homology
basis and its applications. In Scandinavian Workshop on Algorithm Theory, pages 189–200. Springer, 2012.

3. Chao Chen and Daniel Freedman. Measuring and computing natural generators for homology groups. Computational
Geometry, 43(2):169–181, 2010.

4. José Coelho de Pina. Applications of shortest path methods. Ph.D. thesis, University of Amsterdam, 1995.
5. Tamal K Dey, Jian Sun, and Yusu Wang. Approximating loops in a shortest homology basis from point data. In

Proceedings of the twenty-sixth annual symposium on Computational geometry, pages 166–175. ACM, 2010.
6. Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In Proceedings of the sixteenth

annual ACM-SIAM symposium on Discrete algorithms, pages 1038–1046. Society for Industrial and Applied Mathematics,
2005.

7. Joseph Douglas Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal on
Computing, 16(2):358–366, 1987.

8. Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail. New approximation algorithms for minimum cycle bases of
graphs. STACS 2007, pages 512–523, 2007.

9. Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna Paluch. A faster algorithm for minimum cycle
basis of graphs. In International Colloquium on Automata, Languages, and Programming, pages 846–857. Springer, 2004.

10. Kurt Mehlhorn and Dimitrios Michail. Minimum cycle bases: Faster and simpler. ACM Transactions on Algorithms
(TALG), 6(1):8, 2009.

11. Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance oracles and spanners.
In International Colloquium on Automata, Languages, and Programming, pages 261–272. Springer, 2005.

Cardiac Trabeculae Segmentation: an Application of
Computational Topology

Chao Chen1, Dimitris Metaxas2, Yusu Wang3, Pengxiang Wu2, and Changhe Yuan1

1CUNY Queens College and Graduate Center, Flushing, NY, United States,
{chao.chen;changhe.yuan}@qc.cuny.edu

2Rutgers University, New Brunswick, NJ, United States, {dnm;pw241}@rutgers.edu
3Ohio State University, Columbus, OH, United States, yusu@cse.ohio-state.edu

Abstract. We present a topological approach for car-
diac trabeculae segmentation. Trabeculae are fine muscle
columns within human ventricles whose both ends are at-
tached to the wall. Extracting these structures are very
challenging even with state-of-the-art image segmenta-
tion techniques. We observe that these structures form
natural topological handles and thus employ a topologi-
cal approach for it. The contribution includes extracting
salient topological handles based on persistent homology,
and improving the quality of the extracted handles using
optimal persistent cycles. The results have been published
in [6, 9].

1 Problem
The interior of a human cardiac ventricle is filled with fine
structures including the papillary muscles and the trabec-
ulae, i.e., muscle columns of various width whose both
ends are attached to the ventricular wall (Figure 1). Ac-
curately capturing these fine structures is very important
in understanding the functionality of human heart and in
the diagnostic of cardiac diseases. These structures com-
pose 23% of left ventricle (LV) end-diastolic volume in
average and thus is critical in accurately estimating any
volume-based metrics, e.g., ejection fraction (EF) and my-
ocardial mass; these measures are critical in most cardiac
disease diagnostics. A detailed interior surface model will
also be the basis of a high quality ventricular flow simu-
lation [8], which reveals deeper insight into the cardiac

functionality of patients with diseases like hypokinesis and
dyssynchrony.

With modern advanced imaging techniques, e.g., Com-
puted Tomography (CT), we can capture details within
cardiac ventricles (Fig. 1(left)). However, most state-of-
the-art cardiac analysis methods [11, 10], although very
efficient, can not accurately capture these complex struc-
tures. The challenge is twofold. First, large variation of
geometry and intensity of trabeculae makes it difficult to
distinguish them from noise. Second, most segmentation
models, e.g., region competition [12] and Markov random
field [1], employ global priors, which tend to work against
fine structures; the smoothness prior tends to simplify the
model and thus remove any fine structures. The shape prior,
e.g., the active shape model (ASM) [3], tends to use an
average shape and thus remove most fine-scale geometric
details.

2 Method
Extraction of trabeculae using persistent homology.
We exploit novel global information which is more suitable
for the extraction of trabeculae, namely, the topological
prior. A trabeculae is naturally a topological handle; both
of its ends are attached to the wall, while the interme-
diate section is freely mobile. We propose a topological
method that explicitly computes topological handles which
are salient compared with their surrounding regions. The
saliency is measured based on the theory of persistent

1

Figure 1: Left: our input CT image. Middle: interior of LV [5]. Right: our result (a 3D triangle mesh) successfully
captures the trabeculae (viewed from the valve).

homology [4] and can be computed efficiently. Our al-
gorithm first computes persistence homology using the
intensity function of the image. Next, persistent dots on
the diagram with high persistence (based on hand-selected
threshold) are chosen as hypothetical trabeculae structures.
We extract cycles representing these topological structures.
Finally, we filter these structures using a classifier trained
on the geometric features. The remaining structures are
considered the true signal and are included in the final
segmentation. The method can be demonstrated in Fig. 2.

Computing the optimal generators for persistence
dots. To include the structures in our final segmenta-
tion, we need cycles to represent each selected dot in the
persistent diagram. However, simply using cycles fails to
provide an ideal description of each detected handle. The
generated non-optimal descriptions carry noisy geometric
information and will hurt the performance of the classifier
and segmentation module down the pipeline. To address
this issue, we propose a new method that not only detects
salient topological handles, but also finds the ideal descrip-
tion of each handle. Observe that at the end-diastole state,
the heart is maximally relaxed and the trabeculae are max-
imally stretched out. Therefore, we argue that an ideal
description of a topological handle should be geometri-
cally concise; being generally straight rather than wiggling
freely. In fact, there are exponentially many cycles that can
represent a same persistence dot (Figure 3(middle-left)).
We propose to compute the shortest one as it gives us the
most concise description. In real data (Fig. 3(right)), we
observe that computing optimal loops generates straight
trabeculae as desired, while previous topological method

using non-optimal loops generates wiggling trabeculae
(Fig. 3(middle-right)). Our method is closely related to
existing methods for homology localization, but with a
more efficient algorithm based on A* search [7].

For a fixed persistence dot of interest, the computation
of the optimal cycle can be reduced into a homology local-
ization problem, namely, computing the shortest represen-
tative cycle of a given homology class. Existing algorithm
[2] solves the problem by finding the shortest path between
a source and a target within a covering graph. The size of
the covering graph is O(N2g), in which N is the size of
the original simplicial complex (in our case, the number of
voxels in a given 3D image) and g is the Betti number of di-
mension one. Running an exhaustive search on such graph
is prohibitive as the Betti number g can be up to hundreds
in practice. Instead, we propose an A∗ search algorithm
to find the shortest path. The proposed search algorithm
relies on a heuristic function which can be computed in
linear time O(gN). See Figure 4 for the performance
comparison of different optimization methods on synthetic
examples with increasing Betti number.

The overall pipeline of our system is shown in figure
5. We validate our method on a real patient dataset con-
sisting of six cardiac CT images at the end-diastolic state
(512512320 voxels with spacial resolution from 0.3mm to
0.5mm). For each image, we compute the persistence dia-
gram and then compute the optimal cycle for each salient
persistence dot (persistence 80). The running time is
about seven minutes and the memory is about six to ten
GB. This is about the same expense as the topological
method without optimal cycle computation, thanks to the
high efficiency of the A* search strategy.

2

Figure 2: Left: a 2D slice of the intensity function, shaded bridges through the white regions are trabeculae. Middle-left:
existing methods will miss the trabeculae completely. Middle-right: our method recovers missed trabeculae using
persistent homology. Right: including these trabeculae in the final segmentation gives a better quality segmentation.

Figure 3: Left: the persistence diagram of a cardiac image function. Middle-Left: a topological handle and its
representative cycles. The yellow one is the shortest and best describes its geometry. Middle-right: result with
topological prior but without optimal cycles. The reconstructed trabeculae wiggle. Right: our result, using both
topological prior and optimal cycles, generates straight trabeculae.

0 2 4 6 8 10 12
Betti Number

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
em

or
y

(M
B

)

BFS Search
Dijkstra
A* Search

0 2 4 6 8 10 12
Betti Number

0

50

100

150

200

250

300

Ti
m

e
(S

ec
on

ds
)

BFS Search
Dijkstra
A* Search

Figure 4: Performance of different search algorithms on the covering graph. Left: memory consumption; Right: running
time. We compare breadth-first search (BFS), exhaustive search (Dijkstra’s algorithm), and A∗ search.

3

Image Salient	
Handles

Optimal	
Cycles

Proposal	
Handles	
with	

Geometric	
Features

Final	
Segmentation

Selected	
Handles

Figure 5: The pipeline of our method.

Optimal cycles for topology data analysis. We believe
our formulation and computation of optimal cycles of per-
sistent homology classes are also novel and important to
the topology data analysis community. While many al-
gorithms have been proposed to compute persistent ho-
mology, the computation of optimal cycles representing
them have never been tackled. Our methodology will have
broad applications in various persistent-homology-based
data analytics. A general purpose software has been made
available. 1

References
[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approx-

imate energy minimization via graph cuts. IEEE
Transactions on pattern analysis and machine intelli-
gence, 23(11):1222–1239, 2001.

[2] O. Busaryev, S. Cabello, C. Chen, T. K. Dey, and
Y. Wang. Annotating simplices with a homology
basis and its applications. In Scandinavian Work-
shop on Algorithm Theory, pages 189–200. Springer
Berlin Heidelberg, 2012.

[3] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham,
et al. Active shape models-their training and appli-
cation. Computer vision and image understanding,
61(1):38–59, 1995.

[4] H. Edelsbrunner and J. Harer. Computational topol-
ogy: an introduction. Amer Mathematical Society,
2010.

[5] J. Edwin P. Ewing. Gross pathology of idiopathic
cardiomyopathy — Wikipedia, the free encyclopedia,
2016. [Online; accessed 09-December-2016].

1https://github.com/astrolagrange/
Persistent-Homology-Localization-Algorithms

[6] M. Gao, C. Chen, S. Zhang, Z. Qian, D. Metaxas, and
L. Axel. Segmenting the papillary muscles and the
trabeculae from high resolution cardiac ct through
restoration of topological handles. In Information
Processing in Medical Imaging (IPMI), 2013.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal
basis for the heuristic determination of minimum
cost paths. IEEE transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

[8] S. Kulp, M. Gao, S. Zhang, Z. Qian, S. Voros,
D. Metaxas, and L. Axel. Using high resolution car-
diac CT data to model and visualize patient-specific
interactions between trabeculae and blood flow. In
MICCAI, LNCS, pages 468–475. 2011.

[9] P. Wu, C. Chen, Y. Wang, S. Zhang, C. Yuan, Z. Qian,
D. Metaxas, and L. Axel. Optimal topological cycles
and their application in cardiac trabeculae restora-
tion. In Information Processing in Medical Imaging
(IPMI), 2017.

[10] X. Zhen, H. Zhang, A. Islam, M. Bhaduri, I. Chan,
and S. Li. Direct and simultaneous estimation of
cardiac four chamber volumes by multioutput sparse
regression. Medical Image Analysis, 2016.

[11] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering,
and D. Comaniciu. Four-chamber heart modeling and
automatic segmentation for 3D cardiac CT volumes
using marginal space learning and steerable features.
TMI, 27(11):1668 –1681, nov. 2008.

[12] S. Zhu, T. Lee, and A. Yuille. Region competition:
unifying snakes, region growing, energy/Bayes/MDL
for multi-band image segmentation. In ICCV, pages
416 –423, June 1995.

4

https://github.com/astrolagrange/Persistent-Homology-Localization-Algorithms
https://github.com/astrolagrange/Persistent-Homology-Localization-Algorithms

Topological and Geometric Reconstruction of Metric Graphs in Rn

Brittany Terese Fasy1,2, Rafal Komendarczyk3, Sushovan Majhi3, and Carola Wenk4

1School of Computing, Montana State University
2Department of Mathematical Sciences, Montana State University

3Department of Mathematics, Tulane University
4Department of Computer Science, Tulane University

1 Introduction

In the last decade, estimation of topological and geo-
metric features of an unknown underlying space from
a finite sample has received an increasing attention
in the field of computational topology and geome-
try. For example in [9] the authors provide a recon-
struction guarantee for the topology of an embedded
smooth n-manifold from a finite cover by balls of suf-
ficiently small radius around a dense enough finite
sample. Random sampling is also considered in [9],
and estimates for the probability of reconstructing M
from a sample are obtained. These estimates imply
that with increasing sample size, the probability of
reconstructing M tends to 1, thus we can recover M
almost surely as the sample size increases to infinity.
Also, curve and surface reconstruction algorithms are
discussed in [5]

In practice, not all manifolds are smoothly embed-
ded, nor all spaces of interest are topological mani-
folds. In [4], the authors show that the homologies
of a compact set K of Rn can be obtained by con-
sidering only the relevant homological features in the
nerve of the ε radius balls around a sample that is ε
close to K in the Hausdorff metric. An upper bound
for the required ε estimate is expressed in terms of
weak feature size of K (defined below). The result
of [4] works for non-manifolds, but it is limited to
spaces that have a positive weak feature size.

1.1 Background and related work

First, we outline a general approach to estimation
of topology and geometry of Euclidean compact sets
from the union of balls centered around a finite set of
points densely sampled from the underlying space K.
Let S be a sample that satisfies some density con-
straints, and let ε be a radius that depends on K.
Then our goal lies to estimate the topology and geom-
etry of K from Sε. Here, Sε is the union of Euclidean

balls of radius ε around S. Roughly speaking, one can
expect to capture the topological features of K if ε is
chosen proportional to the size of the features of K
and proportional to dH(S,K), the Hausdorff distance
between S an K. If ε is too small or too large, then Sε

may fail to capture the topological features of K.
This suggests the following generic scheme:

1. The underlying spaceK should be a well-behaved
space that would allow us to choose an appro-
priate “feature size” τ , that would restrict the
radius ε not to be too big to capture even the
smallest topological feature of K.

2. Having τ , for any ε < τ one chooses a sample S
that approximates our underlying space K very
closely, i.e., dH(S,K) < ε.

3. One then expects to estimate the topology and
geometry of K from Sε.

In [9] the authors show that for a smooth mani-
fold M embedded in Rn, τn can be chosen to be the
maximal radius of the embedded normal disk bundle

of M . In Theorem 1.1, the authors show that
√

3
5τn

can be chosen to be a threshold for ε to compute the
homologies of M from the union of balls around an
ε
2 -dense sample S.

Theorem 1.1 (Deformation Retraction [9]). Let M
be a manifold with injectivity radius τn. Let x be
any finite collection of points x1, ..., xn ∈ RN such

that it is ε
2 dense in M , where ε <

√
3
5τn. Then,

the union U = ∪iB(xi, ε) deformation retracts onto
M . Consequently, the homology of U equals homology
of M .

We also mention the reconstruction results of [4]
for compact sets K in Rn. If K admits a positive
weak feature size (wfs) and ε < 1

4wfs, then a densely
sampled set of points can give us the right topology
of K.

1

Theorem 1.2. Let K and S be two compact sets
of Rn such that 0 < ε < 1

4wfs(K) and dH(K,S) < ε.
Then,

Hk(K) w Image(i),

where Hk denotes the k-th homology group and i is
the inclusion of Sε in S3ε.

1.2 Summary of results

The current paper is motivated by the following ques-
tions:

1. Theorem 1.1 provides a reconstruction result

when ε <
√

3
5τn. Does the result fail to hold

when
√

3
5τn < ε < τn?

2. The result of [4] works for a compact space K
having a positive wfs. One can easily find very
simple 1-dimensional complexes, e.g. trees, that
have zero wfs. These spaces are often of inter-
est in applications, for instance in road network
reconstruction problems [2].

3. The feature size τ is defined for smooth mani-
folds. How can we define an appropriate feature
size when the space is not a smooth manifold,
e.g., an embedded simplicial complex.

We answer the first question positively in Theo-
rem 2.1, addressing the case of smooth curves in R2.
Theorem 2.1 shows that ε < τn is sufficient for the
reconstruction. The second and third questions are
considered in the setting where K is a metric graph
(later denoted by G) embedded in Rn. In this set-
ting, unlike in the manifold case, it is generally not
possible to choose a threshold τ for the sampling pa-
rameter ε so that Sε has the same homotopy type as
K, even if S is an arbitrary dense sample, since Sε

will contain unnecessary “small” features (noise) that
are not present in K. In order to address this issue,
we propose a different notion of a feature size that
we call geodesic feature size (denoted by τG). This
new definition of feature size allows us to threshold
the sampling parameter ε, in the case of a metric
graph G, and leads to the reconstruction algorithm
shown in Algorithm 1. In particular, we obtain a
simplicial complex Kε in R2, which is ε-close to G
(in the sense of the Hausdorff distance) and which
deformation retracts onto G.

2 Reconstruction Results

2.1 Smooth Curve Reconstruction

Theorem 2.1 (Smooth Curve Reconstruction). Let
M be a smooth curve in R2 without boundary and
let τ be the injectivity radius. Let ε ∈ (0, τ] and let S
be a finite subset of M such that M ⊆ Sε. Then, the
medial axis of Sε is homeomorphic to M .

From the result of [8], which shows that any bounded
open subset of Euclidean space is homotopy equiva-
lent to its medial axis, we conclude that Sε and M
are homotopy equivalent.

Remarks 2.2. A deformation retraction constructed
in [9], collapses Sε along the normal lines M . The col-
lapse is not well defined if the intersection of Sε with a
normal line has more than one connected component.
The condition ε2 < 3

5τ
2
n (for a sample that is ε

2 -dense
in M) guarantees that such intersections do not hap-
pen and the deformation retraction is well-defined.

Sketch of proof. Let S satisfy the assumptions of The-
orem 2.1. For brevity of exposition, we assume thatM
has one path-connected component. Then, we know
that M is, in fact, the image of an injective, smooth
map γ : [0, 1] → R2 with γ(0) = γ(1). Let us denote
the ε-tubular neighborhood of M by Mε.

Without loss of generality, assume that the sample
points of S = {x1, x2, ..., xk} are enumerated with
increasing preimages: γ−1(xi) < γ−1(xi+1) for all
i ∈ {1, 2, . . . k − 1}. Then, these samples introduce
a partition {Mi}ki=1 of the manifold, where Mi =

γ([ti, ti+1]) and Mk = γ([tk, 1]) ∪ γ([0, t1]). Let M̂
be the piecewise linear curve obtained by connecting
xi’s in the respective order and let M̂i = xixi+1.

Since ε < τ , each ball Bε(xi) intersects the tubu-
lar neighborhood Mε at exactly at two points, say
at ui and li; see Figure 1. Let Ni denote the nor-
mal uili passing through xi. Notice that these line
segments uili do not intersect. In fact, these normal
lines partition the tubular neighborhood into k re-
gions, where the i-th region, denoted Mε

i , is the one
containing Mi.

We will show that M̂ is homeomorphic to M . Ob-
serve that M̂ is also the medial axis of Sε. Restricting
our attention to Mε

i , we define a homeomorphism be-

tween M̂i and Mi, and extend it globally so that they
retain continuity since they agree on each Ni by the
pasting lemma.

We define a homeomorphism φi : M̂i → Mi for
each Mε

i in the following way. If we draw a perpen-

dicular L at any point z on M̂i, we show that L inter-
sects Mi at exactly one point y and define φi(x) := y.

2

Figure 1: The medial axis and region Mε
i defined

by consecutive sample points xi and xi+1. The blue
smooth curve is a portion of our manifold M . The
gray region is the tubular neighborhood Mε.

As a consequence, Mi is a continuous graph on M̂i,
hence a homeomorphism.

On the contrary, let’s assume that there exists a
point x on Mi whose normal L intersects Mi at at
least two points z1 and z2. We arrive at a contradic-
tion by showing that there is a point z on Mi such
that the normal Tz at z is parallel to M̂i.

Without loss of generality, we assume that L cuts
the manifold at both z1 and z2. Note that z1 and z2

are points on the manifold and tangents Tz1 and Tz2
are not parallel to L. By continuity of the tangents of
M , we conclude that there exists a point z on Mi such
that Tz is parallel to L. Consequently, the normal Nz
at z is parallel to M̂i.

Figure 2: Contradiction in the proof of Theorem 2.1.

Now, we arrive at a contradiction in either of the
following cases; see Figure 2.1 for an illustration.

Case 1: If ||xi+1−xi|| ≤ ε, then the ε-radius nor-
mal, Nz ∩Mε, at z intersects either Ni or Ni+1. This
contradicts the fact that τ is the injectivity radius.

Case 2: If ||xi+1 − xi|| > ε, then the ε-radius
normal, Nz ∩Mε, at z lies completely in the interior
of Mε

i , which is a contradiction because the boundary
of each ε-radius normal lies on the boundary of the
tubular neighborhood Mε of the manifold.

Therefore, the function φi is a well-defined, in-
vertible, continuous map on a compact domain, hence

a homeomorphism.
Since the φi’s agree on the boundary of each M̂i,

we glue them to obtain a global homeomorphism φ :
M̂ →M . This completes the proof.

2.2 Metric Graph Reconstruction

A weighted graph G = (V,E) is said to be a metric
graph if the edge-weights are all positive. Then, we
can interpret the weights as lengths, and thus each
point e ∈ E has a well-defined distance to the end-
points of E. We define the length of a given continu-
ous path in G to be the total length of all edges and
partial edges in the path. Then, the distance func-
tion dG : G × G → R is defined to be the length of
the shortest path connecting two points; in words, dG
is the geodesic distance in G. Metric graphs were
first introduced in [7], and have recently been stud-
ied in [1, 6].

Below we list our assumptions about the underly-
ing graph G that we aim to reconstruct.

Assumption 2.3. G is an embedded metric graph
with straight line edges. V = {v1, v2, ..., vn} is the
vertex set and E = {e1, e2, ..., em} is the edge set.

Assumption 2.4. The length of the smallest edge
of G is l.

Definition 2.5 (Nerve of a Cover). Suppose U =
{Uα}α∈Λ is a cover of a topological space X. We
take Λ to be the vertex set and form an abstract
simplicial complex K in the following way: if a k-way
intersection Uα1

∩ Uα2
∩ ... ∩ Uαk

is non-empty, then
{α1, α2, ..., αk} ∈ K.
K is then called the nerve of the cover U and is

denoted by N (U).

Lemma 2.6 (Nerve Lemma [3]). Suppose
U = {Uα}α∈Λ is a “good” covering of X, i.e., every
Uα ∈ U is contractible along with all non-empty fi-
nite intersections of elements of U . For such a good
covering X has the same homotopy type as N (U).

We now propose our feature size that we call
Geodesic Feature Size (gfs).

Definition 2.7 (Geodesic Feature Size). Let G be
an embedded metric graph. We define the Geodesic
Feature Size (gfs) τG of G to be the supremum of
all r > 0 having the following property: for any x,
y ∈ G, if ||x − y|| < 2r then dG(x, y) < l, where l is
the length of the smallest edge of G.

To motivate the above definition of gfs, we take
a finite sample S = {x1, x2, . . . , xk} from G. Let
{Bε(x)}x∈S be a cover of G and let K1 = N (S, ε) be

3

its nerve, where Bε(x) is the Euclidean ε-ball centered
at x. An edge e, between two vertices xi and xj
in K1, is called transverse if xi and xj belong to two
different edges of G. If ε < τG and e is transverse,
then the geodesic distance dG(xi, xj) < l and the
geodesic on G is unique. This implies that there is
at most one vertex v of G lying on this geodesic. We
call this geodesic the geodesic shadow of the edge e.
The threshold τG for ε forces any transverse edge e
to be within Bξε(v) around that vertex v, where ξ =
max 1

sin (α/2) , the maximum is taken over all acute

angles α between any pair of edges of G. The idea
behind this definition of gfs comes from our goal to
estimate the diameter of non-trivial 1-cycles of K1

that are not present in G. These noisy one-cycles
in K1 are formed by some of the transverse edges. We
also mention here without a proof that gfs is positive
for the type of metric graphs we are considering. In
fact, we can show that 0 < τG ≤ l/2, where l is the
length of the shortest edge in G.

We now state our main reconstruction theorem
for embedded metric graphs. This theorem proves
the correctness of Algorithm 1 for computing the 1-
dimensional Betti number of G.

Theorem 2.8. Let ε < 1
ξgfs(G) and S be a finite

sample from G such that Sε ⊇ G. Then, H1(G) =
i∗(H1(Sε)), where i is the inclusion map from Sε →
Sξε, H1(·) denotes the first homology group in Z co-
efficients and ξ is as defined above.

Sketch of proof. LetK1 = N (S, ε) andK2 = N (S, ξε).
As ξ > 1, it follows that ε < gfs(G). An application
of the nerve lemma implies that there is an injec-
tive homomorphism φ from H1(G) to H1(K1). In
other words, K1 contains all the non-trivial 1-cycles
of G. Similarly, we can show that there also exists
an injective homomorphism from H1(G) to H1(K2).
We then consider the induced homomorphism i∗ :
H1(K1) → H1(K2), where i : K1 → K2. Finally, we
show that H1(K1) = φ(H1(G))⊕Ker i∗. Therefore,
H1(G) ' i∗(H1(Sε)).

We believe that it should be possible to find a sim-
plicial complex with the same homotopy type as G.
We formulate this stronger result as follows:

Conjecture 2.9. Let ε < 1
2(2+ξ)gfs(G) and S be a

finite sample from G such that each edge of G can be
covered by the union of ε-balls centered at the sam-
ple points on the same edge. Then the Vietoris-Rips
complex V R(S, dε, 2(1 + ξ)ε), computed on S w.r.t.
the geodesic metric on the 1-skeleton of K1 at a scale
of 2(1 + ξ), has the same homotopy type as G.

Data: The finite sample S from the
unknown metric graph G and ε > 0

Result: one dimensional Betti number of G
1 Compute K1 Compute K2

2 for non-trivial 1-cycle η in K1 do
3 if η is trivial in K2 then
4 Collapse η in K1

5 end

6 end
7 Compute remaining non-trivial cycles in K1;

Algorithm 1: Metric graph reconstruction
from a finite sample.

Remarks 2.10. The idea of collapsing the “small” 1-
cycles in Algorithm 1 motivates us to add a full sim-
plex around each vertex whenever a subset of S has
a diameter smaller than the estimated scale. That is
precisely what the Vietoris-Rips complex does on a
finite metric space.

2.3 Discussion

To further extend our result, we also consider a prob-
abilistic reconstruction, as considered by the authors
of [9]. Given a (1−δ) chance of correct reconstruction,
one can find the smallest sample size to guarantee the
given chance of recovery. Also, we can extend our
definition of gfs to metric graphs and obtain similar
reconstruction results. Lastly, we also consider the re-
construction question when samples that are drawn
not exactly from our underlying space, but from a
close vicinity of it.

3 Acknowledgments

The first, third, and fourth authors would like to
acknowledge the generous support of the National
Science Foundation under grants CCF-1618469 and
CCF-1618605.

References
[1] Aanjaneya, M., Chazal, F., Chen, D., Glisse, M.,

Guibas, L., and Morozov, D. Metric graph reconstruc-
tion from noisy data. International Journal of Computa-
tional Geometry & Applications 22, 04 (2012), 305–325.

[2] Ahmed, M., Karagiorgou, S., Pfoser, D., and Wenk,
C. Map Construction Algorithms. Springer, 2015.

[3] Alexandroff, P. Über den allgemeinen dimensionsbegriff
und seine beziehungen zur elementaren geometrischen an-
schauung. Mathematische Annalen 98, 1 (March 1928),
617–635.

4

[4] Chazal, F., and Lieutier, A. Stability and computa-
tion of topological invariants of solids in Rn. Discrete &
Computational Geometry 37, 4 (2007), 601–617.

[5] Dey, T. K. Curve and Surface Reconstruction: Algorithms
with Mathematical Analysis (Cambridge Monographs on
Applied and Computational Mathematics). Cambridge
University Press, New York, NY, USA, 2006.

[6] Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic,
R., Wang, B., Wang, Y., and Ziegelmeier, L. A
complete characterization of the 1-dimensional intrinsic
cech persistence diagrams for metric graphs. Research
in Computational Topology. To appear; arXiv preprint
arXiv:1702.07379.

[7] Kuchment, P. Quantum graphs: I. some basic structures.
Waves in Random Media 14, 1 (2004), S107–128.

[8] Lieutier, A. Any open bounded subset of Rn has the same
homotopy type as its medial axis. Computer-Aided Design
36, 11 (2004), 1029–1046.

[9] Niyogi, P., Smale, S., and Weinberger, S. Finding the
homology of submanifolds with high confidence from ran-
dom samples. Discrete And Computational Geometry 39.
1-3 (2008), 419–441.

5

Randomized Incremental Construction of Net-Trees

Mahmoodreza Jahanseir∗ Donald R. Sheehy†

1 Introduction

Har-Peled & Mendel introduced the net-tree as a
linear-size data structure that efficiently solves a va-
riety of (geo)metric problems such as approximate
nearest neighbor search, well-separated pair decom-
position, spanner construction, and others [6]. Net-
trees are similar to several other data structures that
store points in hierarchies of metric nets (subsets sat-
isfying some packing and covering constraints) ar-
ranged into a tree or DAG. Examples include nav-
igating nets [7], cover trees [1], dynamic hierarchical
spanners [3, 5], and deformable spanners [4]. In Eu-
clidean spaces, the construction times and size de-
pend on the dimension. Similar bounds hold for dou-
bling metrics. There are two known algorithms for
building a net-tree [6] or a closely related structure [3]
in O(n log n) time for doubling metrics. Both are
quite complex and are primarily of theoretical inter-
est. A much simpler algorithm due to Clarkson [2]
can be combined with an algorithm of Har-Peled and
Mendel [6] to run in O(n log ∆) time, where ∆ is the
the spread of the input, i.e. the ratio of the largest
to smallest pairwise distances. Most of the compli-
cations of the theoretical algorithm are to eliminate
this dependence on the spread.

The goal of this paper is to combine the concep-
tual simplicity of Clarkson’s idea with a simple ran-
domized incremental algorithm to achieve the same
O(n log n) running time of the best theoretical algo-
rithms. The main improvement over the related data
structures [3, 6] that can be computed in O(n log n)
time is the increased simplicity.

2 Preliminaries

Doubling Metrics and Packing The input is a
set of n points P in a metric space. The closed metric
ball centered at p with radius r is denoted B(p, r) :=
{q ∈ P | d(p, q) ≤ r}. The doubling constant ρ of P is
the minimum ρ ∈ R such that every ball B(p, r) can
be covered by ρ balls of radius r/2. We assume ρ is
constant. The doubling dimension is defined as lg ρ.
A metric space with a constant doubling dimension
is called a doubling metric. Throughout, we assume
that the input metric is doubling.

The following easy to prove lemma is at the heart
of all the packing arguments in this paper.

∗University of Connecticut reza@engr.uconn.edu
†University of Connecticut don.r.sheehy@gmail.com

Lemma 1 (Packing Lemma). If X ⊆ B(p, r) and
for every two distinct points x, y ∈ X, d(x, y) > r′,
where r > r′, then |X| ≤ ρblg r/r′c+1.

The distance from a point p to a compact set Q is
defined as d(p,Q) := minq∈Q d(p, q). The Hausdorff
distance between two sets P and Q is dH(P,Q) =
max{maxp∈P d(p,Q),maxq∈Q d(q, P)}.
Net-trees A net-tree is a tree in which each level
represents the metric space at some scale. In net-
trees, points are leaves in level −∞ and each point
can be associated with many internal nodes. Each
node is uniquely identified by its associated point and
an integer called its level. The node in level ` asso-
ciated with a point p is denoted p`. We assume that
the root is in level +∞. For a node p` ∈ T , we de-
fine par(p`) and ch(p`) to be the parent and the set
of children of that node, respectively. Let Pp` denote
leaves of the subtree rooted at p`. For each node p`

in a net-tree, the following properties hold: (Packing)
B(p, cpτ

`)
⋂
P ⊆ Pp` , (Covering) Pp` ⊂ B(p, ccτ

`),
(Nesting) if ` > −∞, then p` has a child with the
same associated point p.

The constant τ > 1, called the scale factor, deter-
mines the change in scale between levels. We call cp
and cc the packing constant and the covering con-
stant, respectively, and cc ≥ cp > 0. We represent
all net-trees with the same scale factor, packing con-
stant, and covering constant with NT(τ, cp, cc).

There are two different representations for net-
trees. In the uncompressed representation, every root
to leaf path has a node in every level. The size
complexity of this representation is O(n log ∆), be-
cause there are O(log ∆) explicit levels between −∞
and +∞. The compressed representation is obtained
from the uncompressed one by removing the nodes
that are the only child of their parents and they have
only one child and merging the two adjacent edges as
a long edge. We call such long edges jumps. One can
show that this representation has size of O(n).

A net-tree can be augmented to maintain a list of
nearby nodes called relatives. We define relatives of a
node p` to be Rel(p`) = {xf ∈ T with yg = par(xf) |
f ≤ ` < g, and d(p, x) ≤ crτ

`}. We call cr the
relative constant, and it is a function of the other pa-
rameters of a net-tree. In this paper, we assume that
net-trees are always equipped with relatives. Note
that we defined ch(), par(), and Rel() for a node of
a tree; however, we will abuse notation by applying

these to sets of nodes. In such cases, the result will
be the union of output for each node.

As shown in the following lemma, a compressed
net-tree on a doubling metric has ρO(1)n size.

Lemma 2. For each node p` in T ∈ NT(τ, cp, cc),
|ch(p`)| ≤ ρblg ccτ/cpc+1 and |Rel(p`)| ≤ ρblg cr/cpc+1.

3 Net-tree Variants

In this section, we introduce two natural modifica-
tions that simplify both construction and analysis.

Local Net-trees Here, we define a local version
of net-trees and show that for some appropriate
parameters, a local net-tree is a net-tree. The
“nets” in a net-tree are the subsets N` = {p ∈
P | pm ∈ T for some m ≥ `}. A local net-tree
T ∈ LNT(τ, cp, cc) satisfies the nesting property and
the following invariants: (Local Packing) for dis-
tinct p, q ∈ N`, d(p, q) > cpτ

`, (Local Covering) if
p` = par(qm), then d(p, q) ≤ ccτ

`, (Local Parent) if
p` = par(qm), then d(p, q) = d(p,Nm+1).

The difference between the local net-tree invariants
and the net-tree invariants given previously, is that
there is no requirement that the packing or covering
respect the tree structure. We are interested in lo-
cal packing and covering properties because they are
easier invariants to maintain after each tree update.

The switch to local net-trees comes at the cost of
having slightly different constants. Theorem 3 gives
the precise relationship and we omit its proof due to
space constraints.

Theorem 3. For τ > 2cc
cp

+ 1 and 0 < cp ≤
cc <

cp(τ−1)
2 , if T ∈ LNT(τ, cp, cc), then T ∈

NT(τ,
cp(τ−1)−2cc

2(τ−1) , ccττ−1).

In the rest of this paper, we focus on local net-trees.

Semi-Compressed Net-trees This intermediate
structure between uncompressed and compressed net-
trees has linear size, and produces a neighborhood
graph that is easier to work with because edges are
undirected and stay on the same level of the tree. In
semi-compressed net-trees, we do not remove a node
if it has any relatives other than itself. The following
theorem shows that the semi-compressed representa-
tion has linear size.

Theorem 4. Given n points P in a doubling met-
ric with doubling constant ρ. The size of a semi-
compressed net-tree on P is O(ρO(1)n).

In semi-compressed net-trees, the relative relation
is symmetric. From now on, we use ∼ to denote the
symmetric relative relation between pairs of nodes in
semi-compressed net-trees.

4 Approximate Voronoi Diagrams
from Net-Trees

Given a set of points P and a query q, the nearest
neighbor of q in P is the point p ∈ P such that for
all p′ ∈ P , we have d(q, p) ≤ d(q, p′). Relaxing this
notion, p is a c-approximate nearest neighbor (or c-
ANN) of q if for all p′ ∈ P , we have d(q, p) ≤ cd(q, p′).

The Voronoi diagram of a set of points P is a de-
composition of space into cells, one per point p ∈ P
containing the so-called reverse-nearest neighbors of
P , those points for which p is the nearest neighbor.
The nearest neighbor search problem can be viewed
as point location in a Voronoi diagram. Voronoi di-
agrams have a natural graph structure induced by
the incidence between neighboring cells. To limit the
complexity of this graph, c-approximate Voronoi dia-
grams have been studied for which a point x belongs
to the cell of p implies that p is a c-ANN of x.

It is straightforward to extract an approximate
Voronoi diagram from a net-tree. We start with a
slightly more useful decomposition that associates
points in the metric space M with nodes in the tree
T . Define f : M × T → R× Z as

f(x, p`) :=

{
(d(x, p), `) if d(x, p) ≤ crτ `

(∞,∞) otherwise

The Voronoi cell of a node p` is defined as
Vor(p`) := {x ∈ M | f(x, p`) ≤ f(x, qm) for all qm ∈
T}. The ordering on pairs is lexicographical. For a
point q /∈ P , the center for q in T , denoted C(q), is
the node p` ∈ T such that q ∈ Vor(p`). As we will
show later, finding the center of a point is the basic
point location operation required to insert it into the
net-tree. Figure 1 illustrates the construction.

Figure 1: The net-tree on the left induces the approx-
imate Voronoi diagram on the right.

The union of Voronoi cells p` for all ` gives an ap-
proximate Voronoi cell for the point p. The following
lemma makes this precise.

Lemma 5. Let T be a net-tree with cr > ccτ/(τ − 1)
on a point set P . For any point q, if C(q) = p`, then

p is a (crτ(τ−1)
cr(τ−1)−ccτ)-ANN of q in P .

Proof. Let m = dlogτ d(p, q)/cre. Clearly, we have
m ≤ ` and crτ

m−1 < d(p, q) ≤ crτ
m. Since p ∈ Nm,

d(q,Nm) > crτ
m−1. Furthermore, d(q,Nm−1) >

crτ
m−1, because otherwise C(q) should be a node

other than p` and in level m − 1. Also note that
each node associated to a point in P \ Nm−1 has
an ancestor in a level at least m − 1. Therefore,
dH(Nm−1, P) ≤ ccτ

m/(τ − 1). Now, using the tri-
angle inequality,

d(q, P) ≥ d(q,Nm−1)− dH(Nm−1, P)

> crτ
m−1 − cc

τ − 1
τm

> (
cr(τ − 1)− ccτ
crτ(τ − 1)

)d(p, q).

5 Bottom-up Insertion into a Net-tree

A net-tree can be constructed from the bottom up,
adding one point at a time. There are two steps,
point location (PL) and propagation. In the PL step,
the center of a new point p is computed and p is in-
serted to the tree based on this information. Note
that the newly-inserted node may violate the local
covering property if it is too far from every point in
the level above. In such cases, the bottom-up propa-
gation algorithm restores the local covering property
by repeatedly making new nodes associated to p at
each level up the tree until the covering property is
restored.

We only require the PL step finds the center for
the next point. Once the center is found, p is added
to the tree as follows. Let q` = C(p). If q` is the
top of a jump, then p is inserted as a child of q at
level h = dlogτ d(q, p)/cre if d(p, q) > cpτ

h, or at
level h − 1 otherwise. If q` is not the top of a jump,
then p is inserted at level ` and as a child of the
closest node to p among the nodes in Rel(par(q`)).
When a new node of p is added to the tree, say ph,
we need to find its relatives and children. We find
relatives and children of ph from Rel(par(ph)) and
ch(Rel(ph)), respectively. If the previous parent of a
child of ph has only one child, then we check the semi-
compressed condition for that node to see whether the
node should be removed from tree or not.

Theorem 6. Given a semi-compressed tree T ∈
LNT(τ, cp, cc) with cr ≥ 2ccτ

τ−2 and an uninserted point

q with q` = C(p). The insertion of p into T results a
semi-compressed tree T ′ ∈ LNT(τ, cp, cc + cr

τ).

If the insertion of a new point p violates the lo-
cal covering property, we promote the new node p`

to higher levels of the tree as follows. Let q`+1 =
par(p`). First, we create node p`+1 and make it as
the parent of p`. Then, we make the closest node

among Rel(par(q`+1)) to p as the parent of p`+1. Fi-
nally, we find relatives and children of p`+1 in a way
similar to the insertion method. If node p`+1 still
violates the covering property, we use the same pro-
cedure to promote it to higher levels. Here, we use
iteration i to indicate promotion of point p to level
`+ i.

Lemma 7. Given cr ≥ ccτ/(τ − 2), in
the i-th iteration of the bottom-up propagation,
d(p`+i,par(p`+i)) ≤ (cc + cr/τ)τ `+i+1 ≤ crτ

`+i+1

and p`+i ∼ q`+i.

Theorem 8. Given a semi-compressed tree T ∈
LNT(τ, cp, cc + cr/τ) with cr ≥ 2ccτ/(τ − 2) and
only one node p` having ccτ

`+1 < d(p`,par(p`)) ≤
(cc + cr/τ)τ `+1. The bottom-up propagation method
results a semi-compressed tree T ′ ∈ LNT(τ, cp, cc).

Theorem 9. Not counting the PL step, the bottom-
up construction runs in O(ρO(1)n) time.

Proof. In the promotion phase, Lemma 7 implies that
every node of p`+i has at least one relative besides
itself, namely q`+i. So, we can make q`+i responsible
to pay the cost of iteration i for p. Note that a node
q`+i will not be removed by any other points because
p`+i ∼ q`+i satisfies the semi-compressed condition.
Therefore, to pay the cost of all promotions for all n
points, each node in the output requires ρO(1) charge
for each of its relatives. By Theorem 8, the output is
semi-compressed and Theorem 4 implies that it has
O(ρO(1)n) size. Thus, using Lemma 2, the total cost
of all promotions for all n points is O(ρO(1)n).

6 Randomized Incremental Construc-
tion

In Section 5, we observed that the efficiency of the
bottom-up construction algorithm depends on the PL
step. In this section, we show how to eagerly com-
pute the centers of all uninserted points. The centers
are updated each time either a new node is added
or an existing node is deleted by dong a local search
among parents, children, and relatives of the node.
We show that the following invariant is satisfied after
each insertion or deletion.

Invariant. The centers of all uninserted points are
correctly maintained.

6.1 The Point Location Algorithm

We describe a simple eager point location algorithm
referred to as the PL algorithm from here on. The
idea is the precompute the center for each uninserted
point. We also store the inverse information by also
keeping a list of uninserted points for each node in

the tree. The cluster of a node p`, denoted S(p`, T),
is the list of uninserted points in Vor(p`). We divide
each cluster into two sub-clusters Sin(p`, T) = {q ∈
S(p`, T) | d(p, q) ≤ cpτ `−1/2} and Sout(p`, T) = {q ∈
S(p`, T) | cpτ `−1/2 < d(p, q) ≤ crτ `}.

When a node of p checks an uninserted point q
to see if q belongs to its cluster, we say p touches
q. A touch only happens if a node is either added
to or deleted from the tree. Note that a deletion
occurs if a node does not satisfy the semi-compressed
condition. In other words, we delete a node if it has
only one child, one relative (itself) and it is the only
child of its parent. When a node p` is removed, the
PL algorithm moves all uninserted points in its inner
cluster to the inner cluster of its parent. Then, it
checks the uninserted points in the outer cluster of
p` to see if a point belongs to the inner or the outer
cluster of par(p`). Therefore, p touches all uninserted
points in the outer cluster of p`.

In case of insertion, the PL algorithm only requires
to check the set of nearby uninserted points and up-
date their centers, if necessary. There are two differ-
ent ways that a new node is created, either it splits a
jump or it is inserted as a child of an existing node in
the tree. The following cases specify the set of nearby
uninserted points. Let T and T ′ be the trees before
and after insertion or deletion of a node, respectively.

(a) A jump from ph to pg is split at level `, where
g < ` < h: S(p`, T ′) ⊆ S(ph, T).

(b) p` is inserted as a child of s`+1: S(p`, T ′) ⊆
{Sout(xh, T) | xh ∈ Rel(s`+1) ∪ ch(Rel(s`+1)) ∪
ch(Rel(p`))}.

Lemma 10. The PL algorithm correctly maintains
the invariant after insertion or deletion of a node.

6.2 Analysis of the PL Algorithm

To analyze the point location algorithm, we should
count the total number of touches, because each
touch corresponds to a distance computation. We
classify the touches into three groups of basic touches,
split touches, and merge touches. If pi is touched by
a new point pj , then we say a basic touch has hap-
pened. If pi is touched by the point of C(pi) after the
insertion of pj , then a split touch has happened. In-
tuitively, a split touch in the tree occurs when C(pi)
is the top of a jump and insertion of pj results that
jump to be split at a lower level. Similarly, If pi is
touched by the point of C(pi) after the deletion of
C(pi) triggered by the insertion of pj , then a merge
touch has happened. It is not hard to see that the
number of jump touches is bounded by the number
of split touches.

We use a backwards analysis to bound the expected
number of basic and split touches. The standard ap-
proach of using backwards analysis for randomized in-
cremental constructions will not work directly for the
tree construction, because the structure of the tree is
highly dependent on the order the points were added.
Instead, we define random events that can happen for
each point pi of a permutation 〈p1, . . . , pn〉 at time j,
where time j indicates the moment after insertion of
the first j points into the tree and j < i.

To bound the expected number of split touches,
we use the notion of bunches near a point pi, which
are nothing more than far enough disjoint groups of
points around pi. Formally, for j < i, B ⊆ Pj is a
bunch near pi, if there exists a center x ∈ B such
that: B = B(x, αd(pi, x)) ∩ Pj ,

[
B(x, βd(pi, x)) \

B(x, αd(pi, x))
]
∩Pj = ∅, d(pi, x) ≤ 2τ(τ−1)

2τ−3 d(pi, Pj),
where 0 < α ≤ 0.5 and β ≥ 2α. It is not hard to
show that there are ρO(1) number of bunches near
each point pi, for some constants α and β.

We define the events as follows. A basic event ψi,j
happens if pj is the unique nearest neighbor of pi
among the first j points. It is not hard to see that
the expected number of basic events for each point
pi is O(log n). A split event φi,j occurs if there is a
bunch B near pi, for some constant values of α and β,
and pj is either the unique farthest point in B or the
unique closest point not in B to the first point in B.
The following lemma bounds the expected number of
basic and split events.

Lemma 11. The expected number of basic and
split events for a point pi in a permutation is
O(ρO(1) log n).

The expected number of basic and split touches can
be counted by the number of basic and split events.
We eliminate the proof due to lack of space.

Lemma 12. The expected number of basic and
split touches for a point pi in a permutation is
O(ρO(1) log n).

Therefore, the PL algorithm runs in
O(ρO(1)n log n) time in expectation for all insertions.

References

[1] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees
for nearest neighbor. In Proceedings of the 23rd Inter-
national Conference on Machine Learning, pages 97–104,
2006.

[2] K. L. Clarkson. Nearest neighbor searching in metric
spaces: Experimental results for sb(s). Avalable from
http://kenclarkson.org/Msb/white_paper.pdf, 2002.

[3] R. Cole and L.-A. Gottlieb. Searching dynamic point sets
in spaces with bounded doubling dimension. In Proceedings
of the Thirty-eighth Annual ACM Symposium on Theory
of Computing, pages 574–583, 2006.

[4] J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners
and applications. In Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG ’04, pages
190–199, New York, NY, USA, 2004. ACM.

[5] L.-A. Gottlieb and L. Roditty. An optimal dynamic span-
ner for doubling metric spaces. In Proceedings of the 16th
annual European symposium on Algorithms, pages 468–
489, 2008.

[6] S. Har-Peled and M. Mendel. Fast construction of nets
in low dimensional metrics, and their applications. SIAM
Journal on Computing, 35(5):1148–1184, 2006.

[7] R. Krauthgamer and J. R. Lee. Navigating nets: Sim-
ple algorithms for proximity search. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 798–807, 2004.

On Computing a Timescale Invariant Bottleneck Distance

Nicholas J. Cavanna, Oliver Kisielius, and Donald R. Sheehy
University of Connecticut

Introduction

Persistent homology is the computation of the topological changes in geometric data over a sequence
of scales or times. This is a central tool in the field of topological data analysis. It proves useful
when examining data that is noisy or parameter-selection dependent, e.g. data resulting from
image processing, biology, or materials sciences [2]. The persistent homology of a growing sequence
of spaces can be represented both algebraically and geometrically. We will focus on its geometric
representation called a persistence diagram.

A persistence diagram is a multi-set in R2 constructed from the persistent topological features,
where each topological feature is mapped to a point such that its x and y-coordinates are the
feature’s birth and death time respectively. Given sufficient conditions the persistent homology
and persistence diagram can be computed using standard matrix reduction algorithms. Refer to [3]
for more details on persistent homology and its computation.

Persistence diagrams are traditionally compared by their bottleneck distance which is equivalent
to the ∞-Wasserstein distance, and is closely related to the Earth-mover’s distance between sets.
Unfortunately, when persistence diagrams are the result of independent data, a choice of at what
time parameter the two shall be compared has been made. This can result in arbitrarily large
bottleneck distances for similar data. Our goal is to find the optimal translation and the minimal
bottleneck distance resulting from linearly shifting the scale parameters and thus eliminating this
decision. This can be viewed as a restriction of the problem of finding the matching/bijection
between two multi-sets in the plane over all transformations that minimizes the bottleneck cost, a
problem motivated by pattern matching and recognition.

Our approach borrows heavily from Efrat et al.’s [4] work on geometric matching under transla-
tions in Rn, and the preceding work by Alt et al. [1], where the authors consider geometric matchings
under all rigid transformations in Rn. We use the constructions outlined in Kerber and Morozov’s
work on computing bottleneck distance [5] in which the authors equate computing the bottleneck
distance between persistence diagrams and finding a perfect matching with minimal bottleneck cost
on a complete bipartite graph.

Efrat et al. proved that one can decide if the minimal bottleneck cost of two multi-sets in the
plane is less than some parameter r in O(n1.5 log n) time and that the minimal cost itself can be
found in the same time. They also prove that one can compute the minimal bottleneck cost in
O(n5 log2 n) time, using an oracle that decides if a translation exists that makes the bottleneck cost
less than some r in O(n5 log n) time. They improve upon Alt et al.’s computation and decision
oracle complexities of O(n6 log n) and O(n6) respectively.

In this work, we prove that the minimum bottleneck distance over all diagonal translations
is a pseudo-metric that can be computed in O(n3 log2 n) time with a decision oracle running in
O(n3 log n) time.

Background

Given a topological space X, e.g. a simplicial complex or a metric space, consider a real-valued
function f : X → R. Persistent homology computes the topological changes and thus the persis-
tent topological features of the sub-level sets, Xα := f−1(−∞, α], as α extends to infinity. The
growing sequence of spaces (Xα)α is called a filtration. More specifically, it computes the persistent

homology groups which are the images of the maps induced by inclusion hα,β∗ : H∗(X
α)→ H∗(X

β).
An example of a function on a simplicial complex is the function induced by assigning values

to each vertex, so that each simplex in X has a real-value associated to it that is the maximum
over all values of its vertices. Another standard example is if one has a finite point sample P of a
metric space X, consider the distance-to-set function fP (x) = minp∈P d(x, p). The sub-level sets
f−1P (−∞, α] are the points x ∈ X that are within α of some point p ∈ P .

Each of the independent features that appear have a scale at which they are born, α, and at
which they die, β, i.e. they are homologically trivial. These persistent features can be represented
by a point (α, β) in the plane, so the vertical height from the diagonal to a point in the persistence
diagram represents its lifespan. These points along with each point (α, α) on the diagonal counted
with infinite multiplicity constitute the persistent diagram D(f), where f is the defining function.

Two persistence diagrams A and B are traditionally compared via the bottleneck distance. We
call a finite persistence diagram one in which there are only finitely many off-diagonal points. The
bottleneck distance between A and B is

dB(A,B) := min
φ

max
a∈A
‖a− φ(a)‖∞,

where the minimum is taken over all bijections φ : A→ B.
A complete bipartite graph is an undirected graph G = (UtV,U×V), i.e. there are two disjoint

vertex sets U and V and there is an edge between vertices u and v if and only if u ∈ U and v ∈ V .
We can construct a complete weighted bipartite graph from two persistence diagrams A and B as
follows. See [5] and [3] for more details. Denote A0 and B0 as the off-diagonal points of A and B
respectively and A′0 and B′0 as the orthogonal projection of the points in A0 and B0 respectively
onto the diagonal. Define the two disjoint vertex sets as A0 ∪ B′0 and B0 ∪ A′0. The weight of an
edge between two vertices u ∈ A0 ∪ B′0 and v ∈ B0 ∪ A′0 is ‖u − v‖∞ if u ∈ A0 or v ∈ B0, and 0
otherwise. This implies that all edges between diagonal elements have distance 0. A matching M of
a bipartite graph is a subset M ⊆ U×V such that for each vertex w ∈ U tV , w ∈ e for at most one
e ∈M . A perfect matching is a matching where the edges correspond to a bijection between U and
V . The bottleneck cost of a complete bipartite graph is the minimum over all perfect matchings of
the maximum over all of its edge weights.

The following lemma, due to Edelsbrunner and Harer, is called the Reduction Lemma, which
implies one can look at matchings in a bipartite graph to compute the bottleneck distance between
persistence diagrams, This implies that bottleneck distance between persistence diagrams can be
computed in O(n1.5 log n) time by the algorithm in Efrat et al.

Lemma 1. Given finite persistence diagrams A and B, the bottleneck distance dB(A,B) is equal
to the bottleneck cost of the complete bipartite graph associated with A and B.

Results

Given a finite persistence diagram A, define the t-translation of A as At := {(ax + t, ay + t) |
(ax, ay) ∈ A} for t ∈ R. Denote a + t := a + t~1. Note that this morphism takes persistence

diagrams to persistence diagrams, as it preserves the infinite diagonal. Define the function dmin
B :=

mint∈R dB(At, B).

Lemma 2. dmin
B is a pseudo-metric on the space of finite persistence diagrams.

Computing this pseudo-metric efficiently is our goal, as it represents the similarity of the two
persistence diagrams regardless of the time parameter.

Recall that we denote the multiset of off-diagonal points of a persistence diagram A by A0 and
the multi-set of orthogonal projections of the points in A0 by A′0. We will now introduce a decision
oracle to narrow down the potential values of dmin

B .

Lemma 3. Given finite persistence diagrams A and B, where |A0| = |B0| = n and a distance
parameter r > 0, one can decide if there exists a translation t ∈ R such that dB(At, B) ≤ r in
O(n3 log n) time.

Proof. The oracle will decide the equivalent problem of whether there exists a translation t ∈ R such
that there is a perfect matching in the graph Gt[r] – the complete bipartite graph corresponding
to the diagrams At and B, restricted to edge lengths ≤ r.

A lemma due to Edelsbrunner and Harer [3] states that there exists an optimal matching
where no off-diagonal points are matched to points on the diagonal that are not their orthogonal
projection. We can ignore these edges in the perfect matching oracle algorithm in order to translate
an off-diagonal point a ∈ A0 while not adding new edges between the image of another off-diagonal
point and a′ ∈ A′0. We will simply store the distance from a to the diagonal and allow the edge
between a+ t and its new orthogonal projection a0 + t to be added to a matching.

For each pair of points a ∈ A0, b ∈ B0, we compute all the translations of A that result in a
being r away from b. These are the critical translations t where (a+ t, b) is an edge in Gt[r]. The
images of a under these translations are the intersections of the line of slope 1 through a and the
metric ball ball∞(b, r). There are at most two critical translations per pair, one “lower translation”
and one “upper” translation, each computable in constant time. For each such translation, if one
considers the translation ε less or more respectively, there is no longer an edge between b and the
image of a in Gt[r], so these are exactly the translations under which the graph changes.

Now consider all the translations corresponding to each pair, O(n2) in total, sort them by their
values, measured by the length of the vectors corresponding to the translations, in O(n2 log n).
Between each of these sorted translations, there is one edge lost or gained in the bipartite graph.
Initialize with the least translation t0 and decide whether there is a perfect matching in Gt0 [r]
in O(n1.5 log n) time. If there is, then there is a translation such that dB(At, B) ≤ r, namely t0.
Otherwise, for i ≥ 1, consider the matching resulting from ti, and compute whether there is an
augmenting path in Gti+1 [r] in O(n log n) time, a result of Efrat et al. If the resulting matching
is a perfect matching, then the oracle outputs yes. If none of the critical translations result in a
perfect matching, then the oracle outputs no. This procedure takes O(n3 log n) time.

Theorem 1. Given two finite persistence diagrams A and B, where |A0| = |B0| = n, dmin
B (A,B)

can be computed in O(n3 log2 n) time.

Proof. We first compute a multi-set of critical distances that are the minimal distances between
each pair of points a ∈ A0, b ∈ B0 achieved by some translation t ∈ R. These correspond to the
minimal r such that there exists a translation t where (a+ t, b) is an edge of Gt[r].

Figure 1: A point a and its optimal translation with respect to b, a+ t∗a,b, achieving distance ra,b.
Any decrease in this distance would result in the edge being removed from the bipartite graph.

For each pair a, b, we can compute the distance ra,b in constant time as it is the distance from b
to the intersection of the line orthogonal to the diagonal and the line of slope 1 through a. For each
pair there is one critical shift corresponding to the distance from a to its translation, so there are
n2 in total. In addition the distances from each point to its orthogonal projection to the diagonal
can be bottleneck edges, yielding n2 + 2n in total. We can sort these in O(n2 log n) time. Then for
each distance ra,b, we can use the oracle from Lemma 3 to decide whether there exists a translation
t such that d(Bt, A) ≤ ra,b in O(n3 log n) time. As the persistence diagrams are finite, there exists
some pair of points a, b such that dmin

B (A,B) = ‖(a+ t∗a,b)− b‖∞ for some critical translation t∗a,b.
By performing binary search on the sorted multi-set {ra,b}a∈A0,b∈B0 , and looking at lower dis-

tances or higher distances depending on a yes or no answer to the oracle, we can compute the min-
imal distance r∗ such that there exists a translation t∗ such that dB(At∗ , B) ≤ r∗ in O(n3 log2 n)
time. This implies that dmin

B (A,B) = r∗ as it must be achieved by some pair. This procedure also
computes one of the optimal translations, as it is one of the translations t∗a,b where r∗ = ra,b.

References

[1] Helmut Alt, Kurt Mehlhorn, Hubert Wagener, and Emo Welzl. Congruence, similarity and
symmetries of geometric objects. Discrete and Computational Geometry, 3:237–256, 1988.

[2] Herbert Edelsbrunner, , and Dmitriy Morozov. Persistent homology: theory and practice. Tech.
report, Ernest Orlando Lawrence Berkley National Laboratory, Berkely, CA (US), 2012.

[3] Herbert Edelsbrunner and John Harer. Computational Topology. An Introduction. American
Mathematical Society, 2010.

[4] Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and related
problems. Algorithmica, 31(1):1–28, 2001.

[5] Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps to compare persistence
diagrams. J. Exp. Algorithmics, 22(1):1.4:1–1.4:20, September 2017.

Improved Results for MINIMUM CONSTRAINT REMOVAL
(Extended Abstract)

Eduard Eiben∗ and Jonathan Gemmell† and Iyad Kanj† and Andrew Youngdahl†

A fundamental problem in robot motion planning is to
move a robot from a starting position to a final position
while avoiding collision with a given set of obstacles. This
problem is generally referred to as the piano-mover’s prob-
lem. If a collision-free path does not exist, which is in gen-
eral computationally-feasible to decide, one naturally seeks
a path that collides with the minimum number of obstacles.

We study a variant of the piano mover’s problem, referred
to as the MINIMUM CONSTRAINT REMOVAL problem. We
are given a set I of polygonal obstacles in the plane and
two designated points s and t. We need to compute a min-
imum subset of obstacles in I whose removal results in an
obstacle-free path between s and t. In addition to its applica-
tions in robotics, the problem had been studied extensively,
motivated by applications in wireless computing, under the
name BARRIER COVERAGE or BARRIER RESILIENCE. In
such applications, we are given a range field covered by sen-
sors (usually assumed to be simple geometric shapes), and
the goal is to compute a minimum set of sensors that need
to fail before an entity can move undetected between two
given sites (Alt et al. 2011; Tseng and Kirkpatrick 2012;
Chan and Kirkpatrick 2014; Kumar, Lai, and Arora 2005;
Yang 2012).

The MINIMUM CONSTRAINT REMOVAL problem was
also formulated as a graph problem (Chan and Kirkpatrick
2014; Hauser 2014). For an instance I of the problem, the
auxiliary graph of I , GI , is defined. Consider the plane sub-
division whose regions are determined by the intersections
of the obstacles in I . For each region1, associate a vertex
in GI representing the set of obstacles intersecting at that
region if any, and an empty set otherwise; add an edge be-
tween two vertices in GI iff the corresponding regions share
an edge. See Figure 1. Clearly, GI is a plane graph since it
is the dual graph of a plane subdivision. The problem then
reduces to computing a path in GI between the vertices cor-
responding to s and t, such that the total number of obstacles
represented by the vertices on this path is minimum.

∗Vienna University of Technology, Vienna, Austria,
eiben@ac.tuwien.ac.at
†School of Computing, DePaul University, Chicago, USA,

{jgemmell,ikanj,ayoungda}@cdm.depaul.edu
1We do not require the obstacles to contain their interiors. If the

intersection of two obstacles is not a 2-D region, we can thicken
the borders of the obstacles without changing the sets of obstacles
they intersect, so that their intersection becomes a 2-D region.

t

s

Figure 1: Illustration of the regions determined by a set of
obstacles (placed within a bounding box) and its auxiliary
graph, with a highlighted optimal path crossing one obstacle.

MINIMUM CONSTRAINT REMOVAL was studied by
many researchers in Wireless Computing, AI, and Com-
putational Geometry (Alt et al. 2011; Tseng and Kirk-
patrick 2012; Chan and Kirkpatrick 2014; Kumar, Lai,
and Arora 2005; Yang 2012; Erickson and LaValle 2013;
Hauser 2014). Alt et al. (Alt et al. 2011) showed that the
problem is NP-hard when the obstacles are line segments
such that no three intersect at the same point. Independently,
Yang (Yang 2012), in his Ph.D. dissertation, showed the NP-
hardness of the problem when the obstacles are line seg-
ments. This result was refined independently by Tseng and
Kirkpatrick (Tseng and Kirkpatrick 2012) who showed that
the problem is NP-hard even when the obstacles are line
segments of unit length. The more general graph problem
was considered by several researchers, including (Chan and
Kirkpatrick 2014; Hauser 2014), and it is well known to be
NP-hard (for instance, see (Hauser 2014) for a proof).

In this paper, we continue the study of the MINIMUM
CONSTRAINT REMOVAL problem. We first consider the
complexity of the problem, and show the following:

(1) MINIMUM CONSTRAINT REMOVAL is NP-hard even if
all the obstacles are axes-parallel rectangles.

(2) MINIMUM CONSTRAINT REMOVAL is NP-hard even if
all the obstacles are line segments such that no three in-
tersect at the same point.
The results in (1) and (2) refine and improve the earlier

work on the problem. More specifically, the result in (1)

answers an open question posed in (Erickson and LaValle
2013). Even though the result in (2) was obtained earlier
by Alt et al. (Alt et al. 2011), which was also proved by
Yang (Yang 2012) and Chan and Kirkpatrick (Tseng and
Kirkpatrick 2012) but without the assumption that no three
segments intersect at a point, the NP-hardness reduction we
use to prove (2) is more refined than the reductions used in
the other papers. In particular, the reduction we use to prove
(2) implies the ETH results in (3) and (5) below, and those
cannot follow from the reductions in the earlier results. As
a byproduct of the reductions used to derive the above NP-
hardness results, we obtain the following:

(3) Unless the Exponential-Time Hypothesis (ETH) fails,
MINIMUM CONSTRAINT REMOVAL cannot be solved in
subexponential time 2o(n), where n is the number of ob-
stacles in the instance.
The result in (3) shows that significant improvement on

the 2O(n)-time brute-force algorithm is unlikely, as ETH
is a standard hypothesis for proving lower bounds (Loksh-
tanov, Marx, and Saurabh 2011), which states that the sat-
isfiability of k-CNF formulas (for k ≥ 3) is not solvable in
subexponential-time 2o(n), where n is the number of vari-
ables in the formula.

We then design algorithms for the NP-hard restriction
of CONSTRAINT REMOVAL to instances in which no more
than a constant number b of obstacles overlap at the same
point, denoted b-OVERLAP MINIMUM CONSTRAINT RE-
MOVAL, for any integer-constant b ≥ 2. We show that:

(4) There is a subexponential-time algorithm for b-OVERLAP
MINIMUM CONSTRAINT REMOVAL that runs in time
2O(
√
N), where N is the number of the vertices in the aux-

iliary graph associated with the instance; and
(5) unless ETH fails, b-OVERLAP MINIMUM CONSTRAINT

REMOVAL cannot be solved in time 2o(
√
N).

The result in (4) gives a subexponential-time algo-
rithm for b-OVERLAP MINIMUM CONSTRAINT REMOVAL
w.r.t. the number of obstacles n, for instances in which the
number of regions N , equivalently vertices in GI , is o(n2).

Hardness Results
Consider the decision version of MINIMUM CONSTRAINT
REMOVAL, denoted CONSTRAINT REMOVAL, in which we
are given a set I of obstacles, two points s and t, and k ∈ N,
and we need to decide if there is an s-t path that inter-
sects at most k obstacles in I . We first show that CON-
STRAINT REMOVAL remains NP-hard even when the ob-
stacles are axes-parallel rectangles. We do so via a reduc-
tion from the NP-hard problem MAXIMUM NEGATIVE 2-
SATISFIABILITY that yields instances of CONSTRAINT RE-
MOVAL in which the obstacles are axes-parallel rectangles.
The reduction works for both cases when the interior of the
rectangle is considered as part of the obstacle and when it
is not. Second, we show how our reduction can be modified
to yield a refined reduction in which the obstacles are line
segments such that no three of them intersect at the same
point.

To obtain the hardness results, we reduce from an
NP-hard restriction of the MAXIMUM NEGATIVE 2-

F = x1 ∧ x2 ∧ x3 ∧ x4 ∧ (x̄1 ∨ x̄4) ∧ (x̄2 ∨ x̄3) ∧ (x̄3 ∨ x̄1)

B1

B2

B3

B4

B′
4

B′
3

B′
2

B′
1

Figure 2: Illustration for the proof of Theorem 1 for
F = x1 ∧x2 ∧x3 ∧x4 ∧ (x̄1 ∨ x̄4)∧ (x̄2 ∨ x̄3)∧ (x̄3 ∨ x̄1).

SATISFIABILITY problem. An instance of MAXIMUM NEG-
ATIVE 2-SATISFIABILITY is given as a pair (F,m′), where
m′ ∈ N and F is a Boolean formula on n variables and m
clauses. The question is to decide whether F has a satisfying
assignment that satisfies at least m′ clauses. The NP-hard re-
striction of MAXIMUM NEGATIVE 2-SATISFIABILITY we
use, denoted R-MN2Sat, satisfies the following properties:
(1) Each clause in the formula F is either a unit clause con-
taining a positive literal {xi}, or a binary clause containing
two negative literals; (2) the unit clauses in F are precisely
the clauses {xi}, for each variable xi in F ; and (3) the num-
ber of both positive and negative occurrences of each vari-
able is at most 4. A consequence of (3) is that the num-
ber of clauses m in F is at most n + 3n/2 ≤ 3n. It can
be easily shown that R-MN2Sat is NP-hard via a straight-
forward reduction from INDEPENDENT SET on graphs of
maximum degree at most 3. It follows from (Johnson and
Szegedy 1999), that unless ETH fails, INDEPENDENT SET
on graphs of maximum degree at most 3 is not solvable in
time 2o(n), where n is the number of vertices in the graph.
It follows from the reduction from INDEPENDENT SET to
R-MN2Sat that, unless ETH fails, R-MN2SAT is not solv-
able in time 2o(n). This result is used to derive lower-bound
results on the subexponential-time complexity of MINIMUM
CONSTRAINT REMOVAL.

Axes-parallel Rectangles: Let RECTANGLE-
CONSTRAINT REMOVAL be the restriction of CON-
STRAINT REMOVAL to instances in which each obstacle is
an axes-parallel rectangle.

Theorem 1. RECTANGLE-CONSTRAINT REMOVAL is NP-
hard.

Proof. (Sketch) We give a polynomial-time reduction
from R-MN2Sat to the decision version of RECTANGLE-
CONSTRAINT REMOVAL. See Figure 2 for illustration.

Let (F,m′) be an instance of R-MN2Sat, where F has n
variables x1, . . . , xn and m clauses C1, . . . , Cm. Let m1 =
n be the number of unit clauses in F , and m2 = m−n be the

number of remaining (binary) clauses. To construct the in-
stance (I, k) of RECTANGLE-CONSTRAINT REMOVAL, we
start by enforcing a schema that any valid path must be con-
fined within. We first outline a rectilinear region R, whose
boundary is shown in black in Figure 2. This region consists
of an open rectangular region containing the starting point s
(green); a rectilinear corridor C that runs vertically and then
makes three left turns; a set of rectangular-like “boxes” inter-
secting C in their middle, each enclosing a black rectangle;
and an open rectangular region containing the destination
point t (burgundy).

For each variable xi, we associate two boxes, Bi and B′i,
of the same shape and size, laid out horizontally and sym-
metrically on opposite ends of the vertical part of corridor C
(before C turns). We call the Bi’s and B′i’s variable-boxes.
The Bi’s appear on the top and run in decreasing horizontal
dimension, and the B′i’s appear on the bottom and run in in-
creasing horizontal dimension. The order in which the Bi’s
appear is the opposite order of the B′i’s. Each Bi (resp. B′i)
contains a black rectangle inside, subdividing it into an up-
per and a lower part, and creating a left passage and a right
passage from its upper to its lower part. For each binary
clause Cj , we associate a box BCj that we call a clause-
box; the clause-boxes are placed towards the end of C, just
before the destination point t, and are laid out vertically.

To place the obstacles of I in R, we start by fixing two
integer-constants: c1 > 4 and c2 > c1 ·n+ 3m. To simplify,
we assign integer weights to certain obstacles to indicate an
overlaying of the weight-many distinct identical-shape ob-
stacles. Intuitively, the obstacles will be placed so that the
portion of the path traversing the variable-boxes corresponds
to an assignment of the variables in F , where traversing the
left (resp. right) side of box Bi corresponds to assigning xi

to TRUE (resp. FALSE); the other portion of the path, travers-
ing the clause-boxes, can be done in such a way that if a lit-
eral has been assigned TRUE by the first portion of the path,
the clauses containing the literal can be traversed at no ad-
ditional cost. To confine the path to the interior of regionR,
we form the boundary of R by placing axes-parallel rectan-
gular obstacles (shown in the same black color as the bound-
ary), each of weight c2, along this boundary so that they only
(pairwise) overlap (in small squares) to form the corners of
R; this ensures that the cost of crossing the boundary of
R exceeds the required budget k, which will be specified
shortly. Similarly, each black rectangle outlined inside a box
inR, whose role is to block the direct passage of a path from
one box to the next without setting the truth assignment of
the variable associated with the first box, is formed using an
axes-parallel rectangular obstacle of weight c2; this way, the
desired path cannot intersect any of these internal rectangles.
We refer to the obstacles of weight c2 as heavy obstacles.

For each binary clause Cj in F , we arbitrarily order the
two (negative) literals in Cj as first and second. For each
literal xi and clause Cj such that xi is the first (resp. sec-
ond) literal in Cj , we create an axes-parallel rectangular ob-
stacle of weight 1 (orange) that intersects the right side of
box Bi (resp. B′i) including the internal rectangle, without
intersecting any other variable-boxes, and intersects the top
(resp. bottom) of the clause-box corresponding to Cj (in-

cluding the internal rectangle) without intersecting any other
clause-boxes (see Figure 2). These obstacles ensure that a
path that sets a literal xi to TRUE can traverse Cj at no
additional cost. For each positive clause {xi}, we place an
axes-parallel rectangular obstacle of weight 1 (yellow) in the
right side of Bi so that any path setting xi to false intersects
this obstacle. We call all these (orange plus yellow) obsta-
cles incidency obstacles. For each variable xi, we add two
axes-parallel rectangular obstacles (purple), each of weight
c1. The first obstacle intersects the left sides of Bi and B′i
without intersecting any other variable-boxes, and the sec-
ond intersects the right sides of these boxes; these obstacles,
referred to as consistency obstacles, are used to ensure that
we do not set both a variable and its negation to TRUE.

Finally, for each xi, let pi be the number of occurrences of
xi in F ; we place pi many weight-1 axes-parallel rectangular
obstacles (blue), referred to as balancing obstacles, in the
left side of Bi. Let k = c1 · n + 2m2 + m1 − (m′ −m2),
and note that k < c2. This completes the construction of the
instance (I, k) of RECTANGLE-CONSTRAINT REMOVAL.

It can be shown that (F,m′) is a yes-instance of R-
MN2SAT iff (I, k) is a yes-instance of RECTANGLE-
CONSTRAINT REMOVAL.

Straight-line Segments: For an instance I of CON-
STRAINT REMOVAL, define the overlap number of I to
be the maximum number of obstacles whose intersection
is nonempty. Let LINE-CONSTRAINT REMOVAL be the re-
striction of CONSTRAINT REMOVAL to instances in which
each obstacle is a line segment.

We can prove the following theorem again via a reduction
from R-MN2Sat. The reduction is similar to that in Theo-
rem 1, except for the shapes and layout of the obstacles, as
we no longer can overlay obstacles since we need to keep the
overlap number at most 2. For that, we use line-segments to
mimic the rectangles used in the proof of Theorem 1, for
each obstacle-type used in that proof.

Theorem 2. LINE-CONSTRAINT REMOVAL, restricted to
instance whose overlap number is at most 2, is NP-hard.

The following corollaries are direct consequences of the
reduction used to prove Theorem 2:

Corollary 3. Unless ETH fails, LINE-CONSTRAINT RE-
MOVAL restricted to instance whose overlap number is at
most 2 cannot be solved in time 2o(

√
N), where N is the num-

ber of regions in the input instance.

Corollary 4. Unless ETH fails, CONSTRAINT REMOVAL
restricted to instance whose overlap number is at most 2
cannot be solved in time 2o(n), where n is the number of
obstacles in the input instance.

Subexponential-time Algorithm
For an integer b ≥ 2, define b-OVERLAP MINIMUM CON-
STRAINT REMOVAL to be the restriction of MINIMUM
CONSTRAINT REMOVAL to instances whose overlap num-
ber is at most b. (For b ≥ 2, b-OVERLAP MINIMUM
CONSTRAINT REMOVAL is NP-hard by Theorem 2.) We

present a divide-and-conquer algorithm, based on a vari-
ant of the well-known balanced separator theorem for pla-
nar graphs (Miller 1986), that solves an instance I of
b-OVERLAP MINIMUM CONSTRAINT REMOVAL in time
2O(
√
N), where N is the number of vertices in the auxiliary

graph GI . This variant theorem states that the vertex-set of
a triangulated plane graph on N vertices can be partitioned
into three parts A,B, S such that: (1) S is a cycle separat-
ing A from B (i.e., no edge exists between A and B) and
|S| ≤

√
8N ; (2) |A| ≤ 2N/3 and |B| ≤ 2N/3; and (3) A

is interior to S and B is exterior to S (w.r.t. the plane em-
bedding). Our algorithm follows the approach in Woeginger
et al. (Deineko, Klinz, and Woeginger 2006), for computing
a Hamiltonian path in a planar graph on N vertices in time
2O(
√
N). There are complications, however, that are particu-

lar to b-OVERLAP MINIMUM CONSTRAINT REMOVAL. We
describe below how to deal with these complications.

Consider an instance I of b-OVERLAP MINIMUM CON-
STRAINT REMOVAL on n obstacles, and let GI be its auxil-
iary graph. We assign each obstacle in I a distinct represen-
tative color and assume that each vertex v in GI is colored
by the color-set representing the obstacles forming the re-
gion of v. As in (Deineko, Klinz, and Woeginger 2006), we
add edges to GI so that the resulting graph is a triangulation,
and then apply the cycle separator theorem (Miller 1986) to
partition the vertex-set of the resulting graph into A,B, S;
the added edges are removed afterwards, and play no role
other than determining A,B, S.

The algorithm maintains a configuration, which is a tu-
ple, and an auxiliary graph stipulating a partial ordering
that the current enumeration dictates on the path vertices.
We skip these details since they are very similar to those
in (Deineko, Klinz, and Woeginger 2006), and highlight
those that are particular to b-OVERLAP MINIMUM CON-
STRAINT REMOVAL. After computing A,B, S, we enumer-
ate every subset of S, as the subset of vertices that are con-
tained in the path, P , we seek. For each enumerated subset
F , we enumerate every subset of colors C that appear both
on vertices in S\F and on P . We then remove all colors in S
from GI , and mark every vertex containing a color that is in
S \ F but not in C as “forbidden”. Afterwards, the color-set
appearing on vertices in A is disjoint from that appearing on
vertices in B, because the colors that appear in both A and
B must appear in S (the vertices on which the same color
appears induce a connected subgraph of GI), and those col-
ors have been removed. The number of enumerations so far
is at most 2O(

√
8N) · 2O(b·

√
8N) = 2O(

√
N).

Fix such an enumeration. Next, we need to enumerate
the order in which P traverses the vertices in F . Enumer-
ating all permutations of the vertices in F will not result in
a 2O(

√
N)-time algorithm. Instead, we adopt a similar enu-

meration method to the one in Woeginger et al. (Deineko,
Klinz, and Woeginger 2006), which is based on the follow-
ing observation. Suppose for now that the order in which
P visits the vertices in F has been revealed. For any two
nonadjacent vertices u, v in F ∩ V (P), say that u and v are
A-consecutive (resp. B-consecutive) on P if the subpath of
P between u and v, excluding u and v, is contained in A

(resp. in B). Let EA ⊆ F × F (resp. EB ⊆ F × F) be the
set of edges between A-consecutive (resp. B-consecutive)
vertices (these edges are not in GI). The algorithm makes
two recursive calls, one on GI [A∪S] +EB after modifying
the auxiliary structure so that to enforce the order imposed
by EA and EB , and the other on GI [B∪S]+EA after mod-
ifying the auxiliary structure so that to enforce the order im-
posed by EA and EB . The algorithm returns an s-t path that
is the concatenation of a path having the minimum number
of colors resulting from the recursive call on GI [A∪S]+EB ,
with a path having the minimum number of colors resulting
from the recursive call on GI [B ∪ S] + EA.

It can be shown that we can enumerate EA and EB effi-
ciently without enumerating all permutations of F in time
2O(
√
N), which leads to the same time upper bound for the

whole algorithm. We conclude with:
Theorem 5. b-OVERLAP MINIMUM CONSTRAINT RE-
MOVAL can be solved in time 2O(

√
N), and unless ETH fails,

it cannot be solved in time 2o(
√
N), even when the obstacles

are line segments.

References
Alt, H.; Cabello, S.; Giannopoulos, P.; and Knauer, C. 2011. On
some connection problems in straight-line segment arrangements.
In the 24th European Workshop on Computational Geometry, 27–
30.
Chan, D., and Kirkpatrick, D. 2014. Multi-path algorithms for
minimum-colour path problems with applications to approximating
barrier resilience. Theoretical Computer Science 553:74–90.
Deineko, V.; Klinz, B.; and Woeginger, G. 2006. Exact algorithms
for the hamiltonian cycle problem in planar graphs. Operations
Research Letters 34(3):269–274.
Erickson, L., and LaValle, S. 2013. A simple, but NP-hard, motion
planning problem. In Proceedings of AAAI. AAAI Press.
Hauser, K. 2014. The minimum constraint removal problem with
three robotics applications. International Journal of Robotics Re-
search 33(1):5–17.
Johnson, D., and Szegedy, M. 1999. What are the least tractable
instances of Max independent set? In Proceedings of SODA, 927–
928. ACM/SIAM.
Kumar, S.; Lai, T.; and Arora, A. 2005. Barrier coverage with wire-
less sensors. In Proceedings of the 11th Annual International Con-
ference on Mobile Computing and Networking MOBICOM, 284–
298. ACM.
Lokshtanov, D.; Marx, D.; and Saurabh, S. 2011. Lower bounds
based on the exponential time hypothesis. Bulletin of the EATCS
105:41–72.
Miller, G. 1986. Finding small simple cycle separators for 2-
connected planar graphs. Journal of Computer and System Sci-
ences 32(3):265–279.
Tseng, K., and Kirkpatrick, D. 2012. On barrier resilience of sen-
sor networks. In International Symposium on Algorithms for Sen-
sor Systems, Wireless Ad Hoc Networks and Autonomous Mobile
Entities Algosensors, volume 7111 of Lecture Notes in Computer
Science, 130–144. Springer.
Yang, S. 2012. Some Path Planning Algorithms in Compu-
tational Geometry and Air Traffic Management. Ph.D. Disser-
tation, University of New Yort at Stony Brook. Available at:
https://dspace.sunyconnect.suny.edu/handle/1951/59927.

How to navigate a robot through obstacles?

Eduard Eiben∗ Iyad Kanj†

1 Problem Definition and Motivation

Motion planning is an important subject with applications in Robotics, Computational Geometry,
Graphics, and Gaming, among others. The goal in motion planning problems is generally to move
a robot from a starting position to a final position, while avoiding collision with a set of obstacles.
This is usually referred to as the piano-mover’s problem.

This work is concerned with a variant of the piano-mover’s problem, where the obstacles are
in the Euclidean plane and the robot is represented as a point. Since determining if there is an
obstacle-free path for the robot in this case is solvable in polynomial time, if no such path exists, it
is natural to seek a path that intersects as few obstacles as possible. More formally, in this setting,
we are given a set of obstacles in the plane and k ∈ N, and we need to determine if there is a path
for the robot between two given points that intersects at most k obstacles; equivalently, we need to
determine if we can remove at most k obstacles so that there is an obstacle-free path for the robot.
This problem has also been studied extensively, motivated by applications in wireless computing,
under the name Barrier Coverage or Barrier Resilience. In such applications, we are given
a range field covered by sensors (usually assumed to be simple geometric shapes), and the goal is to
compute a minimum set of sensors that need to fail before an entity can move undetected between
two given sites [1, 2, 6, 7, 8, 9].

The problem was formulated and generalized into the following graph problem, by considering
the auxiliary plane graph that is the dual of the plane subdivision determined by the obstacles.
Given a plane graph G, each of whose vertices is colored by a (possibly empty) color set, two
designated vertices s, t ∈ V (G), and k ∈ N, decide if there is an s-t path in G that uses at most k
colors. See Figure 1 for illustrations.

This problem was studied by several research communities, including Computational Geometry,
AI, and Wireless Computing, albeit under different names sometimes [1, 2, 3, 4, 5, 6, 7, 8, 9]. The
problem is NP-hard even when the obstacles are simple geometric shapes, such as line segments or
axes-parallel rectangles [1, 3, 4, 5, 8, 9]. The general graph problem was known to be NP-hard even
earlier. The case when the obstacles are unit disk has received significant attention [2, 6, 7, 8, 9];
it is complexity remains open, but it was shown to be FPT by [6], who also extended the results to
when the obstacles are fat regions.

2 Results and Techniques

We study the parameterized complexity of the general graph problem w.r.t. the auxiliary plane
graph that models the geometric instances of the problem. We refer to this problem henceforth
as the Obstacle Removal problem. As we show and discuss later, Obstacle Removal turns
∗Algorithms and Complexity Group, TU Wien, Austria. Email: eiben@ac.tuwien.ac.at
†School of Computing, DePaul University, Chicago, USA. Email: ikanj@cs.depaul.edu

1

s

t

s

t

Figure 1: Illustration of instances of the problem drawn within a bounding box. The figure on the
left shows an instance in which the optimal path crosses two obstacles, zigzagging between the other
obstacles. The figure on the right shows an instance and its auxiliary plane graph.

out to be intractable w.r.t. the framework of parameterized complexity if some of the obstacles are
not connected regions. As a result, we focus our study on a restriction of Obstacle Removal to
instances satisfying that, for every color in the graph, the set of vertices on which this color appears
induces a connected subgraph; we refer to this restriction as Connected Obstacle Removal.
Clearly, Obstacle Removal and Connected Obstacle Removal model and generalize their
geometric counterparts, referred to as Geomertic Obstacle Removal and Geomertic Con-
nected Obstacle Removal, respectively, that are differentiated based on whether or not the
obstacles are connected regions of the plane.

2.1 Hardness Results

Our first hardness result shows that both Obstacle Removal and Connected Obstacle Re-
moval are NP-hard, even when the auxiliary graph has small outerplanarity and pathwidth:

Theorem 2.1. Obstacle Removal is NP-complete, even for outerplanar graphs of pathwidth at
most 2 and in which every vertex contains at most one color.

Theorem 2.2. Connected Obstacle Removal is NP-complete even for 2-outerplanar graphs
of pathwidth at most 3.

The combinatorial instances produced by the hardness results above can be realized as geo-
metric instances of Geomertic Obstacle Removal and Geomertic Connected Obstacle
Removal, thus showing that the above hardness results extend to restrictions of Geomertic Ob-
stacle Removal and Geomertic Connected Obstacle Removal.

We then study the parameterized complexity of Obstacle Removal and Connected Ob-
stacle Removal. Our first set of results shows that the color-connectivity property, and hence
the connectivity of each obstacle, is crucial for any hope for an FPT-algorithm w.r.t. k, as we show
that the combined parameterizations of Obstacle Removal are W[1]-complete:

2

Theorem 2.3. Obstacle Removal, restricted to instances of pathwidth at most 4, and in which
each vertex contains at most one color and each color appears on at most 2 vertices, is W[1]-complete
parameterized by k.

Theorem 2.4. Obstacle Removal, parameterized by both k and the length of the sought path `,
is W[1]-complete.

Without any restrictions, Obstacle Removal sits high in the parameterized hierarchy:

Theorem 2.5. Obstacle Removal, parameterized by k, is W[SAT]-hard and is in W[P].

By producing a generic construction that can be used to realize any combinatorial instance
of Obstacle Removal as a geometric instance of Geomertic Obstacle Removal, the above
results about Obstacle Removal extend to restrictions of Geomertic Obstacle Removal.

2.2 FPT Results and Applications

After establishing the aforementioned hardness results, we focus our attention on Connected
Obstacle Removal. We show the following result:

Theorem 2.6. Connected Obstacle Removal, parameterized by both k and the treewidth of
the input graph, is FPT.

The folklore dynamic programming approach based on tree decomposition, used for the Hamil-
tonian Path/Cycle problems, does not work for Connected Obstacle Removal. As op-
posed to the Hamiltonian Path/Cycle problems, where it is sufficient to keep track of how the
path/cycle interacts with each bag in the tree decomposition, this is not sufficient in the case of
Connected Obstacle Removal because we also need to keep track of which color sets are used
on both sides of the bag. Although (by color-connectivity) any subset of colors appearing on both
sides of the bag must appear on vertices in the bag as well, there can be too many such subsets, and
certainly we cannot afford to enumerate all of them if we seek an FPT algorithm. To overcome this
issue, we prove structural results that exploit the planarity of the graph and the connectivity of the
colors to show the following. For any vertex w ∈ V (G), and for any pair of vertices u, v ∈ V (G), the
set of (valid) u-v paths in G−w that use colors appearing on vertices in the face of G−w containing
w can be “represented” by a minimal set of paths P whose cardinality is a function of k. To derive
such an upper bound on the cardinality of P, we select a maximal setM of color-disjoint paths in
P, and show that the cardinality of P is upper bounded by that ofM multiplied by some function
of k. The problem then reduces to upper bounding |M|. To do so, we use an inductive proof whose
main ingredient is showing that the subgraph induced by the paths inM has a u-v vertex-separator
of cardinality O(k). We then upper bound |M| by bounding the number of different traces of the
paths ofM on this small separator, and inducting on both sides of the separator.

We extend the notion of a minimal set of paths w.r.t. a single vertex to a “representative set”
of paths w.r.t. a specific bag, and a specific enumerated configuration for the bag, in a tree de-
composition of the input graph. This enables us to use the upper bound on the cardinality of a
minimal set of paths to upper bound the size of a representative set of paths w.r.t. a bag and a
configuration. This, in turn, yields an upper bound on the size of the table stored at a bag, in the
dynamic programming algorithm by a function of both k and the treewidth of the input graph, thus
yielding the desired result.

We extend the FPT results for Connected Obstacle Removal w.r.t. the combined param-
eters k and the treewidth of the auxiliary graph, to show that Connected Obstacle Removal
parameterized by both k and the length ` of the sought path is FPT. This is shown by first showing
that we can upper bound the treewidth of the graph and then using Theorem 2.6:

3

Theorem 2.7. Connected Obstacle Removal, parameterized by both k and the length of the
path is FPT.

We show several applications of the above result. First, we can show that it directly implies
the FPT results by Kormanet al. [6] for the case when the obstacles are unit disks or fat regions.
Second, we show that the above result answers an open question posed in [4] as follows.

We define the intersection number of the auxiliary graph to be the maximum number (over all
colors) of vertices on which the same color appears. Auxiliary graphs with bounded intersection
number model the case in which the obstacles are arbitrary connected convex regions satisfying that
the number of regions intersected by any region is bounded, as it is easy to see that the intersection
number of the auxiliary graph of such instances will be bounded. Note that convexity is essential
here, as otherwise, the intersection number of the auxiliary graph may be unbounded.

Theorem 2.8. Let h be a computable function. The restriction of Geomertic Connected Ob-
stacle Removal to any set of connected convex obstacles in the plane satisfying that each obstacle
intersects at most h(k) other obstacles, is FPT parameterized by k.

Whereas the complexity of the problem in Theorem 2.8 is open, the theorem settles its param-
eterized complexity by showing it to be in FPT. We finally mention that it remains open whether
(Geometric) Connected Obstacle Removal is FPT parameterized by k only.

References

[1] H. Alt, S. Cabello, P. Giannopoulos, and C. Knauer. On some connection problems in straight-
line segment arrangements. In Proceedings of EuroCG, pages 27–30, 2011.

[2] D. Chan and D. Kirkpatrick. Multi-path algorithms for minimum-colour path problems with
applications to approximating barrier resilience. Theoretical Computer Science, 553:74–90, 2014.

[3] E. Eiben, J. Gemmell, I. Kanj, and A. Youngdahl. Improved results for minimum constraint
removal, 2017. Under submission to a double-blind reviewed conference.

[4] L. Erickson and S. LaValle. A simple, but NP-hard, motion planning problem. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[5] K. Hauser. The minimum constraint removal problem with three robotics applications. Inter-
national Journal of Robotics Research, 33(1):5–17, 2014.

[6] M. Korman, M. Löffler, R. Silveira, and D. Strash. On the complexity of barrier resilience for
fat regions. In Proceedins of ALGOSENSORS, pages 201–216, 2014.

[7] S. Kumar, T. Lai, and A. Arora. Barrier coverage with wireless sensors. In Proceedings of
MOBICOM, pages 284–298. ACM, 2005.

[8] K. Tseng and D. Kirkpatrick. On barrier resilience of sensor networks. In Proceedings of AL-
GOSENSORS, pages 130–144, 2012.

[9] S. Yang. Some Path Planning Algorithms in Computational Geometry and Air Traf-
fic Management. PhD thesis, University of New Yort at Stony Brook. Available at:
https://dspace.sunyconnect.suny.edu/handle/1951/59927, 2012.

4

Algorithm for Optimal Chance Constrained Knapsack with
Applications to Multi-robot Teaming

Fan Yang1 and Nilanjan Chakraborty2

Abstract— Motivated by applications in multirobot team
selection, in this paper, we present a novel algorithm for solving
chance-constrained 0-1 knapsack problem, where the objective
function is deterministic but the weights of the items are
stochastic and therefore the knapsack constraint is stochastic.
We convert the chance-constrained knapsack problem to a two-
dimensional discrete optimization problem on the variance-
mean plane, where each point on the plane can be identified
with an assignment of items to the knapsack. By exploiting
the geometry of the non-convex feasible region of the chance-
constrained knapsack problem in the variance-mean plane, we
present a novel deterministic technique to find an optimal solu-
tion by solving a sequence of deterministic knapsack problems
(called risk-averse knapsack problem). We apply our algorithm
to a multirobot team selection problem to cover a given route,
where the length of the route is much larger than the length
each individual robot can fly and the length that an individual
robot can fly is a random variable (with known mean and
variance). We present simulation results on randomly generated
data to demonstrate that our approach is scalable with both the
number of robots and increasing uncertainty of the distance an
individual robot can travel.

I. INTRODUCTION

The knapsack problem is a fundamental problem in com-
binatorial optimization that has multiple applications in task
allocation and team formation in multi-robot systems. For
example, in algorithms to solve the generalized assignment
problem for multiple robots, the knapsack problem is a
subproblem that needs to be solved multiple times [6]. In
this paper, we consider a multirobot team formation problem,
where we consider a group of heterogeneous robots that has
to cover a given route with known length. Each robot has
a limited battery life and therefore there is a upper limit on
the distance that the robot can travel. Furthermore, the travel
distances are uncertain because they depend on uncertain
environmental variables like wind speed. We assume that
the lengths that robots can travel are independent Gaussian
random variables with known means and variances. There
is operating cost for each robot. The total cost of covering
the route is a sum of individual costs of robots. Our goal is
to find a team of robots with the minimum total cost that
covers the route with high probability (specified a priori).

The deterministic version of our problem where the travel
distances are known constants can be formulated as a 0-
1 knapsack problem. There are many methods to solve
the knapsack problem such as dynamic programming [12],

1Fan Yang and 2Nilanjan Chakraborty are with the
Mechanical Engineering Department at SUNY, Stony
Brook. Email: fan.yang.3@stonybrook.edu,
nilanjan.chakraborty@stonybrook.edu

branch and bound method [9] and other methods that com-
bine both methods [10], [7], [8]. Although solving knapsack
problem is NP-hard, there is a fully polynomial time approx-
imation scheme [12]. There are different stochastic variations
of the classical 0-1 knapsack problem that have been studied
in the extant literature. In [1], [4], [11], the authors have
studied the stochastic knapsack problem with deterministic
weights and random costs whereas in our problem we have
deterministic costs and random weights. In [2], the authors
compute a solution policy that optimize the expected total
values. Optimizing expected values provide no performance
guarantees on a particular realization of the random variables.
We want to develop methods that ensures the constraints are
satisfied with a high probability irrespective of the realization
of the random weights. An algorithm is designed to obtain
good solutions to the chance-constrained problem in [5],
by running a sequence of robust problems. The algorithm
provides an optimal solution when the costs are identical or
the uncertain weights present all the same characteristic. In
this paper, our method computes the optimal solution in more
general situation. In [3], the authors consider a stochastic
knapsack problem similar to our setting and provide a
polynomial time approximation scheme (PTAS) by using a
parametric linear programming reformulation. Our solution
to the chance-constrained problem is based on a geometric
interpretation of the problem on variance-mean plane. Our
method finds the optimal solution of chance-constrained
problem by solving a sequence of a deterministic knapsack
problems called the risk-averse knapsack problems.

Contributions: In this paper, we present a novel algorithm
that solves 0-1 knapsack problem with chance constraint. By
analyzing the feasible region of both chance-constrained and
risk-averse knapsack problems on variance-mean plane, we
prove that there exists a risk-averse knapsack problem such
that the optimal solution of chance constrained knapsack
problem is also the optimal solution of risk-averse knap-
sack problem. We use this insight to develop an iterative
algorithm where we solve the chance constrained problem
by repeatedly solving a sequence of risk-averse knapsack
problem. The key aspect of our algorithm is that we maintain
a probabilistic guarantee irrespective of the realization of
the random variables (the lengths the robots could move).
We present simulation results on randomly generated data
which show that our algorithm works efficiently. An extended
version of this paper with the proofs and more elaborate
simulation results is under review at IEEE International
Conference on Robotics and Automation, 2018.

II. CHANCE CONSTRAINED KNAPSACK PROBLEM

Let L be the length of the closed curve (or a route) that
a team of robots have to cover. We have a collection of
heterogeneous robots that have different battery life and they
can fly for different lengths. Let `i be the distance that
robot i can fly. Each robot has a different operating and
maintenance cost denoted by ci. The variable `i is assumed
to be a Gaussian random variable with mean µi and variance
σ2
i , i.e., `i ∼ N (µi, σ

2
i), i = 1, ..., n. Our goal is to find a set

of robots from the collection of n robots that can cover the
total length L with probability p (where 0 ≤ p ≤ 1) while
minimizing the total cost. Let fi be an integer variable that
takes the value 1 if robot i is part of the team and 0 otherwise.
The integer program formulation of our problem is:

min

n∑
i=1

cifi

s.t. P

(
n∑
i=1

`ifi ≥ L

)
≥ p

fi ∈ {0, 1}, ∀i = 1, . . . , n

(1)

If we relax fi, the problem in (1) is a second order cone
program with integrality gap Ω(

√
n) [3].

Lemma 1: The CC-KAP problem in (1) with a given
probability p is equivalent to the following formulation

min

n∑
i=1

cifi

s.t.

n∑
i=1

µifi − C

√√√√ n∑
i=1

σ2
i fi ≥ L

fi ∈ {0, 1}, ∀i = 1, . . . , n

(2)

where C = Φ−1(p) is a constant.
In [3], the authors converted the problem in Equation (2)

to a parametric linear program and presented an algorithm
that for ε > 0 gives a 1 − 3ε approximate solution with
running time O

(
1
ε2n

1
ε

)
. We present an alternate parametric

formulation, where different choices of the parameter leads
to different knapsack problems. In the discussion below we
will refer to both (1) and (2) as chance constrained knapsack
problem (CC-KAP), which is a chance constrained integer
optimization problem and is hard to solve in general. In this
paper, instead of solving CC-KAP directly, we show that the
solution to CC-KAP can be obtained by solving a number
of deterministic knapsack problems (given below), which we
call risk-averse knapsack problem (RA-KAP)

min

n∑
i=1

cifi

s.t.

n∑
i=1

µifi − λ
n∑
i=1

σ2
i fi ≥ L′

fi ∈ {0, 1}, ∀i = 1, . . . , n

(3)

Here λ is the risk-averse parameter that performs a weighted
combination of the mean and variance of the travel lengths

of each robot. The parameter L′ is the constraint for the total
length in RA-KAP.

III. GEOMETRIC INTERPRETATION

In this section, we present a geometric interpretation of the
CC-KAP on the variance-mean plane in which the horizontal
axis is the variance and the vertical axis is the mean (see
Figure 1). The CC-KAP is an integer optimization problems
in which any solution is a vector of binary decision variables
fi. Given any particular solution s = [f1, ..., fn], we can
identify this solution with a point on the variance-mean
plane. The y-coordinate of this point is the sum of means for
all travel distance of robots chosen in the solution,

∑n
i µifi,

and the x-coordinate is the sum of variances,
∑n
i σ

2
i fi. The

coordinate of this point related to solution s is denoted by
(σ2(s), µ(s)). Thus the space of all possible robot teams
can be identified with points in the variance-mean plane
(however, we do not construct this explicitly because the
number of such points will be exponential in the number
of robots). Moreover, we can find the feasible region of
solution for the CC-KAP based on the chance constraint
in Formulation 2. As it is shown in Figure 1, the feasible
region for CC-KAP, denoted by C, is the space above the
parabola in the first quadrant on variance-mean plane. Since
the constraint in the RA-KAP is a linear inequality of σ2

and µ, the feasible region for RA-KAP, denoted by R, is
the space above the line whose slope is equal to risk-averse
parameter λ and y-intercept is equal to the length of the
route L′. Based on this geometric viewpoint, we present the
following lemmas (without proof).

Constraint 1

Constraint 2

Constraint 3

Constraint 4

Constraint 5

Point a

Point b

L

L1

L2

L3

Fig. 1. The geometric interpretation of chance-constrained knapsack
problem. Any solution is related to a point on variance-mean plane. The
feasible region for CC-KAP is the space above the parabola while the
feasible region for RA-KAP with given λ and L is the space above the
line whose slope is equal to λ and y-intercept is equal to L.

Lemma 2: The optimal solution of RA-KAP that satisfies
the chance constraint provides an upper bound of optimal
solution of CC-KAP.

Lemma 3: There exists a RA-KAP, with some choice of
λ and L′ such that the optimal solution of CC-KAP is also
the optimal solution of the RA-KAP.

IV. ALGORITHM DESCRIPTION

Let the intersection of the feasible region of CC-KAP and
the risk-averse problem, RA-KAP, in the first quadrant be I
(I = C ∩ R). Lemma 2 implies that the optimal solution of
RA-KAP that satisfies the chance constraints is also optimal
for CC-KAP over the feasible region of CC-KAP restricted
to I. In this paper we say that the region I is “explored”. To
explore the whole feasible region of CC-KAP, namely C, we
solve multiple RA-KAPs, whose optimal solution satisfy the
chance constraint and corresponding feasible regions (Rj)
cover the feasible region of chance-constrained problem, i.e.,
C ⊂

⋃
j∈S Rj where S is the index set of RA-KAPs whose

optimal solutions satisfy the chance constraint.
The first step starts with solving RA-KAP with λ = 0

and L′ = L. If the optimal solution satisfies the chance
constraint, as shown in Figure 1 s1 is above the parabola.
The algorithm terminates because C ⊂ R. Otherwise, the al-
gorithm computes the constraint of the RA-KAP for the next
iteration by equation λ′ = C/σ where σ =

√∑n
i=1 σ

2
i fi. On

the variance-mean plane, we can treat the updating procedure
as the constraint line rotating clockwise about y-intercept
(0, L). The new constraint line will be guaranteed to be lo-
cated above the previous point. The procedure continues until
we obtain a feasible solution of chance-constrained problem
or the RA-KAP is not feasible, i.e.,

∑n
i=1 µi−λ

∑n
i=1 σ

2
i <

L. Now we can conclude that the subset of feasible region C,
denoted by II is explored although the risk-averse problem
might not be a feasible problem since there is no solution
in RI and II ⊂ RI . Note that all solutions are located to
the left of the vertical line σ2 =

∑n
i=1 σ

2
i (the line going

through Point b in Figure 1) because
∑n
i=1 σ

2
i fi ≤

∑n
i=1 σ

2
i

where fi ∈ {0, 1} ∀i. Let the subset of feasible region of
CC-KAP that is on the right hand side of vertical line be Cl.
The remaining feasible region is C\(II ∪ Cl) denoted by C′.

In the second step, the algorithm computes the intersection
of parabola and the constraint line of the last RA-KAP
in the first step (Point a in Figure 1) and intersection of
parabola and the vertical line (Point b in Figure 1). Then
we solve the RA-KAP with new constraint obtained by
connecting those two points. Since C′ ⊂ I, the algorithm
terminates if the optimal solution of RA-KAP satisfies the
chance constraint, e.g., point s2 or s4 in Figure 1. Otherwise,
we compute two new constraints for two new RA-KAPs.
The new constraints should be selected so that the solutions
of RA-KAP is different from previous RA-KAP solutions
that do not satisfy chance constraints. Moreover, the feasi-
ble regions of the new RA-KAPs, say Ia and Ib, should
cover the feasible regions of the current chance-constrained
problem, i.e., I ⊂ (Ia ∪ Ib). For example, in Figure 1, s3,
the solution of RA-KAP with constraint 3 is not feasible to
CC-KAP. Therefore we compute new constraints 4 and 5.
Our procedure guarantees that I3 ⊂ (I4 ∪ I5) and s3 is not
the solution of RA-KAPs with constraint 4 and constraint 5.
If the solution of RA-KAP with any generated constraint
j does not satisfy the chance constraint, new constraints
will be generated based on constraint j. We then solve the

RA-KAP with these constraints. If the solution of RA-KAP
with a constraint j satisfies the chance constraint, we obtain
the optimal solution in Ij and therefore there is no need
to generate new constraints from j. If the RA-KAP with
constraint j is not a feasible problem, we do not need to
generate new constraints since there is no solution in Ij .
The second step terminates when there is no new constraint
generated. Thus, we explore the whole feasible region of
CC-KAP because C′ ⊂

⋃
j∈S Rj and C = CI ∪ Cl ∪ C′. The

optimal solution is the one with the smallest objective value
among all feasible solutions of chance-constrained problem
computed by solving risk-averse problems.

We claim that our algorithm stops in finite number of
iterations. For the first step, λ increases till the solution of
RA-KAP satisfy the chance constraint. In the worst case,
λ will keep increasing until it exceeds a finite bound of λ
for which the RA-KAP is not feasible. For the second step,
the new constraints will be generated if the solution of RA-
KAP is not feasible to chance constraint. The number of
solutions is finite and the algorithm prevents obtaining the
previous solutions that are not feasible to chance constraint.
Therefore in the worst case, the algorithm finds all solutions
that are not feasible with a finite number of iterations. In
the next section, we present empirical evidence that the
above algorithm terminates in a constant number of iterations
irrespective of the number of robots.

V. SIMULATION RESULTS

The number of robots

10 20 30 40 50 60 70 80 90 100

T
h
e
 n

u
m

b
e
r

o
f
R

A
-K

A
P

s

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

The average number of RA-KAPs

The maximum number of RA-KAPs

Fig. 2. The total number of RA-KAPs required for solving CC-KAP. The
length of the route is 10000 meters and the number of robots vary from 10
to 100. Each data point is obtained from 100 simulations with randomly
generated mean and variance of travel distance of each robot

We present simulation studies to understand the scalability
of our algorithm as the number of robots increase and as the
knowledge about the distance the robots can travel become
more uncertain (i.e., the variance increases). To understand
the effects of parameters such as the number of robots and the
variance of travel distance of robots, we generated different
scenarios based on randomly generated parameter values. We
first present results for simulations in which the mean and
variances of travel distance of robots are randomly generated

and the number of robots is varied methodically. Figure 2
and Figure 3 show the performance of our algorithm with the
different number of robots and uncertainty in the travel length
of robots. The results indicate that the number of robots does
not have a significant influence on the speed of our algorithm
and the number of calls to RA-KAPs is nearly a constant. In

The variance of the travel distance ×104

0 0.5 1 1.5 2 2.5

T
h
e
 n

u
m

b
e
r

o
f
R

A
-K

A
P

s

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

The average number of RA-KAPs

The maximum number of RA-KAPs

Fig. 3. The total number of RA-KAPs that are used for solving CC-KAP.
The number of robots is 100, the length of the route is 50000 meters, and
the variance of travel distance vary from 100 to 22500. Each data point
is obtained from 100 simulations with randomly generated mean of travel
distance of each robot.

the first simulation, we test the effect of number of robots on
the number of RA-KAP to be solved, which influences the
algorithm performance. The algorithm to solve the RA-KAP
is dynamic programming that solves the knapsack problem
optimally in pseudo-polynomial time O(n2P) where n refers
to the number of robots and P refers to the largest cost
among all robots [12]. The means and variances of the
travel lengths for each robot are generated independently
from a uniform distribution µi ∼ U(1000, 3000) and σ2

i ∼
U(10000, 12500). The length of the curve, L, is 10000
meters and p = 0.99. The operation and maintenance cost
for each robot is distributed randomly in uniform distribution
from 50 to 150, i.e., ci ∼ U(50, 150). Set ε = 1× 10−7. We
count the number of RA-KAPs for solving CC-KAP when
number of robots is equal to 10, 11, . . . , 100. For each case
with a given number of robots, we generate the means and
variances randomly for 100 times.

Figure 2 shows the performance of our algorithm with
different number of robots. The results show that the number
of calls to RA-KAPs is nearly a constant irrespective of
the number of robots. The blue dots represent the average
number of RA-KAPs required to solve CC-KAP while the
red dots represent the maximum number of calls to RA-
KAPs from 100 simulations. The average numbers of RA-
KAP solved is almost constant (between 2.5 to 3) irrespective
of the number of robots. In Figure 2, the maximum numbers
of RA-KAPs solved are between 3 and 7. We observe
that maximum number of deterministic knapsack problems
solved is 7 which is a small value for application in practice.

In the second simulation, we obtain the effect of the
uncertainty of travel distance of robot on the performance

of our algorithm by counting the number of calls to RA-
KAPs and the actual running time for our algorithm solving
CC-KAP with variance equal to 100, 324, 548, . . . , 22500.
For each case, we generate mean of travel distance of
robot randomly based on U(1000, 3000) for 100 times. The
number of robots is 100 and the length of the route is
50000 meters for all scenarios in this simulation. The other
parameters such as the cost, probability and ε are same as
the parameters in the first simulation. Figure 3 shows the
average number of calls to RA-KAPs is practically constant
as the variance of travel distance increases. The maximum
numbers of calls are within the range from 3 to 7.

VI. CONCLUSION

We presented a novel deterministic algorithm for chance-
constrained knapsack problem with application in multi-
robot routing with the uncertain travel distances (weights).
The key idea in our approach is to convert CC-KAP to a
deterministic discrete optimization problem on the variance-
mean plane, where each point on the plane can be identified
with an assignment of items to the knapsack. By exploiting
the geometry of the non-convex feasible region of the CC-
KAP in the variance-mean plane, we showed that CC-
KAP can be solved optimally by solving a sequence of de-
terministic knapsack problems (called risk-averse knapsack
problem). We demonstrated empirically that our algorithm is
quite efficient in practice. Future work includes theoretical
complexity bounds of our algorithm.

REFERENCES

[1] R. L. Carraway, R. L. Schmidt, and L. R. Weatherford. An algorithm
for maximizing target achievement in the stochastic knapsack problem
with normal returns. Naval Research Logistics (NRL), 40(2):161–173,
1993.

[2] B. C. Dean, M. X. Goemans, and J. Vondrk. Approximating the
stochastic knapsack problem: The benefit of adaptivity. Mathematics
of Operations Research, 33(4):945–964, 2008.

[3] V. Goyal and R. Ravi. A ptas for the chance-constrained knapsack
problem with random item sizes. Operations Research Letters,
38(3):161 – 164, 2010.

[4] M. I. Henig. Risk criteria in a stochastic knapsack problem. Operations
Research, 38(5):820–825, 1990.

[5] O. Klopfenstein and D. Nace. A robust approach to the chance-
constrained knapsack problem. Operations Research Letters,
36(5):628 – 632, 2008.

[6] L. Luo, N. Chakraborty, and K. P. Sycara. Distributed algorithm
design for multi-robot generalized task assignment problem. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Tokyo, Japan, November 3-7, 2013, pages 4765–4771, 2013.

[7] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and
strong bounds for the 0-1 knapsack problem. Manage. Sci., 45(3):414–
424, Mar. 1999.

[8] S. Martello and P. Toth. A mixture of dynamic programming and
branch-and-bound for the subset-sum problem. Management Science,
30(6):765–771, 1984.

[9] S. Martello and P. Toth. Knapsack Problems: Algorithms and Com-
puter Implementations. John Wiley & Sons, Inc., New York, NY, USA,
1990.

[10] V. Poirriez, N. Yanev, and R. Andonov. A hybrid algorithm for the
unbounded knapsack problem. Discrete Optimization, 6(1):110 – 124,
2009.

[11] M. Sniedovich. Preference order stochastic knapsack problems:
Methodological issues. The Journal of the Operational Research
Society, 31(11):1025–1032, 1980.

[12] V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York,
Inc., New York, NY, USA, 2001.

Freeze Tag Awakening in 2D is NP-hard∗

Zachary Abel† Hugo A. Akitaya‡ Jingjin Yu§

Arkin et al. [2] proposed a scheduling problem
called freeze tag awakening motivated by prob-
lems involving robotic swarms. The input con-
sists of n mobile point robots in Euclidean space
labeled awake or frozen. An awakened robot may
travel at unit speed in any direction. A frozen
robot is awakened if touched by an awakened
robot. Initially a single robot is awake and all
other robots are frozen. The freeze tag awaken-
ing problem asks for a minimum time in which
all robots can be woken up. If no two robots ini-
tially lie on the same place, the problem can also
be phrased as obtaining the binary tree rooted at
a specified point that minimizes the longest path.
Although a PTAS for 2D is shown in [2], the com-
putational complexity of this problem remained
open as outlined in [2] and appears as problem
35 on The Open Problem Project1. The decision
version of the problem may be stated as follows.

Problem 1 (FreezeTag). Given n mobile
robots in the Euclidean d-space with exactly one
robot initially awake, is there an awakening
schedule such that all robots can be awakened in
time no more than some T > 0?

A paper in Fall Workshop 2016 [1] showed that
FreezeTag in 1D has a trivial algorithm and
claimed that the problem is NP-hard in 2D. How-
ever, their proof has a mistake as shown next.
They reduce from Monotone-3SAT which is

∗Research on this paper was supported in part by the
NSF awards CCF-1422311 and CCF-1423615, and the
Science Without Borders scholarship program.

†Department of Computer Science, MIT, Cambridge,
MA

‡Department of Computer Science, Tufts University,
Medford, MA

§Department of Computer Science, Rutgers Univer-
sity, Piscataway, NJ

1http://cs.smith.edu/~orourke/TOPP/P35.html

s1 gg1
g2 gn

s+1

g+1

s−1

g−1

s2 sn

Figure 1: The variable gadget for all variables of the
reduction in [1].

NP-complete [3]. An instance of this problem is
given by a set of boolean variables {x1, . . . , xn}
and clauses {c1, . . . , cm} in which each clause is
formed by three literals and each literal is a copy
or a negated copy of the boolean value of one of
the variables. Clauses are either positive when
all its literals are not negated or negative when
all are negated. Monotone-3SAT asks if there
is an assignment from {true, false} to the vari-
ables such that every clause contains at least one
true literal. Figure 1 shows their variable gad-
get where dots represent the initial position of
a unique robot except for s1 that contains two
robots, one of which is awake. The L1-distance
between the points g+i , i ∈ {1, . . . , n} and s1 is
the same. Their variable gadget places robots
on the line segments s+i g

+
i . Their proof claims

that the only robot that could reach g+i in a pos-
itive solution is s+i , however this is not true as s+i
could switch roles with a robot on s+j g

+
j for some

j < i possibly resulting in a better solution.
We show that the problem is indeed NP-

hard in 2D Euclidean space by reducing from
Monotone-3SAT building on ideas in [1]. We
leave open whether FreezeTag is also NP-hard
in 2D for other Lp spaces. In the proof, we use
||.|| to denote Euclidean lengths.

http://cs.smith.edu/~orourke/TOPP/P35.html

v1

vn

v2
v3

v′1

v′n

v′3

v′2

W 2W 4W W

2n− 1 r

2nW

Figure 2: The setup gadget for an instance with four
variables.

Theorem 1. FreezeTag in 2D is NP-
complete.

Proof. As shown in in [1], the problem is in NP.
We reduce from Monotone-3SAT as in [1].
We assume that n is a power of 2, or else add
variables that are not used in any clause un-
til n is a power of 2. This at most doubles
the number of variables. Let T = 8n2(m + 1)
and ε =

√
T 2 + 4 − T . We build an instance of

FreezeTag using the following gadgets. To aid
in the description of the gadgets, we also define
T ′ = 4n(m+ 1) and W =

√
(T ′)2 − 1/4.

Setup gadget. The initially awake robot is
placed at r = (W (2n−1), n+ 1

2) (shown as a blue
dot in Fig 2). For each variable xi, create a robot
at vi = (0, 2(i − 1)). Create a balanced binary
tree rooted at (2W (n−1), n−1) and whose leaves
are the points vi. Place each internal node of
such tree so that the vector from it to its right
(resp., left) child forms an angle of π−arcsin(1

2T)
(resp., −π+arcsin(1

2T)) with vector (1, 0). Place
a robot at each node of the tree. Create a robot
at v′i = (−W, 2(i−1)− 1

2) (resp., (−W, 2(i−1)+
1
2)) for odd (resp., even) i.

Variable gadget. For each xi, we place 5
robots at points v+i , v−i , q+i , q−i , and pi as shown
in Fig. 3. The first four are respectively located
ε
2 to the right, ε

2 to the left, T ′ − ε to the right,
and T ′ − ε to the left of vi. The point pi is
located above vi so that the distance between it
and v+i (or v−i) is T ′ − 3

2ε. Intuitively, the order
in which v+i and v−i are awakened encodes the
truth assignment of the 3SAT instance. They
will then respectively target q+i and q−i while the

robot initially in vi targets pi.

Clause gadget. Fig. 4 shows the gadget for
when the `-th clause (xi∨xj∨xk) is positive. For
negative clauses, reflect the construction through
the y-axis. Assume that i < j < k, placing
robots at si,`, sj,`, and sk,` as indicated in Fig. 4.
The x-coordinate of si,`, sj,` and sk,` are respec-
tively 4n`+ k− j, 4n` and 4n`+ 2(k− j). They
are respectively placed in the line segments viq

+
i ,

vjq
+
j and vkq

+
k . Robots at s′w,` are above sw,` and

||sw,`s
′
w,`|| = ||sw,`q

+
w || for w ∈ {i, j, k}. Place a

robot at c` located ε above s′i,`. Place a robot
at s′′w,` under s′w,` so that ||s′′w,`(s

′
w,` + (0, ε))|| =

||s′′w,`c`||, for w ∈ {j, k}. Intuitively, si,`, sj,` and
sk,` will respectively target s′i,`, s

′
j,` and s′k,` and

c` can only be awaken at time T if a robot in
{v+i , v

+
j , v

+
k } was awakened before its reflected

counterpart.

Correctness. Assume that the 3SAT in-
stance has a positive solution. We show that all
robots can be awakened within time T . We say
that a robot targets a point if it is scheduled to
visit the point. Send the initially awake robot at
r to v′n. Whenever a robot at a node of the tree
in the setup gadget is awakened, send it to the
unique v′i not yet targeted located T − t away,
where t is the current time. At time T − T ′

all vi will be awakened and every robot in the
setup gadget is either awake or targeted. If xi
is assigned true, send vi to v+i , v−i , and then to
pi. Reverse the order between v+i and v−i other-
wise. By construction, pi will be awakened ex-
actly at time T . Send each v+i (resp., v−i) to q+i
(resp., q−i) as soon as they are awake. As soon
as each si,` is awake, send it to s′i,`. For each

vi v+iv−i

T − n
√

2− 3
2ε

q+iq−i

pi

ε

Figure 3: The variable gadget for the i-th variable.

c`

≥ 2

≥ 2

vk

vi

vj

2(k − j)4n`

sk,`

sj,`
si,`

q+k

q+j

q+i

s′k,`s′j,`

s′i,`

s′′k,`s′′j,`

Figure 4: The clause gadget for the `-th clause.

positive clause (xi ∨xj ∨xk), there must exist at
least one robot in {v+i , v

+
j , v

+
k } awakened at time

T −T ′+ ε
2 . If such robot v+w is in {v+j , v

+
k }, send

s′′w,` to c` as soon as its awake. Else, send s′i,` to
c`. Similar arguments apply to negative clauses.
By construction, all robots will be awake at time
T .

Now assume that the produced FreezeTag
instance is positive. Since ||v′nr|| = T , the robot
at r must move on a straight line towards v′n
for the whole duration of the awakening sched-
ule. A similar argument can be used to match
each node in the binary tree of the setup gad-
get to a v′i. Then, every vi will be awakened at
time T − T ′ and the robots targeting v′i cannot
interact with any other robot. At time T − T ′
there are exactly four robots in the ε neighbor-
hood of vn, one of which is targeting v′n. The
three remaining robots are the only ones that
can wake up pn, q−n and q+n . Hence, the robot in
vn must wake up robots in v+n and v−n in some
order. Assume that the one at v+n is awakened
first. Then v+n must target q+n , because by the
time the robot in v−n is awakened, the robots at
that position cannot reach q+n in time. Then, at
time T−T ′+ 3

2ε, the two robots at v−n must move
on straight lines to q−n and pn for the remaining
time. Notice that the robot initially at v+n has
ε spare time while targeting q+n and potentially
could reach another robot in the ellipse with foci
at v+n and q+n and major axis ||v+n q+n || + ε. By

construction, every such robot lies in the line seg-
ment v+n q

+
n and, therefore, there exist a solution

where the robot at v+n goes to q+n on a straight
line as soon as it’s awakened. The symmetric ar-
gument applies when v−n is awakened first. Re-
cursively applying the same argument for the
robots in the ε-neighborhood of vn−1, vn−2, . . .
at time T −T ′ we can determine the behavior of
all such robots in the solution. Consider the first
clause (xi ∨ xj ∨ xk), i < j < k, that is positive
without loss of generality. The argument above
implies that the robot at sj,1 will be awakened
at time T − T ′ + 4n or T − T ′ + 4n + ε. The
robot at s′j,1 can only be reached in time by the
robot awakened at sj,1. Even if such robot awak-
ens at time T − T ′ + 4n, the only other robot
that it can reach is s′′j,1, since it must target s′j,1.
Then, there is a solution where it goes to s′j,1
on a straight line as soon as it is awakened. The
robot at s′′j,1 is awakened at time T−||s′j,1s′′j,1|| or
T − ||s′j,1s′′j,1|| − ε. In both cases, it cannot reach
s′i,1, s

′
k,1 by construction, or any other robot in a

different clause gadget because ||s′j,1s′′j,1|| < 2n.
Then, by a similar argument, the robot at sk,1
and si,1 must respectively move in a straight line
to s′k,1 and s′i,1. Hence, this will be the behavior
of all robots at positions of the form si,`. Assume
for contradiction that, for the `-th (without loss
of generality positive) clause (xi ∨ xj ∨ xk), v+i ,
v+j , v+k are awakened at time T−T ′+ 3

2ε. Then no
robot can reach c` within time T . Therefore, we
can use the order of awakening between v+i and
v−i , i ∈ {1, . . . , n} to obtain a truth assignment
that satisfies the original 3SAT instance.

References

[1] Hugo A Akitaya and Jingjin Yu. Freeze tag awaken-
ing in euclidean spaces. In Abstracts of the 26th Fall
Workshop on Computational Geometry, 2016.

[2] Esther M Arkin, Michael A Bender, Sándor P Fekete,
Joseph SB Mitchell, and Martin Skutella. The freeze-
tag problem: how to wake up a swarm of robots. Al-
gorithmica, 46(2):193–221, 2006.

[3] E. M. Gold. Complexity of automaton identification
from given data. Information and control, 37(3):302–
320, 1978.

Freeze Tag is Hard in 3D

Erik D. Demaine∗ Mikhail Rudoy∗†

Abstract

In the freeze tag problem, we start with n robots
at specified locations, only one of which is ini-
tially “active”. All active robots can move at
unit speed, and upon reaching another robot’s
location, can activate that robot. The goal is
to activate all robots in the minimum possible
time. This problem was introduced by Arkin et
al. in 2002, who developed approximation algo-
rithms, but left hardness as an open problem.
At FWCG 2016, Akitaya and Yu proved NP-
hardness in Euclidean 3-space. Here we give a
very simple proof of NP-hardness in Euclidean
`p space for any p > 1.

1 Introduction

The freeze tag problem was introduced by Arkin
et al. [2] at SODA 2002 to model automatic
awakening of a swarm of robots by manually
turning on just one robot. The input consists of a
list of robot locations, exactly one of which is in-
dicated to be initially “active” or “on”. Phrased
as a decision problem, we are also given a time
limit. Robots that are active can move at unit
speed; inactive robots cannot move, but are ac-
tivated when they are in the same location as an
active robot. The goal is to decide whether all
of the robots can be activated within the given
time limit.

The freeze tag problem has many variants de-
pending on the space of possible robot locations
and on the choice of metric on this space (defin-
ing “unit speed”). For example, Arkin et al. [2]

∗MIT Computer Science and Artificial Intelligence
Laboratory, 32 Vassar St., Cambridge, MA 02139, USA,
edemaine@mit.edu, mrudoy@gmail.com
†Now at Google Inc.

prove the problem NP-hard and give an O(1)-
approximation algorithm for star graphs, and
more generally, for graphs of bounded degree.
They also give an efficient PTAS for any `p space
of fixed dimension, but leave open NP-hardness.
This problem was tackled by Akitaya and Yu
[1] at FWCG 2016, who claimed strong NP-
hardness for Euclidean d-space for any d ≥ 2.
Unfortunately, it was later discovered that their
proof is incorrect for d = 2.1

In this paper, we prove that the freeze tag
problem is strongly NP-hard in 3-dimensional
`p space, for any p > 1. (Recall
that the `p norm defines the distance be-
tween two points (x1, y1, z1) and (x2, y2, z2) as
p
√
|x1 − x2|p + |y1 − y2|p + |z1 − z2|p.) Our re-

sult generalizes Akitaya and Yu’s previous result
for p = 2. Our proof is also very simple.

2 Reduction

To prove NP-hardness of freeze tag in 3-
dimensional `p space for any p > 1, we reduce
from dominating set in square grid graphs, which
was shown NP-hard in [3]. Recall that a square
grid graph is a finite induced subgraph of the in-
teger lattice, and that the decision form of dom-
inating set asks whether there is a choice of k
or fewer vertices such that every vertex is either
chosen or adjacent to a chosen vertex. We as-
sume without loss of generality that the input
graph is connected.

Given a connected square grid graph G and
integer k, we can embed G in the plane such that
(1) some vertex is at the origin, (2) each vertex
has integer coordinates, and (3) two vertices are
adjacent if and only if they have unit distance.

1Personal communication with Hugo Akitaya, Sept.
2017.

1

edemaine@mit.edu
mrudoy@gmail.com

×k

×3

b H

b
b

Figure 1: Reduction from dominating set in grid
graphs: k active robots bH above 3 robots at
each vertex of the grid graph scaled by b.

We refer to each vertex by its coordinates in this
embedding. Let n be the number of vertices in G.

We place 3n+k robots as follows; see Figure 1.
For every vertex (x, y) ∈ G, we place three inac-
tive robots at location (bx, by, 0) for a scale fac-
tor b defined below. We also add k robots, one
active and k − 1 inactive, at location (0, 0, bH),
where H is a large number defined below. All
k of these robots will be active at time 0. Our
choice of bH will result in the distance between
these k robots and any other robot being at least
bH and at most bH + 1. The time limit T which
we give for the freeze tag instance is b(H+1)+1.

Choice of b. For p > 1, we can define positive
integers b and c (based only on p) such that 0 <
1
b < 21/p−1 and 1+ 1

c ≤ p. Also define p′ = 1+ 1
c .

Choice of H. No matter how we choose H,
the distance between location (0, 0, bH) and lo-
cation (bx, by, 0) (for (x, y) ∈ G) is at least bH.
Next we describe how to choose H so that these
distances are also at most bH + 1. Specifically,
we show that H = n(bn)c achieves this result.

The distance dx,y between location (0, 0, bH)
and location (bx, by, 0) (for (x, y) ∈ G) is ex-

actly b p
√

Hp + |x|p + |y|p. Because there are n
vertices in G, G is connected, and (0, 0) ∈ G,
we know that |x| + |y| ≤ n. By our assump-
tion that p > 1, |x|p + |y|p ≤ (|x| + |y|)p ≤ np.
Thus dx,y ≤ b p

√
Hp + np. It is well known that

the norm of a fixed vector in `i space does not
grow as i grows; since by definition p′ < p,
we then have that p

√
Hp + np ≤ p′√

Hp′ + np′

and therefore that dx,y ≤ b p
√
Hp + np ≤

b
p′√
Hp′ + np′ . We can rewrite the lat-

ter as bH p′
√

1 + (n
H)p′ , or equivalently bH +

bH
[

p′
√

1 + (n
H)p′ − 1

]
. But by Bernoulli’s in-

equality, p′
√

1 + (n
H)p′ ≤ 1 + 1

p′ (
n
H)p

′
, so dx,y

is at most bH + bH
[
1 + 1

p′ (
n
H)p

′ − 1
]

= bH +

bH
p′ (n

H)p
′

= bH + bn
p′ (

n
H)p

′−1. Because p′ > 1, this

is less than bH+bn(n
H)p

′−1. Plugging in our def-

inition of p′ = 1 + 1
c , we obtain bH + bn(n

H)1/c.
Then plugging in our definition of H = n(bn)c,
we obtain bH + bn(n

H)1/c = bH + bn(n
n(bn)c)1/c =

bH+bn(1
(bn)c)1/c = bH+bn(1

bn) = bH+1. There-
fore dx,y ≤ bH + 1 as desired.

3 Correctness

The reduction runs in polynomial time because b
and c are constant and k ≤ n. Furthermore, ev-
ery number produced by the reduction is either
0, bH, b(H + 1) + 1, bx, or by (where x and y
are coordinates of vertices in the input). These
numbers have magnitude polynomial in the size
of the input, so the reduction suffices for strong
NP-hardness. It remains to show that the reduc-
tion is answer preserving.

Dominating set =⇒ freeze tag. Suppose
that the input grid graph G has a dominating
set S with |S| ≤ k. Without loss of generality,
assume |S| = k (as we can always add vertices to
a dominating set). From this, we can construct
a solution to the freeze tag instance produced
by the reduction. This solution proceeds in two
stages.

The first stage starts at time zero and lasts
for bH + 1 units of time. At time zero, the k

2

robots at position (0, 0, bH) are active; we send
one robot to each of the locations correspond-
ing to the vertices in S. That is, if (x, y) ∈ S,
then one of the initially active robots will move
from its initial location of (0, 0, bH) to location
(bx, by, 0). This distance is at least bH and at
most bH + 1 by our choice of H, so the robots
can achieve this within the time allocated for the
first stage.

The second stage lasts for b units of time. Af-
ter the first stage, every robot is at a location
corresponding to a vertex of G. In particular,
each location corresponding to a vertex in S con-
tains four active robots (the one initially active
robot that got there from (0, 0, bH) and the three
initially inactive robots that started at the loca-
tion) while each location corresponding to a ver-
tex not in S contains three inactive robots. From
each location (bx, by, 0) corresponding to vertex
(x, y) ∈ S, we send the four active robots at that
location in the +x, +y, −x, and −y directions
for the duration of the second stage. As a result,
these four robots reach locations (b(x± 1), by, 0)
and (bx, b(y ± 1), 0). These four final locations
correspond to vertices (x ± 1, y) and (x, y ± 1)
if they exist. In other words, these locations are
exactly the four locations that can be associated
with neighbors of (x, y). Thus, the robots in the
locations associated with neighbors of (x, y) are
activated by the end of the second stage. Since
each vertex of G is either in S or adjacent to
a vertex in S, all of the initially inactive robots
are activated by the end of the second stage. In-
cluding the first stage, this solution takes time
bH + 1 + b, which is exactly the time limit T .

Freeze tag =⇒ dominating set. Suppose,
on the other hand, that the freeze tag instance
produced by the reduction is solvable: there ex-
ists a scheduling of destinations such that every
robot is activated in at most bH+1+b time. Con-
sider the k robots at location (x, y, z) = (0, 0, h).
For each of these k robots, we can identify the
first location with other robots that is visited
by this robot. This location will be of the form
(bx, by, 0) where (x, y) is a vertex in G. Reach-
ing this location requires at least bH time by our

choice of H.
The remaining time for the robots at (bx, by, 0)

is then at most 1 + b. Reaching location
(b(x + ∆x), b(y + ∆y), 0) associated with some
other vertex (x + ∆x, y + ∆y) requires time
b(|∆x|p + |∆y|p)1/p. Unless (∆x,∆y) is (1, 0),
(0, 1), (−1, 0), or (0,−1), this value is at least
b21/p. By definition of b, we know that 1

b <

21/p− 1, or in other words that b21/p > 1 + b. In
other words, the location (b(x+∆x), b(y+∆y), 0)
cannot be reached in the remaining time. Thus,
the only locations reachable from (bx, by, 0) are
the locations associated to vertices adjacent to
vertex (x, y).

We have shown that each of the k initially ac-
tive robots, together with all the robots it acti-
vates, can reach only the locations correspond-
ing to a single vertex and its neighbors. Since
every robot is activated within the time limit,
the location corresponding to every vertex must
be reached by some robot, and so there exists
a choice of k vertices (the first vertices visited
by the k initially active robots) such that every
vertex is either chosen or adjacent to a chosen
vertex. In other words, there exists a dominat-
ing set of size k in G.

4 Open Problems

The obvious remaining open question is whether
freeze tag is also NP-hard in the 2-dimensional
`p metric for any p.

References
[1] Hugo A. Akitaya and Jingjin Yu. Freeze tag awak-

ening in Euclidean spaces. In Abstracts from the
26th Fall Workshop on Computational Geome-
try, October 2016. http://matthewpjohnson.org/
fwcg2016/FWCG 2016 paper 6.pdf.

[2] Esther M. Arkin, Michael A. Bender, Sándor P.
Fekete, Joseph S. B. Mitchell, and Martin
Skutella. The freeze-tag problem: how to wake
up a swarm of robots. Algorithmica, 46(2):193–
221, 2006.

[3] Brent N. Clark, Charles J. Colbourn, and
David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1):165–177, 1990.

3

http://matthewpjohnson.org/fwcg2016/FWCG_2016_paper_6.pdf
http://matthewpjohnson.org/fwcg2016/FWCG_2016_paper_6.pdf

Easier Hardness for 3D Freeze-Tag

Matthew P. Johnson∗

1. INTRODUCTION
In the Freeze-Tag problem [2], we are given a set of n robots
lying at points in a space, all but one of which is initially
frozen. When a robot is not frozen, or awake, it can move
within the space at constant speed, and when it encounters
a frozen robot, it unfreezes it. The task to design a schedule
for the robots to move about, unfreezing one another, with
the objective of minimizing the makespan, i.e., the time at
which the last robot is unfrozen. A proof of Freeze-Tag’s
NP-hardness in 3D Euclidean space was implicit in [1], via
a relatively intricate reduction from Monotone 3SAT.

In this note, we give what we feel is a much simpler proof of
this result, reducing from Hamiltonian Path in grid graphs,
which is known to be NP-Complete, even in the special case
where the graph has exactly two degree-1 nodes [3].

A grid graph is specified by a finite set of nodes lying at
integer coordinates in the plane. The graph is induced by
these nodes in the sense that any two nodes u, v whose dis-
tance equals 1 (i.e., either their x coordinates or their y
coordinates differ by 1) will have an edge. Without loss of
generality, the n points will lie within {1, ..., n} × {1, ..., n}.

2. CONSTRUCTION
Given a grid graph, we construct the 3D Freeze-Tag instance
as follows (see Fig. 1(a)). We embed the grid graph in the
z = 0 plane in R3, placing a robot at each of its nodes, which
we call ground bots. The location of the initially awake bot
is one of the two degree-1 nodes, chosen arbitrarily, say g0.

Then we create an additional n − 1 robots, called sky bots,
located at heights far above the z = 0 plane. For each
t = 1, ..., n − 1, sky bot st is at height ht = T − ε − t.
The sky bots’ integer xy coordinates are all distinct, chosen
arbitrarily within {1, ..., n}× {1, ..., n}. We set the deadline
T = 3n4 + ε, where ε = 1

4n2 . Then it can be calculated that:

Claim 1. The distance d(gi, sj) from any ground bot gi to
any sky bot sj of height hj satisfies hj ≤ d(gi, sj) < hj + ε.

The strategy of the design is to ensure that in a feasible
schedule (i.e., one meeting deadline T), each initially frozen
ground bot will awaken exactly one other robot, a sky bot.

3. PROOF
Fix a schedule, and rename the initially frozen ground bots
g1, ..., gn−1 based on the order in which they are awoken.

If the schedule is feasible, clearly the first bot awoken by g0
must be another ground bot (g1), and d(g0, g1) ≥ 1. But
by time 1, we have only T − 1 = h1 + ε time left to send

∗
Lehman College and The Graduate Center, CUNY. This work was

supported by NSF-INSPIRE award #1547205 and a CUNY Junior
Faculty Research Award (J-FRASE) funded by the Sloan Foundation.

(a) Feasible schedule. (b) Infeasible schedule.

Figure 1: In (a), g0 → g1 → g2 shown in red and g1 → s1,

g2 → s2, and g3 → s3 in blue; in (b), g0 → g1 shown in red

and g1 → s2 → s1 shown in blue.

one of the two awake bots (g1, wlog) to reach sky bot s1.
Because h1 ≤ d(g1, s1) < h1 + ε, and because every frozen
ground bot is distance at least 1 away from g1, g1 will not
have time to awaken any other ground bots. Moreover, g1
must be a neighbor of g0 because g0’s distance to any non-
neighbor would be at least

√
2− 1 greater. Now, imagine g1

trying to awaken another sky bot, say si, before awakening
s1, and consider g1’s journey si → s1 (see Fig. 1(b)). Their
xy coordinates differ by at least 1, and the difference ∆z

between their heights is at most n−2, so it can be calculated
that d(si, s1) > ∆z + 1

3n
. This implies that the journey

g1 → si → s1 would take time at least h1 + 1
3n
> h1 + ε.

We have shown that in a feasible schedule, g0 will first wake
up one of its neighbors g1, and then g1 will travel to awaken
s1 (which then does not have time to wake any others up).
By repeated application of this argument, it follows that g0
must traverse a total of n− 1 edges of the grid graph, each
time visiting a new node and awakening another ground bot
(which must leave immediately to awaken a single sky bot),
i.e., g0 must traverse a Hamiltonian path.

Conversely, it is clear that if the grid graph admits a Hamil-
tonian path, then there exists a feasible schedule.

Hence we conclude:

Theorem 3.1. Freeze-Tag in 3D is NP-hard.

4. REFERENCES
[1] H. Akitaya and J. Yu. Freeze tag awakening in euclidean spaces.

In FWCG, 2016.
[2] E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. Mitchell, and

M. Skutella. The freeze-tag problem: how to wake up a swarm of
robots. Algorithmica, 46(2):193–221, 2006.

[3] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton
paths in grid graphs. SIAM Journal on Computing,
11(4):676–686, 1982.

1

Declarative vs Rule-based Control for Flocking Dynamics
Usama Mehmood

Department of Computer Science,
Stony Brook University, USA

Nicola Paoletti
Department of Computer Science,
Stony Brook University, USA

Dung Phan
Department of Computer Science,
Stony Brook University, USA

Radu Grosu
Cyber-Physical Systems Group,

Technische Universitat Wien, Austria

Shan Lin
Department of Electrical and

Computer Engineering, Stony Brook
University, USA

Scott D. Stoller
Department of Computer Science,
Stony Brook University, USA

Ashish Tiwari
SRI International, USA

Junxing Yang
Department of Computer Science,
Stony Brook University, USA

Scott A. Smolka
Department of Computer Science,
Stony Brook University, USA

ABSTRACT
The popularity of rule-based flocking models, such as Reynolds’
classic flocking model, raises the question of whether more declar-
ative flocking models are possible. This question is motivated by
the observation that declarative models are generally simpler and
easier to design, understand, and analyze than operational models.
We introduce a very simple control law for flocking based on a
cost function capturing cohesion (agents want to stay together) and
separation (agents do not want to get too close). We refer to it as
declarative flocking (DF). We use model-predictive control (MPC)
to define controllers for DF in centralized and distributed settings. A
thorough performance comparison of our declarative flocking with
Reynolds’ model, and with more recent flocking models that use
MPC with a cost function based on lattice structures, demonstrate
that DF-MPC yields the best cohesion and least fragmentation, and
maintains a surprisingly good level of geometric regularity while
still producing natural flock shapes similar to those produced by
Reynolds’ model. We also show that DF-MPC has high resilience
to sensor noise.

1 INTRODUCTION
Flocking is a collective behavior exhibited by a large number of
interacting agents possessing a common group objective [4]. The
term is most commonly associated with birds, and more recently,
drones. Examples include foraging for food, executing a predator-
avoidance maneuver, and engaging in migratory behavior.

With the introduction of Reynolds’ model [7, 8], rule-based con-
trol became the norm in the flocking community. Specifically, in
this model, at each time-step, each agent executes a control law
given in terms of the weighted sum of three competing forces to
determine its next acceleration. Each of these forces has its own
rule: separation (keep a safe distance away from your neighbors),
cohesion (move towards the centroid of your neighbors), and align-
ment (steer toward the average heading of your neighbors). As
the descriptions suggest, these rules are executed by each agent
in a distributed environment with limited-range sensing and no
communication.

The popularity of Reynolds’ model and its many variants raises
the question: Is there a more abstract declarative form of control for
flocking? This question is important because declarative models

are generally simpler and easier to design, understand, and analyze
than operational models. This is analogous to declarative programs
(e.g., functional programs and logic programs) being easier to write
and verify than imperative programs.

We show that the answer to this question is indeed positive by
providing a very simple control law for flocking based on a cost
function comprising two main terms: cohesion (the average squared
distance between all pairs of agents) and separation (a sum of in-
verse squared distances, except this time between pairs of agents
within each other’s sensing range). That is it. For example, no term
representing velocity alignment is needed. The cost function speci-
fies what we want as the goal, and is hence declarative. In contrast,
the update rules in Reynolds’ model aim to achieve an implicit goal
and hence are operational. Executing declarative control amounts
to finding the right balance between attracting and repelling forces
between agents. We refer to this approach as Declarative Flocking
(DF). We use MPC (model-predictive control) to define controllers
for DF, and refer to this approach as DF-MPC. We define a cen-
tralized version of DF-MPC, which requires communication, and a
distributed version, which does not.

Previous MPCs for flocking exist, e.g., [11–13]. Most of these
MPCs are designed to conform to the α-lattice model of flocking
proposed in [4]. α-lattices impose a highly regular structure on
flocks: all neighboring agents are distance d apart, for a specified
constant d . This kind of structure is seen in some settings, such as
beehives, but is not expected in many other natural and engineered
settings, and it is not imposed by Reynolds’ model.

In this paper, we show, via a thorough performance evaluation,
how centralized and distributed DF-MPC compare to Reynolds’
rule-based approach [7, 8], Olfati-Saber’s potential-based approach
[4], a variant of Zhan and Li’s centralized lattice-based MPC ap-
proach [10, 11], and Zhang et al.’s distributed lattice-based MPC
approach [12].We consider performancemeasures that capturemul-
tiple dimensions of flocking behavior: number of sub-flocks (flock
fragmentation), maximum sub-flock diameter (cohesion), velocity
convergence, and a new parameter-free measure of the geometric
regularity of the formation.

Our experimental results demonstrate that DF-MPC yields the
best cohesion and least fragmentation, and produces natural flock
shapes like those produced by Reynolds’ model. Also, distributed

1

DF-MPCmaintains a surprisingly good level of geometric regularity.
We also analyze the resiliency of DF-MPC and the lattice-based
MPC approaches by considering the impact of sensor noise. Our
results demonstrate a remarkably high level of resiliency on the
part of DF-MPC in comparison with these other approaches.

2 MODELS OF FLOCKING BEHAVIOR
We consider a set of dynamic agents B = {1, . . . ,n} that move
according to the following discrete-time equation of motion:

xi (k + 1) = xi (k) + dT · vi (k), vi (k) ∈ V (1)
vi (k + 1) = vi (k) + dT · ai (k), ai (k) ∈ A, (2)

where xi (k),vi (k),ai (k) ∈ Rm are respectively position, velocity
and acceleration of agent i ∈ B in the m-dimensional space at
step k , and dT ∈ R+ is the time step. We consider physical con-
straints on velocities and accelerations, described by the sets V
and A, respectively, which are defined by V = {v | |v | ≤ v̄} and
A = {a | |a | ≤ ā}, where v̄ and ā limit the allowed magnitude of
the velocity and acceleration vectors, respectively.

The configuration of all agents is described by the vector x(k) =
[xT1 (k) . . . x

T
n (k)]T ∈ Rm ·n . Let v(k) = [vT1 (k) . . . v

T
n (k)]T ∈

Rm ·n , and a(k) = [aT1 (k) . . . a
T
n (k)]T ∈ Rm ·n . Then the equation

of motion for all agents can be expressed as

x(k + 1) = x(k) + dT · v(k), (3)
v(k + 1) = v(k) + dT · a(k), (4)

The local neighborhood of agent i is defined by the set of other
agents, called neighbors, within a given distance from i , mimicking
the agent’s visibility sphere. For an interaction radius r > 0 and
configuration x, the set of spatial neighbors of agent i , Ni (x) ⊆ B,
is given by:

Ni (x) =
{
j ∈ B | j , i ∧ ∥xi − x j ∥ < r

}
, (5)

where ∥ · ∥ denotes the Euclidean norm.
For configuration x ∈ Rm ·n , we define the associated proximity

net G(x) = (B, E(x)) as the graph that connects agents within their
interaction radius:

E(x) =
{
(i, j) ∈ B × B | ∥xi − x j ∥ < r , i , j

}
, (6)

Definition 2.1 (α-lattice [4]). A configuration x ∈ Rm ·n is called
α -lattice if for all i ∈ B and all j ∈ Ni (x), ∥xi − x j ∥ = d , where d ∈
R+ is the scale of the α-lattice. For tolerance δ ∈ R+, a configuration
x ∈ Rm ·n is called a quasi α -lattice if for all i ∈ B and all j ∈ Ni (x),
|∥xi − x j ∥ − d | ≤ δ .

2.1 Reynolds’ rule-based model
In Reynolds’ rule-based distributed model [7, 8], each agent i ∈ B
updates its acceleration ai (k) at step k by considering the following
three components :

(1) Alignment: agents match their velocities with the average
velocity of nearby agents.

(2) Cohesion: agents move towards the centroid of the agents in
the local neighborhood.

(3) Separation: agents move away from nearby neighbors.

a) b)

Figure 1: Examples of α-lattice a) and quasi α-lattice b). Solid
lines connect agents in the sameneighborhood that have dis-
tance d . Dashed lines connect those with have distance d ± ϵ
for ϵ ≤ δ (the tolerance).

2.2 Olfati-Saber’s potential-based model
In potential-based flocking models, the interaction between a pair
of agents is modeled by a potential field. It is assumed that an
agent is a point source, and it has a potential field around it, which
exerts a force, equal to its gradient, on other agents in its range
of influence.In the work of Olfati-Saber [4], the potential function
ψα for a pair of agents has its minimum at the desired inter-agent
distance d of the desired α-lattice. Outside the interaction radius r ,
the potential function is constant, so the potential field exerts no
force.

2.3 MPC-based models
Model predictive control (MPC) [1] is a well-established control
technique that works as follows: at each time step k , it computes
the optimal control sequence (agents’ accelerations in our case)
that minimizes a given cost function with respect to a predictive
model of the controlled system and a finite prediction horizon of
length T , i.e., from step k + 1 to k +T . Then, the first control input
of the optimal sequence is applied (the remainder of the sequence
is unused), and the algorithm proceeds with a new iteration.

Two main kinds of MPC-based flocking models exist, centralized
and distributed. Please refer to the full version of this paper on
arxiv.org for further details.

3 DECLARATIVE FLOCKING
This section introduces centralized and distributed versions of our
Declarative Flocking (DF) model, and presents a flocking algorithm
based on MPC. Our formulation is declarative in that it consists of
just two simple terms: (1) a cohesion term based on the average
squared distance between pairs of agents, to keep the flock together,
and (2) a separation term based on the inverse squared distances
between pairs of agents, to avoid crowding. These two terms repre-
sent opposing forces on agents, causing agents to move towards
positions in which these forces are balanced.

3.1 Centralized DF model
The cost function J for our centralized DF model contains the two
terms described above, with the cohesion term considering all pairs
of agents, and the separation term considering only pairs of agents
that are neighbors. The weight ω of the separation term provides
control over the density of the flock.

JC (x) = 2
|B| · (|B| − 1) ·

∑
i ∈B

∑
j ∈B,i<j

∥xi j ∥2 + ω ·
∑

(i, j)∈E(x)

1
∥xi j ∥2

2

The control law is Eq. (??) with J (k) equal to∑T
t=1 J

C (x(k + t | k)).

3.2 Distributed DF model
The cost function J for our distributed DF model is similar to the
centralized one, except that both terms are limited to consider pairs
of agents that are neighbors.

JD
i (x) = 1

|Ni (k)|
·

∑
j ∈Ni (k)

∥xi j ∥2 + ω ·
∑

j ∈Ni (k)

1
∥xi j ∥2 (7)

The control law for agent i is Eq. (??) with Ji (k) equal to∑T
t=1 J

D
i (x(k + t | k)).

4 MEASURES OF FLOCKING PERFORMANCE
We introduce four key measures of flocking performance. A single
measure is insufficient, because flocking is indeed characterized by
multiple desirable properties, such as aligned velocities and cohe-
sion. Olfati-Saber introduces four main properties for flocking [4],
informally described as:

(1) the group of agents stays connected in a unique flock, i.e., no
sub-flocks and fragmentation should emerge;

(2) the group remains cohesive, in a close-knit formation;
(3) the group moves in a coherent way as if it was a unique body,

i.e., agents’ velocities are aligned; and
(4) the group maintains a regular geometry (in the α-lattice

sense).
We introduce the following four measures to capture these four
requirements. An important concept in these definitions is a sub-
flock, which is a set of interacting agents that is too far apart from
other agents to interact with them. Formally, a sub-flock in a config-
uration x corresponds to a connected component of the proximity
net G(x). Let CC(x) ⊆ 2B be the set of connected components of
the proximity net G(x).

(1) The number of connected components of the proximity net
quantifies connectedness—or, equivalently, fragmentation—of the
flock. There is no fragmentation when |CC(x)| = 1. Fragmentation
exists when |CC(x)| > 1. Fragmentation may be temporary or, if
sub-flocks move in different directions, permanent.

(2) The maximum component diameter, denoted D(x), quantifies
cohesion. It is defined by

D(x) = max
B′∈CC(x)

D(x,B′) (8)

where D(x,B′) is the diameter of connected component B′:

D(x,B′) = max
(i, j)∈B′×B′

i,j

∥xi j ∥. (9)

(3) The velocity convergence measure, adopted from [12], quanti-
fies the average discrepancy between each agent’s velocity and the
average velocity of the flock. In particular, we extend the measure
of [12] to average velocity convergence values across sub-flocks:

VC(x, v) =

∑
B′∈CC(x)

∑i ∈B′ vi −
(∑

j∈B′ vj
|B′ |

)

2/
|B′ |

|CC(x)| (10)

(4) Tomeasure the regularity of the geometric structure of a flock,
as reflected in the inter-agent spacing, we introduce a parameter-
free and model-independent irregularity measure I (x). For a con-
nected component (sub-flock) B′, it is defined as the sample stan-
dard deviation of the distances between each agent in B′ and its
closest neighbor. Thus, the measure penalizes configurations where
there is dispersion in inter-agent distances, while not imposing any
fixed distance between them (unlike α-lattices).

Let CC ′(x) = CC(x) \⋃i ∈B {{i}} be the set of connected com-
ponents where isolated agents are excluded. For |CC ′(x)| = 0 (or
equivalently, |CC(x)| = |B|), i.e., all agents are isolated, we set the
irregularity I (x) = 0, which is the optimal value. This reflects the
fact that a single point is a regular structure on its own. Moreover,
such a configuration is already highly penalized by |CC(x)| and
VC(v). For |CC ′(x)| > 0, the measure is defined by:

I (x) =
∑

B′∈CC ′ σ
(⊎

i ∈B′ minj,i ∥xi j ∥
)

|CC ′ | . (11)

where σ (S) is the standard deviation of the multiset of samples S
and

⊎
is the sum operator (or disjoint union) for multisets.

An α-lattice (see Def. 2.1) has the optimal value of I (x), i.e.,
I (x) = 0, since all neighboring agents are located at the same
distanced from each other, leading to zero standard deviation for the
term σ ({d,d, . . . ,d}). This shows that I (x) captures the regularity
underlying the concept of α-lattice.

We introduce this measure because previous measures of regu-
larity or irregularity, such as those in [4, 11, 12], measure deviations
from an α-lattice with a specified inter-agent distance d and are
therefore inapplicable to flocking models, such as Reynolds’ model
and our DF models, that are not based on α-lattices and do not
have a specified target inter-agent distance. Also, our irregularity
measure is more flexible than those based on α-lattices, because it
gives an optimal score to some configurations that are geometrically
regular but not α-lattices.

5 PERFORMANCE EVALUATION
We compare the performance of the models of Section 2 with the
newly introduced DF flocking models in the 2-dimensional setting.
In the first set of experiments (Section 5.1), we evaluate the per-
formance measures illustrated in Section 4. In the second set of
experiments (Section 5.2), we analyze the resilience of the algo-
rithms to sensor noise.

Unless otherwise specified, the population size is n = 30, the
simulation length is 100, dT = 0.3, v̄ = 8, ā = 1, r = 8.4, d = 7,
T = 3, and λ = 1. For further details about experimental settings
please refer to the full version on arxiv.org.

5.1 Performance Comparison of Flocking
Algorithms

Fig. 2 shows examples of final formations for all flocking models.
In Fig. 3, we compare the performance measures averaged over

100 runs for each flocking model. Regarding the number of con-
nected components (sub-flocks), our centralized DF-MPC registers
the best behavior, rapidly stabilizing to an average of 1 component
(see plot a). Our distributed DF-MPC and Reynolds’ model have

3

190 200 210

50

55

60

65

70

75

(a) Reynolds

-20 0 20 40 60

0

20

40

60

80

(b) Lattice-based central-
ized MPC

100 120 140

90

100

110

120

130

140

(c) Lattice-based dis-
tributed MPC

90 100 110

110

115

120

125

130

135

(d) DF centralized MPC

80 90 100

100

105

110

115

120

125

(e) DF distributed MPC

0 20 40 60 80

-20

0

20

40

60

(f) Olfati-Saber

Figure 2: Examples of final formations for different flocking
models. The red dots are the agent positions. The blue lines
denote the agent velocity vectors

comparable performance, reaching an average number of sub-flocks
below 1.4. The lattice-based MPCs and Olfati-Saber instead lead
to constant fragmentation, with more than 2 sub-flocks for the
distributed lattice-based MPC, 6 for the centralized lattice-based
MPC, and more than 8 for Olfati-Saber’s model.

This ranking is confirmed by the diameter measure (plot b),
where our centralized and distributed DF-MPC and Reynolds’ model
show the best cohesion, outperforming the lattice-based approaches.
Recall that this measure indicates the maximum diameter over all
sub-flocks, not the diameter of the entire population. As a conse-
quence, fragmentation tends to improve diameter values since it
produces sub-flocks with fewer individuals. This explains why our
distributed DF-MPC performs better on this measure than the cen-
tralized version, and similarly why Olfati-Saber’s model has smaller
diameter measure than centralized lattice-basedMPC, which in turn
has smaller diameter measure than the distributed variant.

As expected, Olfati-Saber’s model and the lattice-based MPCs
have very good performance for irregularity (plot c), since they are
designed to achieve the regular geometric formation of α-lattice.
Surprisingly, our distributed DF-MPC performs almost as well as
them on this measure. Centralized DF-MPC and Reynolds’ model
have the least regular formations.

For velocity convergence (plot d), we find that all models perform
comparably well and are able to achieve flocks with consistent
velocities fairly quickly after an initial spike.

5.2 Robustness to Sensing Noise
To evaluate the resiliency of the models to sensor noise, we per-
formed 20 runs for each model at 10 noise levels. The noise levels
are numbered from 1 to 10, and noise level i has σx = 0.2i and
σv = 0.1i . For each performance metric, we averaged its final val-
ues over 20 runs for each noise level. The results are plotted in Fig. 4.

Of the six models, Olfati-Saber’s model is the most vulnerable to
sensing noise: the number of sub-flocks |CC | in Olfati-Saber’s model
quickly increases to nearly 30, rendering other metrics irrelevant.
The lattice-basedMPCmodels also exhibit high fragmentation, lead-
ing to nominally good but largely irrelevant values for the other
performancemetrics. Our distributed DF-MPC and Reynolds’ model
have the best resiliency to sensing noise, with both models exhibit-
ing similar profiles in all metrics. While the irregularity and velocity
convergence measures increase with noise level, as expected, both
models remarkably maintain almost a single connected component
with a nearly constant component diameter for all 10 noise levels,
with DF-MPC achieving a smaller diameter than Reynolds’ model.

6 RELATEDWORK
Reynolds [7] introduced the first rule-based approach for simulation
of flocking behavior. With three simple rules, his model is able to
capture complex flocking behaviors of animals. Similar rule-base
flocking models are also proposed by Pearce et al. [5] and Cucker
and Dong [2].

Artificial potential fields have also been used extensively in
flocking models. For example, Tanner et al. [9]. Ogren et.al. [6]
use the motion of the leader to guide the motion of the flock; the
leader’s motion is independent.

La and Sheng [3] propose an extension of Olfati-Saber’s model
designed for noisy environments. In addition to the terms found
in Olfati-Saber’s model, their control law contains feedback terms
for position and velocity, to make agents tend to stay close to
the centroid of their neighborhood and minimizing the velocity
mismatch with their neighbors. For further details regarding the
related works please refer the full version of this paper on arxiv.org.

7 CONCLUSIONS
This paper presents an abstract declarative form of control for
flocking behavior and the results of a thorough comparison of
centralized and distributed versions of our MPC-based declarative
flocking with four other flocking models. Our simulation results
demonstrate that DF-MPC yields the best cohesion and least frag-
mentation, and produces natural flock shapes like those produced
by Reynolds’ rule-based model. Our resiliency analysis shows that
the distributed version of our DF-MPC is highly robust to sensor
noise.

As future work, we plan to study resilience of the flockingmodels
with respect to additional noisy scenarios such as actuation noise
(i.e., noise affecting acceleration) and faulty agents with deviant
behavior. We also plan to investigate smoothing techniques to
increase resilience to sensor noise.

REFERENCES
[1] E.F Camacho and C. Bordons. 2007. Model predictive control. Springer.
[2] Felipe Cucker and Jiu-Gang Dong. 2011. A general collision-avoiding flocking

framework. IEEE Trans. Automat. Control 56, 5 (2011), 1124–1129.
[3] H. M. La and W. Sheng. 2010. Flocking control of multiple agents in noisy

environments. In 2010 IEEE International Conference on Robotics and Automation.
4964–4969. https://doi.org/10.1109/ROBOT.2010.5509668

[4] Reza Olfati-Saber. 2006. Flocking for multi-agent dynamic systems: Algorithms
and theory. IEEE Transactions on automatic control 51, 3 (2006), 401–420.

[5] Daniel J. G. Pearce, Adam M. Miller, George Rowlands, and Matthew S. Turner.
2014. Role of projection in the control of bird flocks. Proceedings of the National

4

https://doi.org/10.1109/ROBOT.2010.5509668

0 10 20 30 40 50 60 70 80 90

Time

0

2

4

6

8

10

|C
C

|

Lattice Distributed Reynolds DF Centralized DF Distributed Lattice Centralized O-S

0 20 40 60 80

Time

0

5

10

|C
C

|

(a) Number of connected components
|CC |

0 20 40 60 80

Time

10

20

30

40

50

60

D
(b) Max component diameter D

0 20 40 60 80

Time

0

0.5

1

1.5

2

I

(c) Irregularity I

0 20 40 60 80

Time

0

1

2

3

4

V
C

(d) Velocity convergence VC

Figure 3: Comparison of performance measures obtained with 100 runs for each flocking algorithm.

0 10 20 30 40 50 60 70 80 90

Time

0

2

4

6

8

10

|C
C

|

Lattice Distributed Reynolds DF Centralized DF Distributed Lattice Centralized O-S

2 4 6 8 10

Noise Level

0

10

20

30

|C
C

|

(a) Number of connected components
|CC |

2 4 6 8 10

Noise Level

0

10

20

30

40

50

D

(b) Max component diameter D

2 4 6 8 10

Noise Level

0

0.5

1

1.5

I

(c) Irregularity I

2 4 6 8 10

Noise Level

0

0.5

1

1.5

V
C

(d) Velocity convergence VC

Figure 4: Comparison of the final values of the performance measures obtained with 20 runs for each flocking algorithm and
for each noise level.

Academy of Sciences 111, 29 (2014), 10422–10426. https://doi.org/10.1073/pnas.
1402202111 arXiv:http://www.pnas.org/content/111/29/10422.full.pdf

[6] Naomi Ehrich Leonard Peter Ogren. 2004. Cooperative control of mobile sen-
sor networks:Adaptive gradient climbing in a distributed environment. IEEE
transactions on Automatic Control 49, 8 (2004).

[7] Craig W. Reynolds. 1987. Flocks, Herds and Schools: A Distributed Behavioral
Model. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 25–34. https://doi.org/10.
1145/37402.37406

[8] Craig W. Reynolds. 1999. Steering Behaviors For Autonomous Characters. In
Proceedings of Game Developers Conference 1999. 763–782.

[9] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. 2003. Stable flocking of mobile
agents part I: dynamic topology. In 42nd IEEE International Conference on Decision
and Control (IEEE Cat. No.03CH37475), Vol. 2. 2016–2021 Vol.2.

[10] Jingyuan Zhan and Xiang Li. 2011. Flocking of discrete-time multi-agent systems
with predictive mechanisms. IFAC Proceedings Volumes 44, 1 (2011), 5669–5674.

[11] Jingyuan Zhan and Xiang Li. 2013. Flocking of multi-agent systems via model
predictive control based on position-only measurements. IEEE Transactions on
Industrial Informatics 9, 1 (2013), 377–385.

[12] Hai-Tao Zhang, Zhaomeng Cheng, Guanrong Chen, and Chunguang Li. 2015.
Model predictive flocking control for second-order multi-agent systems with
input constraints. IEEE Transactions on Circuits and Systems I: Regular Papers 62,
6 (2015), 1599–1606.

[13] Lifeng Zhou and Shaoyuan Li. 2017. Distributed model predictive control for
multi-agent flocking via neighbor screening optimization. International Journal
of Robust and Nonlinear Control 27, 9 (2017), 1690–1705.

5

https://doi.org/10.1073/pnas.1402202111
https://doi.org/10.1073/pnas.1402202111
http://arxiv.org/abs/http://www.pnas.org/content/111/29/10422.full.pdf
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406

Realizing Minimum Spanning Trees from Random Embeddings

Ion Mandoiu ∗, Saad Quader †, and Alexander Russell ‡

Department of Computer Science & Engineering, University of Connecticut, USA.

November 1, 2017

Abstract

Let T = (V,E) be an undirected tree with n vertices. For any arbitrary x, y ∈ R, let f : V →
{x, y}d be a random embedding of the tree-vertices where each f(v) is selected independently and
uniformly at random. We study the event that there exist nonnegative weights w1, . . . , wd so that T
is “realized” by this embedding as the unique minimum spanning tree of the points f(V) under the
scaled `2 metric ‖x‖2 =

∑
wix

2
i . The realization occurs in the following sense: under this metric, the

distance between two embedded vertices will be smaller than a threshold if and only if these vertices
are neighbors in T . We wish to bound the dimensionality d for which it is possible to realize T with
high probability.

We show that any tree can be realized with high probability when d = Ω(n logn). The proof gives
rise to a simple algorithm that needs only select wi ∈ {0, 1} and works for both `2 and `1 metrics.
We additionally study the case for general undirected graphs. We show two sufficient conditions
in this case: we show that d = Ω(na2 logn) is sufficient to realize any graph with high probability
where a is the arboricity of that graph, and that d = Ω(nr−2 logn) is also sufficient where r is the
smallest effective resistance of the edges in the graph. The former bound becomes d = Ω(n|E| logn)
in the worst case. We also show that d = Ω(n2) and d = Ω(n) are necessary to realize an Erdős-
Rényi random graph and a random n-vertex tree, respectively. We develop a probabilistic analog of
Radon’s theorem on convex sets, which may be of independent interest.

Variants of this natural “realizability problem” play a basic role in statistical inference of gene
expression data, where the existence of such a scaled metric is taken as evidence for the relevance of
the expression data to the biological dynamics modeled by the tree.

Link to full version. https://www.dropbox.com/s/61mulylcs0kbx0o/Realizing-Trees.pdf?dl=1

∗Email: ion@engr.uconn.edu
†Corresponding author. Email: saad.quader@uconn.edu
‡Email: acr@cse.uconn.edu

1

https://www.dropbox.com/s/61mulylcs0kbx0o/Realizing-Trees.pdf?dl=1

1

The Minimum Road Trips Problem
Samuel Micka and Brendan Mumey

Gianforte School of Computing, Montana State University
Bozeman, Montana, USA

samuel.micka@msu.montana.edu and brendan.mumey@montana.edu

Abstract—Road networks can be represented as partially
directed graphs; directed edges are one-way road segments and
undirected edges can be traversed in either direction. Vehicle trips
are simply paths from some starting vertex to some ending vertex
that must agree with the direction of any directed edge taken.
A loop detector is a device that counts the number of vehicles
that cross an edge during some time period. Loop detectors are
typically present on only a subset of the edges in the network. The
basic problem we are interested in is to determine the minimum
number of trips (simple paths) needed to explain all of the
loop detector count measurements. We also consider a dynamic
version of the problem in which time is discretized and vehicles
move one edge per time step. In this case, the loop detectors
provide traffic counts for each time step and the goal is again
to determine the fewest number of trips needed to explain the
data. Trips are now specified by a path and a starting time.

I. INTRODUCTION

Networks arise everywhere in the modern world, from
roadways to the Internet, networks are responsible for de-
livering us, and our ideas, to everyone else. Restricting our
attention to road networks, we can represent the roadways as
edges in a graph and intersections as vertices. Furthermore,
the flow in this graph is representative of vehicles traveling
from one location to another. We refer to individual vehicle
paths as trips that describe the vehicular flow. Determining
detailed trip information about vehicles is a difficult task
without monitoring each individual vehicle. However, due the
prevelance of loop detector data, it is not difficult to represent
the network as a graph with a vehicle count on various edges.
In this work we consider the problem of finding the smallest
number of trips that could be responsible for the known edge
volumes in the given graph.

We consider a network with a volume associated with
some edges in the graph. A volume represents the number
of vehicles traversing that edge. We discuss various problem
formulations, each of which consider different types of graphs
or trip decompositions. We cover complexity results and
preliminary ideas for algorithmic solutions for inferring trips
from these graphs.

Providing the underlying trips responsible for flow volumes
in a network offers insight into the structure of vehicular
flows. This structure can help provide input to planning and
routing algorithms to make vehicles travel more efficiently,
ultimately reducing travel times and congestion in various
network settings.

In previous work, the problem of flow decomposition for
individual commodities has been considered [1], [2], [3]. In
the research done by Vatinlen et al., the authors introduce two

greedy heuristics for extracting the smallest number of paths
from a s-t multipath flow [1]. The work done by Hartman et al.
extend the work done by Vatinlen et al. by comparing their
heuristics against new methods [2]. Specifically, the authors
introduce a new approximation algorithm that decomposes
the flow into no more than (1/ε2) times the optimal number
of paths. Two versions of their approximation algorithm are
compared against the heuristics introduced by [1] and the
width-based decomposition algorithm performs almost as well
as the original width-based heuristic. Mumey et al. consider
the same problem but offer improvements to the approxi-
mation bound [3]. The new algorithms are logarithmically
bounded by the length of the longest path in the flow and
the largest flow volume on any particular edge. We divert
from previous research by considering graphs that do not
have pre-defined sources and destinations. This formulation
more accurately represents instantaneous edge volume data in
a generic network, such as a roadway. Furthermore, we are
interested in finding plausible trips in order to extract more
precise information about individual agents in the graph. This
type of information can provide insight into the current status
of road networks, such as a lower bound on the number of
vehicles on a road system at a given time.

II. PROBLEM FORMULATION

To better understand graph flows in the context of road
networks and vehicles, an accurate model of the roadway must
be considered. To represent the roadway, we consider a mixed-
graph defined as G = 〈V,E,A〉 where V is the set of vertices
(intersections), E is the set of undirected edges, and A is
the set of directed edges, or arcs. We define a partial volume
function vol : E ∪ A → Z+. In other words, edges in some
subset of E∪A have positive integer volumes associated with
them, while some edges may remain unlabeled. Undirected
edges are representative of roadways that can be traversed in
either direction. Then, with vehicles, we are interested in the
problem of identifying individual paths which can be used to
identify large trends in movement data that might, otherwise,
go unnoticed. Specifically, we want our decomposition to be
composed of the fewest number of vehicle trip paths, hereon
referred to as trips, that could explain all edge counts in the
graph. Formally, trips are walks through the graph that do not
contain repeated edges or vertices, i.e. simple paths. We restrict
our attention to trips to avoid single vehicles explaining all of
the traffic around cycles in the graph. When a trip traverses
an edge, it accounts for a single unit of volume. We refer to
this formulation as the Minimum Road Trips (MRT) problem.

2

Lemma 1. MRT is NP-hard.

Proof. We show that the problem is NP-hard with a reduction
from 3-SAT. The 3-SAT problem asks whether there exists
a truth assignment to variables x1, . . . , xn that will satisfy
the boolean formula with m clauses which each contain three
variables: (xi∨xj∨xk)∧. . .∧(xx∨xy∨xz). For an instance of
3-SAT with n variables, we create a corresponding instance of
MRT such that there is an solution of the MRT instance with
exactly n trips if and only if the 3-SAT instance is satisfiable.
The construction is as follows: We begin by creating an
undirected edge for each variable xi for i ∈ {1, . . . , n},
denoted as exi

. Set vol(exi
) = 1 for all variable edges. The left

endpoint of a variable edge is associate with ¬xi and the right
endpoint with xi. Next, we create clause gadgets, each clause
gadget is a directed cycle consisting of six edges, three of
which with unit volume. Arrange the clause gadgets vertically
as shown in Fig. 1. Beginning with the top clause, we create an
edge to each literal in the clause. This edge originates at either
the associated variable edge, if that literal has not appeared
before in a clause, or from the last clause it was used in. We
also label this newly created edge with the literal. Note that
edges between clauses are directed downwards (towards higher
number clauses). Note, that a variable traversing a clause does
not result in a cycle because the variable can exit the clause one
edge before repeating a vertex while simultaneously covering
all unit edges in the clause.

Suppose the 3-SAT instance does have a satisfying assign-
ment. We can create a trip solution for the MRT instance by
creating a trip that originates at each variable edge; if xi is true
in the assignment then this trip originates at ¬xi and leaves the
edge from xi. If the trip enters a clause gadget, and the edges
of the clause gadget have not yet been traversed, then the trip
makes a traverse around the clause gadget prior to continuing
if there is an outgoing edge with that literal label. Since each
clause is satisfied by the truth assignment, some trip will reach
each clause. Thus, the n trips created will provide a solution
to the MRT instance.

Conversely, if there is an n trip solution to the MRT
instance, the 3-SAT instance will be satisfiable. To see this, we
observe that each trip must originate at a unique variable edge
(exactly one trip must traverse each variable edge and there
are n variable edges and n trips). Next, we argue that we can
modify the trip solution so that all trips agree with the edge
labels created. Observe that if one trip visits a clause gadget,
then it must circle the gadget and return to the literal that
entered on. If the trip continues it must do so on the correctly-
labeled exiting edge. If two trips enter the gadget, then it is
possible that the trips exit on the wrong label. However, we
can do a path swap to modify these trips so that they continue
on the correct labels, as shown in Fig. 2. Similarly, if three
trips enter a clause gadge, it is easy to see that they can be
path-swapped if needed so that all exiting trips do so on the
correct labels. This process of path-swapping is continued until
all trips agree with all edge labels. We set the truth value of
each variable xi according to which endpoint the trip leaves
exi

. Since each clause gadget is now circled by a single literal
(assigned true), this truth assignment satisfies all clauses.

x1

x2

x3
1

1

1

1

1

1

1

x2

x1¬

x4

x1¬

x2¬x2

x3¬

x4¬ x4

x3

x1

x1¬

x2

x4

x2

x1¬

x2x4

1

1

1

x2

x1

x3

x1

x2x3

Fig. 1: The MRT instance corresponding to the 3-SAT instance
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4).

1

1

1

xi
xi

xj

xj
xk
xk

(a) Before

1

1

1

xi
xi

xj

xj
xk
xk

(b) After

Fig. 2: By path swapping, all trips passing through a clause
gadget can be routed to agree with their edge labels.

III. A HEURISTIC MRT ALGORITHM

In this section, we introduce a heuristic for the MRT
Problem. The algorithm works by finding a maximal trip in the
network, adding it to the set of trips τ , reducing the remaining
volume of the volume-labeled edges along the path by 1 and
repeating this process until all the volumes are accounted for.
We refer to this algorithm as the Greedy Trips (GT) algorithm.
A maximal trip p is constructed by starting with some edge
that has positive volume and greedily extending the path in
both directions until further expansion is not possible without
adding an already-used vertex. The trip p is then trimmed so
that it starts and ends with edges with positive volume, and
added to the MRT trips solution. Volume labels along p are
decremented by 1 and the GT algorithm continues until no
edges with positive volume remain. Pseudocode can be found
in Algorithm 1.

The trips returned by the GT heuristic will be a valid MRT
solution as it accounts for all edge volumes in G. However,
the solution is not necessarily minimal and we have not yet
determined any performance guarantees for this heuristic on
the general MRT problem.

IV. VARIATIONS ON MRT

A. Directed Acyclic Graphs with No Missing Measurements

Under certain circumstances, we may have a graph that does
not contain any undirected edges or cycles and has fully known

3

edge volumes. When the graph contains no undirected edges,
no cycles, and there are no unknown edge volumes, i.e. we
have a Directed Acyclic Graph (DAG), the problem becomes
solvable in polynomial time with the heuristic described in
Section III.

Lemma 2. For the MRT problem where the graph is a DAG
with no unknown edge counts, the GT algorithm produces (in
polynomial time) an optimal trip solution.

Proof. Let τ be the solution returned by the GT algorithm and
let τ∗ be an optimal solution. We will show that |τ | = |τ∗| by
demonstrating that every trip in τ is either already in τ∗, or
that the trip can exist in τ∗, without producing any additional
trips, through path swapping. Let p be a trip returned in τ , if
p ∈ τ∗, then p is compatible with the optimal solution and we
are done. However, if p is not in τ∗, then p must be covered
by a set of trips [t1, . . . , ti] ∈ τ∗. We order these trips in τ∗

as they appear when we follow p from the source to the sink.
Note that, since p is maximal, the first trip t1 must start at p’s
source vertex and the final trip ti covering p must end at p’s
sink vertex. Then, we can transform the trips that cover p in
τ∗ into p without adding any extra trips, demonstrating that p
is compatible with the optimal solution. We start at p and t1’s
source and follow p until t1 diverges, at this divergence, we
note that t2 must enter the trail that p follows in order to cover
the volume that t1 misses by diverging. Then, we perform a
path swap with t1 and t2 so that t2 continues where t1 diverged
and t1 continues to follow p. We continue to perform path
swaps on t1 and tk, for 1 < k < i, until we reach trip ti,
swapping t1 and ti allows us to set the sink of t1 to be equal
to the sink of p, making p = t1 and proving that p compatible
with τ∗ without adding any additional trips. The described
procedure can be repeated on all trips in τ to show that τ = τ∗

through a series of path swaps.

Finally, we must show that the algorithm runs in polynomial
time. First, we consider time to find a maximal trail; in the
worst case, we have to traverse every edge in the graph, so the
time is bounded by O(|E|). The number of iterations of the
loop in the GT algorithm is bounded by S =

∑
e∈E∪A vol(e),

since each maximal trail found decreases the volume remain-
ing on at least one edge. Each loop iteration takes at most
O(|E|) time. Thus, the running time of the GT algorithm is
O(S|E|).

Algorithm 1 Greedy Trips

τ = ∅
while ∃ e ∈ G with vol(e) > 0 do

Find a maximal trip p ∈ G as described
τ = τ ∪ {p}
Decrement volume-labeled edges in p by 1

end while
return τ

B. Dynamic Minimum Road Trips Problem

In this section, we consider a mixed dynamic graph with
edge volumes known for a subset of the edges. In essence, this
version of the problem is a direct extension of the formulation
discussed in Section II, but with a dynamic graph. We refer to
the problem as the Dynamic Minimum Road Trips (DMRT)
Problem and ask for the smallest set of trips that explain the
edge volumes in the dynamic, time-varying, road network. The
network is represented as a mixed graph G = 〈V,E,A〉 where
V is the vertices and E and A represent the undirected and
directed edges respectively. We denote the lifetime of G to
be T , where T is a positive integer value (i.e. lt(G) = T).
Edges e ∈ E and a ∈ A may have a volume vol(e, t) or
vol(a, t) at each discrete time t ∈ [1, . . . , T] over the lifetime
of G representative of the number of trips using that edge
during that time. The volume of some edge or arc is either a
positive integer, or unknown. Specifically, we have a partial
volume function vol : (E ∪ A, t) → Z+. The solution to the
DMRT Problem is the smallest set of trips that explain the
edge volumes in G. We assume that it takes each flow one
time unit to traverse any edge in the graph.

DMRT with No Undirected Edges

In this section we describe a reduction from the special case
of DMRT where E = ∅, i.e. all edges in the graph are directed,
to the original MRT problem. Given a DMRT instance G =
〈V,E,A〉, recall that the lifetime of the network lt(G) = T ,
then we have T discrete time intervals from [1, T]. For each
t ∈ [1, k] we create a new copy of G at time t and refer to
it as Gt =< Vt, Et, At >. We duplicate each vt ∈ Vt into
vint and voutt . We set any existing arc (vi, vj) = (vini , v

out
j).

This modification to the edges and vertices ensures that a trip
can not travel more than one arc during a single time epoch.
Then, for each modified arc at ∈ At set vol(at) = vol(a, t)
where vol(a, t) is specified in the original network G at time
t. The construction of these graphs gives us T new copies of
G, each with edge weights equal to those of G at a particular
time interval.

Next, we connect these graphs using directed edges to make
one, large, graph. Let t be a time value in the discrete interval
[1, T − 1], then we connect Gt to Gt+1 by adding an arc a
from each voutt ∈ Vt to each corresponding vint+1 ∈ Vt+1. We
specify the vol(a) to be undefined so that any number of trips
can travel on these edges. However, a minimal trip solution
will not generate extra trips that are not necessary to explain
all labeled volumes in the graph. This ensures that extra trips
will not be introduced on these directed edges connecting the
graphs.

See Figure 3 for an example of the reduction, shown in
the gray boxes. The original dynamic graph, shown at the
bottom of the figure and labeled G, has only four vertices and
a lifetime of three. The edge volumes at each time interval are
clarified in the reduction, but not shown the original topology.
For each time unit, a copy of the graph is stacked vertically
above the last and, for clarity, each copy is encased by a gray
rectangle. The dotted edges, with unspecified volume, connect

4

G, t=1 1

1

0

0

G

G, t=2 0

0

1

1

G, t=3 0

0

1

0

Fig. 3: Full reduction of the DMRT problem to the MRT
problem. The graph at the bottom of the figure is the original
topology of G. The reduction shows each graph at some
discrete time enclosed by a gray box the dotted, directed, edges
connect the different copies of the graph.

the copies of the graphs to unite them into one, large, static
graph.

V. DISCUSSION AND FUTURE WORK

In this research, we have discussed various formulations
related to the determining trips from traffic volume information
in road networks. Solutions from different formulations can
be used to answer different types of questions. For example,
a solution to the MRT problem can provide a lower bound
for the number of drivers on a road system at a given time.
Alternatively, a solution to the DMRT problem can provide a
set of potential vehicle routes over a specific time interval.
In some preliminary simulations we have highlighted the
proportion of correctly discovered trips using the heuristic
described in the paper on three different types of synthetically
generated 10x10 grid graphs and trips (i.e. simple random
walks). Specifically, for each number of trips 50 dag known
graphs (DAG with all edge weights known), 50 dag unknown
graphs (DAG with some unknown edge weights), and 50 mixed
graphs (undirected and directed edges with some missing
edge weights) were generated. Then, the heuristic was used
to discover trips in each graph, Figure 4 shows the average
proportion of correctly identified trips on each type of graph

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of seed trips

P
ro

po
rt

io
n

of
 s

ee
d

tr
ip

s
di

sc
ov

er
ed

●

●

●

●
●

●

5 10 15 20 25 30

●

DAG Known
DAG Unknown
Mixed

Fig. 4: The x-axis shows the number of trips generated on each
graph. The y-axis shows the average proportion of correctly
discovered trips (per 50 graphs). The three types of graphs
were all 10x10 grids. The first, DAG Known, was a DAG
with a loop detector on every edge (i.e. each edge has a known
volume). The second type of graph, DAG Unknown, is a DAG
with each edge having a 80% probability of having a loop
detector. The final type of graph, Mixed, is a graph with both
directed and undirected edges with each edge having an 80%
chance of having a loop detector.

for different numbers of synthetically generated trips. We can
see that fewer walks leads to less ambiguity, presumably
because there will be less overlap between the trips and
therefore, less of an opportunity to merge them or swap their
paths. The figure demonstrates that accuracy decreases as edge
volumes are removed and, then again, as undirected edges are
introduced.

Future work includes the development of additional heuris-
tics and approximation algorithms for the these formulations
as well as generalizing the DMRT reduction to work for
undirected edges. We would like to introduce other techniques
to help improve the trip extraction process to more accurately
represent real paths taken by drivers. Future simulations will
use real loop detector data sets from actual road networks.

REFERENCES

[1] B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey, “Simple bounds and
greedy algorithms for decomposing a flow into a minimal set of paths,”
European Journal of Operational Research, vol. 185, no. 3, pp. 1390–
1401, 2008.

[2] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov, “How
to split a flow?,” in INFOCOM, 2012 Proceedings IEEE, pp. 828–836,
IEEE, 2012.

[3] B. Mumey, S. Shahmohammadi, K. McManus, and S. Yaw, “Parity
balancing path flow decomposition and routing,” in Globecom Workshops
(GC Wkshps), 2015 IEEE, pp. 1–6, IEEE, 2015.

Harder Hardness of Approximation for 2D r-Gather

Matthew P. Johnson∗

1. INTRODUCTION
In the r-Gather problem [4], we are given a set of n points in
a metric space and a parameter r. The task is to partition
the points into subsets, or clusters, with each having cardi-
nality at least r. The objective is to minimize the maximum
diameter of the clusters, i.e., the diameter of the minimum
enclosing disk surrounding the cluster’s points. The prob-
lem is solvable in polynomial time when r = 2. When r ≥ 3,
the problem is NP-hard, it admits a 2-approximation algo-
rithm, and is known to be NP-hard to approximate with any
factor better than 2.

In the special case where the points lie in the plane and
distance is Euclidean, the known hardness of approximation
lower bounds are weaker, but there is no known approxi-
mation algorithm with factor better than 2. Here the prob-
lem is known to be NP-hard to approximate better than√

13/2 ≈ 1.802 when r = 3 and
√
35+
√
3

4
when r ≥ 5 [4].

Results. We improve the hardness of approximation lower
bounds for the cases of r = 4 and r ≥ 5, to approximately
1.938443 and 1.938727, respectively.

2. OVERVIEW OF CONSTRUCTION
We reduce from the NP-hard variant of Planar 3SAT re-
stricted to instances where each variable appears in at most
three constraints1 [2]. Given a SAT formula, each variable
is modeled by a collection of points in a configuration that
can be visualized as a circular chain of unit disks, containing
an even number of disks. Each of the points corresponding
to a variable lies at the intersection of two adjacent disks.
Except in locations where connection gadgets are attached
and at clause gadgets, each point location contains either
one point or r − 1 points, alternating around the variable
cycle.

A clause gadget consists of an equilateral triangle with side
length

√
3 having r points located at each of its vertices and

1 point at its center (see Fig. 1(b)). This permits any one
of its vertices’ r points to feasibly cluster with its center
point. Each vertex has r rather than r− 1 points because if
more than one of its vertices wish to cluster with the center
point, this also permits each vertices’ points to cluster by
themselves. If none of the vertices wishes to cluster with
the center, i.e., if r − 1 of each of them is clustered with
other points, then the center point is forced to cluster with
∗Lehman College and The Graduate Center, City University
of New York. This work was supported by NSF-INSPIRE
award #1547205 and a CUNY Junior Faculty Research
Award (J-FRASE) funded by the Sloan Foundation.
1Note that 3SAT here is intended to mean that each clause
contains at most three distinct literals, not exactly three dis-
tinct literals. In the latter case, the restriction to three ap-
pearances is no longer NP-hard [2].

diameter at least 2 (with the three vertices’ three leftover
points, in the case of r = 4, or else with one of the vertices’
neighbors).

We now state some definitions.

Definition 1. An r-gather solution is consistent if every
non-clause-adjacent cluster corresponds to all points lying
within a unit disk and each clause point lies in a cluster
containing one of its three (r) neighbors.

Definition 2. A unit disk is on if all its points are clustered
together (with no other points), and off if each of its points
are clustered in the disk’s neighboring disks’ clusters.

Observe that a consistent solution induces a parity on the
collection of unit disks, where all the disks in a chain alter-
nate between on and off, and thus all cluster diameters are
1 (except for clause-adjacent clusters of diameter 0).

Restricting to solutions of diameter 1 will force a variable
cycle to be in one of two possible alternating states, corre-
sponding to the variable’s truth value. The number of circles
can be chosen sufficiently large so that any other possible so-
lution, i.e., one involving points from three separate locations
would, absent connection gadgets, have cost arbitrarily to 2.
The same applies to the chains connecting variable gadgets
to clause gadgets. Also, if none of a clause’s three incoming
chains is in the on state, correcting this at the clause gadget
would require using a cluster of diameter 2. Most of our at-
tention, therefore, will be focused on designing connection
gadgets so that the minimum cost of diverging from the a
consistent state in or around a connection gadget will be as
close to 2 as possible.

The locations within the variable gadget where chains at-
tach are chosen based on the numbers of appearances the
variable has of each type, i.e., appearing in a clause negated
or non-negated. Without loss of generality, a variable ap-
pears in either two or three clauses, including both negated
and non-negated appearances, i.e., either one of each type
or one of one type and two of the other. In the case of
two appearances, the variable cycle is constructed using an
even number of circles, with the chains attaching at circles
of opposite parities (shown as solid and dashed in Fig. 1(a)),
with the result that for each connection, the connection cir-
cle (shown bold in Fig. 1(a)) shares a single point each with
its left and right neighbor circles, each of which shares r− 1
points with their other neighbor circles, and so on. That is,
the alternation pattern of single-point locations and r − 1-
point locations on one side of a connection is the mirror
image of the opposite side’s pattern.

In the case of three appearances, the variable gadget con-
tains an odd number of circles, with (say) positive appear-
ance(s) attaching at solid circle(s) and negative appearance(s)
attaching at dashed circle(s). In order to permit the sym-

1

(a) Variable gadget.

(r)

(r) (r)

(r − 1) (r − 1)

(r − 1)

(1)

(1)

(1)

(1)

(1)

(1)

(b) Clause gadget.

Figure 1: Detailed description of variable gadget (a) for a variable appearing in three clauses: The two chains
at the bottom correspond to two appearances of the same type (i.e., negated or not), and the chain at the
top represents an appearance of the opposite type. Points shown in triplicate represent r − 1 points; points
shown in duplicate represent r− 2 points. At each of the three connection points, the bold circle corresponds
to C1 from the connection gadget. The bold dashed/dotted circle at the bottom center is the location where
the 1 versus r − 1 parity flips (not needed for variables with only two appearances).

metric alternating patterns on the both sides of the two
same-type connections, we modify one circle lying between
those two connections to have r − 1 points on both sides
(shown in dashed/dotted bold at the bottom of Fig. 1(a)).
Note that this (2r − 2)-point circle does not provide any
opportunity to have an inconsistency of cost less than 2.

If the underlying SAT formula is unsatisfiable, then any so-
lution to the resulting r-gather instance must contain an
inconsistency. That is, there must come a point where a
cluster contains points drawn from multiple different unit
disks. Therefore the only other possible location where an
inconsistency could occur incurring cost less than 2 would be
at a connection gadget. Thus we may assume without loss
of generality that each the three chains meeting at a con-
nection (two segments within the variable gadget and one
going to the clause) are in consistent state, with the only
possible inconsistency occurring within the vicinity of the
connection gadget.

3. THE CONNECTION GADGET
To frame the successful operation of the connection gadget
in terms of satisfying a constraint, let αi be a boolean rep-
resenting the truth value of the literal (v or v̄) for a variable
v’s ith clause appearance, or equivalently a boolean that
is true if the corresponding chain is in the on state (corre-
sponding, in the top chain in Fig. 1(a), to the solid circles in

that chain being on). Let βL
i , β

R
i be booleans corresponding

to the left and right segments of v’s gadget, respectively, on
either side of the connection gadget for v’s ith appearance.
Note that βR

i and βL
i+1 refer to the same segment of the vari-

able gadget, but their truth values have different meanings:
βR
i being true means that that segment’s state is consistent

with v’s ith chain being on, whereas βL
i+1 being true means

that that segment’s state is consistent with v’s i+ 1st chain
being on. Chains i and i + 1 could correspond to opposite
kinds of literals.

Intuitively we expect that in a consistent solution we will
always satisfy αi = βL

i = βR
i . We now argue that it will

suffice to analyze the cost of violating a weaker constraint
than this, specifically αi → (βL

i ∧ βR
i).2

Lemma 1. If αi → (βL
i ∧βR

i) is satisfied at every connection
i (of each variable gadget) in a solution of cost strictly less
than 2, then the formula is satisfiable.

Proof. Suppose there is a solution of cost strictly less than
2. We will argue that if the formula is not satisfiable, then
the specified implication must be violated at some connec-
tion.

A feasible r-gather solution must cluster all points. Since
the only possible clusters of cost less than 2 that can cover

2This constraint can be interpreted as being equivalent to
the “SPLIT vertex” of Constraint Logic [1].

2

C1

C2 C3

C4

C8 C9

C5 C6

C7

I(1) J(1)
G(1) H(1)

B(1) C(1)

A (r − 2)

E(r − 2) F (r − 2)

K(1)

L(r − 1) M(r − 1)

D(r − 1)

(a) r = 4.

C1

C2 C3

C4

C8 C9

C5 C6

C7

I(1) J(1)

G(1) H(1)

B(1) C(1)

A (r − 2)

E(r − 2) F (r − 2)

K(1)

L(r − 1) M(r − 1)

D(r − 1)

(b) r ≥ 5.

Figure 2: Connection gadgets.

C1

C2 C3

C4

C8 C9

C5 C6

C7

I(1) J(1)G(1) H(1)

B(1) C(1)

A (r − 2)

E(r − 2) F (r − 2)

K(1)

L(r − 1) M(r − 1)

D(r − 1)

(a) r = 4.

C1

C2 C3

C4

C8 C9

C5 C6

C7

I(1) J(1)

G(1) H(1)

B(1) C(1)

A (r − 2)

E(r − 2) F (r − 2)

K(1)

L(r − 1) M(r − 1)

D(r − 1)

(b) r ≥ 5.

Figure 3: Refined connection gadgets.

a clause point are those of its chains, at least one of those
chains must at least start out in the on state. And since an
inconsistency within a chain would cost 2, that chain must
continue in the on state until it reaches a variable connection
point.

For each such chain, interpret the fact that it is clustering
a clause point as a message claiming that the corresponding
literal is true. The formula being unsatisfiable means that
there must be some variable v about which two clause points
are receiving contradictory messages.

First, suppose v has two conflicting connection chains turned
on, say, positive c1 and negative c2. Then if c1’s implication
is satisfied, that causes v’s two segments to both be in a
state conflicting with c2’s implication.

Second, suppose v has three chains with at least two of them
on and conflicting, say, one positive chain c1 and two nega-
tive chains c2, c3, where c1 and c3 are on. With c2 off there
is no necessity that βL

2 and βR
2 be the same, permitting c1’s

right segment to be compatible with it, and c3’s left segment
to be compatible with it. But if c1’s implication is satisfied,

then v’s third segment, i.e., the one between c3 and c1, will
be in a state conflicting with c3’s implication.

Lemma 2. Suppose that, for the r-gather instance constructed
in this reduction, a violation of the implication αi → (βL

i ∧
βR
i) at any connection gadget would imply that a solution

cost of at least c for some c. Then this restriction of r-gather
is NP-hard to approximate with factor better than min{c, 2}.
Proof. One direction of the reduction is clear: if the for-
mula is satisfiable, then the resulting r-gather instance has
cost 1.

Conversely, suppose the formula is not satisfiable. Then the
previous lemma tells us that any solution to the resulting
r-gather instance must either have cost at least 2 or must
have some αi → (βL

i ∧ βR
i) violation.

We now analyze the cheapest possible way for αi → (βL
i ∧

βR
i) to be violated.

The first pair of approximation lower bounds we obtain in-
volve the Chebyshev polynomial of the first kind Tn(z), which
can be defined by the identity Tn(z) = cos(n acos(z)) [3].

3

Theorem 3.1. r-gather with r = 4 is NP-hard to approxi-

mate with factor better than
√

2.5 + 1.5 · T 1
2
(1
3
) ≈ 1.9299.

Proof. The construction in Fig. 2(a) is drawn in such a
way that the angles BC1C, EC2G, and FC6H all equal
acos

(
1
3

)
≈ 70.529. This results in all the line segments

drawn in thick red having the same length:√
2.5 + 1.5 · cos

(
1
2

acos
(
1
3

))
≈ 1.9299. The line segments

GF , EH, AI and AJ are all longer than this.

Assume C7 is on, and assume we never pay for a red line.

Then point A cannot be clustered with either G or H.

Since G cannot be clustered with F , H cannot be clustered
with E, and E cannot be clustered with G, the locations
A,G,H,E, F must be appear in at least three different clus-
ters. (In fact G and H must appear in different clusters.)

L and M are both at least red distance away from each of
A, G, H, E, and F .

Therefore there at most 3r points available (i.e., if none of
C5’s points is clustered with C8, and none of C6’s with C9)
to be clustered into at least 3 clusters, which requires that
we turn C5 and C6 (and C1) on, i.e., set the variable to the
state consistent with satisfying the clause C7 leads to.

Theorem 3.2. r-gather with r ≥ 5 is NP-hard to approxi-

mate with factor better than
√

2.75 +
√

33
4
· T 1

3
(−139
331.5

) ≈ 1.9372.

Proof. The construction in Fig. 2 is drawn with angleBC1C

equal to twice the value of θ = acos
(√

33
6
T 1

3
(−139
331.5

) + 1
6

)
≈

33.3721. This angle results in AG’s length
√

2.5 + 1.5 cos θ
and GF ’s length

√
3.25− 3 cos(2θ) (and all other red lines)

being equal:
√

2.5 + 1.5 cos θ =
√

2.75 +
√
33
4
· T 1

3
(−139
331.5

) ≈
1.9372. Line segment EF is longer than this.

Assume C7 is on, and assume we never pay for a red line.

Then point A cannot be clustered with either G or H.

There are only two points, B and C, that are in less than
red distance from both G and H. Therefore G and H must
appear in different clusters as well.

L and M are both greater than red distance away from each
of A, G, and H.

Therefore there at most 3r points available (i.e., if none of
C5’s points is clustered with C8, and none of C6’s with C9)
to be clustered into at least 3 clusters, which requires that
we turn C5 and C6 (and C1) on, i.e., set the variable to the
state consistent with satisfying the clause C7 leads to.

Now we strengthen the approximation lower bounds further,
by considering a slightly more general class of drawings of
the connection gadget. For both the r = 4 and r ≥ 5 con-
structions, we relax the assumption that some points in the
drawing are collinear. The angles chosen in the following
two constructions were found by computer search.

Theorem 3.3. r-gather with r = 4 is NP-hard to approxi-
mate with factor better than ≈ 1.938443.

Proof. The argument is the same, about a slightly modi-
fied version of the configuration from Fig. 2(a). In Fig. 3(a),
points B, C2, and G are not collinear but bend slightly.

(L,G, F are not collinear.) This permits the angle BC1C to
be slightly larger while maintaining equal lengths among all
red lines. The following angles permitting this were found
numerically: BC1C ≈ 68.9248 and GC2B ≈ 174.4204.

Theorem 3.4. r-gather with r ≥ 5 is NP-hard to approxi-
mate with factor better than ≈ 1.938727.

Proof. The argument is again the same, about a slightly
modified version of the configuration from Fig. 2. In Fig. 3,
points B, C2, and G are not collinear but bend slightly. This
permits the four red lines from Fig. 2 to grow slightly longer,
with the two new red lines also now achieving the same
length. The following angles permitting this were found nu-
merically: BC1C ≈ 68.7549 and GC2B ≈ 174.4582.

4. DISCUSSION
As noted above, the hardness of approximation factors given
for r = 4 and r ≥ 5 were found via computer search for the
angle in the construction that would maximize the distances
that the factors result from. Given this, it seems especially
unlikely that these are the true final values. Intriguingly,
however, the best hardness of approximation known for the
r = 3 case remains

√
13/2 ≈ 1.802. (That reduction is

via Planar Circuit SAT rather than Planar 3SAT, because
“cheating” at the clause costs only

√
3 when r = 3 [4].) The

problem of finding a better than 2-approximation, even in
the case of r = 3, remains open.

5. REFERENCES
[1] R. A. Hearn and E. D. Demaine. Games, Puzzles, and

Computation. CRC Press, 2009.

[2] S. Tippenhauer. On planar 3-SAT and its variants. Master’s
thesis, Freien Universität Berlin, 2016.

[3] E. W. Weisstein. Chebyshev polynomial of the first kind.
MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html.

[4] J. Zeng, G. Telang, M. P. Johnson, R. Sarkar, J. Gao, E. M.
Arkin, and J. S. Mitchell. Mobile r-gather: Distributed and
geographic clustering for location anonymity. In ACM
MOBIHOC, 2017.

4

