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Abstract— Due to inherent irregularities in recyclable mate-
rials, sorting valuable metals (e.g., aluminum and copper) via
mechanical means is a difficult task resisting full automation. A
particularly hard challenge in the domain is the separation of
scrap metal pieces with physically attached impurities, which
is further complicated by variations in different batches of
recyclable materials. In this work, leveraging the latest devel-
opment in machine learning and robot learning, we develop
an image-based sorting system for tackling this challenging
task. In addition to delivering a highly accurate deep learning
model for reliably distinguishing pure scrap pieces from pieces
containing impurities with over 95% precision/recall, we further
automate the process of sample preparation, data acquisi-
tion/labeling/analysis, and machine learning model training.

I. INTRODUCTION

Metal recycling bears with it significant financial and en-
vironmental benefits. It allows manufacturers to dramatically
reduce the production cost. Using recycled metal, instead of
starting from refining raw metal ores, reduces the required
energy consumption by 60–95%. At the same time, it leads
to a reduction of the associated air pollution by 70–90%
and mining waste by 97% [1]. Similar benefits apply to the
recycling of many other materials, e.g., plastics.

The sorting of scrap metals (specifically, small metal pieces
after pre-processing, Fig 1b) is an important step in metal
recycling. As recycled materials with metal contents are
collected, cleaned and broken into small pieces, the task
for a sorting system is to separate different types of metals
from the mixed up metal stream. After pre-processed scrap
metal pieces are scattered on a moving conveyor, a traditional
metal sorting system first uses one or multiple sensors to
recognize the pieces and classify their types. The pieces are
then localized and moved to different bins (Fig 1c) using
some mechanical process, e.g., compressed air jets.

Automatic metal sorting has been a research topic for
a few decades [2], [3]. While earlier systems are mostly
mechanical [2], [4]–[7], recent works often assume a hardware
stack with a conveyor belt that feeds scrap metal pieces,
some contact-free sensors to identify and classify the pieces,
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Fig. 1: (a) The three subsystems of the metal sorting system proposed in
this article. (b) The scrap metal pieces to be separated, including pure copper
pieces and copper pieces with aluminum impurities. (c) Separated pieces.

and a segregation mechanism to eject pieces into different
bins. For classification, image-based sensing often directly
reasons about the individual RGB channels [8]–[10]. Eddy
current based sorting [9], [11]–[14] is effective in separating
ferrous metal fractions (e.g., iron, steel) from non-ferrous ones
(e.g., aluminum, copper, brass) according to their electrical
conductivity and magnetic permeability. Features can also
be extracted with Laser Induced Breakdown Spectroscopy
(LIBS) [15], [16] and X-ray [17]–[19], and then used
in certain classification algorithms [20]–[23]. Some early



works [24], [25] also reason abouts thermal properties. It
is fairly common to use a combination of multiple sensing
modalities [9], [12], [17], [22], [26], [27].

There are many drawbacks in existing sensor-based sorting
systems including mediocre accuracy and poor customizability.
For example, current image-based classification methods [8]–
[10], [23] are mostly based on RGB pixel-counting which has
accuracy at around 80%. They are also proprietary in general
and cannot be easily modified. Such drawbacks become quite
problematic in metal recycling because purity directly affects
the sale value of the recycled metal and different batches
of recyclables have different characteristics including colors
and shapes. As a prime example, existing methods/systems
(image and non-image based) do not function well at all when
separating copper pieces from copper pieces with aluminum
impurities (Fig. 1b and Fig. 2), a fairly common occurrence in
metal recycling. In this work, as a collaborative effort between
Rutgers and a large recycling company, we have developed a
full hardware-software stack building on the latest machine
learning and robot learning research for image-based material
sorting. Our method and system can successfully handle the
separation of irregular pure copper pieces and copper pieces
that are partially wrapped in aluminum.

The system we have developed includes three interacting
but independently operating subsystems (Fig. 1a): (1) a
machine learning modeling and training subsystem with an
intuitive UI for quick data labeling and scheduling training
of machine learning models, which can also apply existing
models for autonomous pre-labeling, (2) a compact robotic
subsystem for analyzing small scrap metal samples, capable of
autonomously spreading the samples and sorting the samples
using trained classification models, and (3) a metal sorting
production system with cameras, conveyors, air jets, and
associated control software. Because the main innovations of
this work reside with the first two subsystems, this paper and
its technical discussion focus on these subsystems.

The main contributions of this work are two. First, as a
key part of the overall system, we have developed a high-
performance recognition and classification method for image-
based metal sorting tasks, building on recent advances in
machine learning and deep learning. The method achieves an
accuracy (both precision and recall) at above 95%; our method
is also highly robust under changing lighting conditions. Sec-
ond, surrounding the classification method, we have developed
a complete and modernized software-hardware stack with a
robotic data collection/analytic subsystem, a model training
and evaluation subsystem, and a production subsystem. The
system allows fast, semi-autonomous analysis and adjustments
of the machine learning models to accommodate variations
in incoming recyclable materials.

II. IMAGE-BASED SORTING OF METAL MIXTURES

In contrast to making new products from uniform parts,
recyclers must deal with incoming recyclables that are highly
non-uniform and irregular. Due to the inherent variability in
recyclables, the recycling industry faces many challenges in
automating their production pipelines for large scale recycling

operations. To ground our discussion, in this section, we
describe a specific problem we set out to address in this
paper: the reliable separation of scrap metals pieces that
cannot be sorted using existing technology.

As metal recyclables are processed, large objects are
mechanically broken down into smaller pieces that must be
sorted based on the type. These metal pieces can be difficult
to separate due to two main reasons. First, the mechanical
pulverization process can cause different types of metals to
get mixed in the same metal pieces. Having impurities in
recycled metals results in significantly lowered value. Second,
different batches of recyclables can lead to large variations
to the color and shape of the resulting metal pieces. For
example, just like appliances themselves, the composition of
appliance recyclables can change dramatically over time. For
notational convenience, we denote the metal sorting problem
as Image-based Sorting of Metal Mixtures (ISMM).

(a) (b) (c) (d)

(e)
Fig. 2: (a) An evaporator. (b) A copper piece wrapped in aluminum. (c) A
pure copper piece. (d) A pure aluminum piece. (e) Three copper pieces with
aluminum mixed in and three pure copper pieces. Notice the similarity and
difference in their appearances.

As an example, to recycle metals (iron, copper, and
aluminum) in evaporators (Fig. 2a) from air conditioners
and refrigerators, the evaporators are washed and then
pulverized to pieces with the longest dimension around
5 centimeters. Beside copper and aluminum pieces, the
mechanical pulverization process creates a significant amount
of copper pieces with aluminum impurities wrapped around
(Fig. 2b,e). Such pieces are very difficult to separate from
the pure copper pieces as they are similar in density and
composition in the eyes of existing sorting machinery. Note
that, grinding the pieces to be much smaller will separate the
aluminum from the copper, but the additional pulverization
process also results in significant material loss. Moreover,
different batches of evaporators have differences in colors and
shapes of the resulting metal pieces. Without an autonomous
solution, the problem is currently dealt with manually, which
is uneconomical and potentially unsafe for workers, with
exposures to sharp metal pieces and loud machinery noises.

For the rest of the paper, we use the copper and aluminum
setting as the use case in describing our solution for ISMM.
We use Cu to refer to pure copper pieces and CuAl to refer
to pieces with mixed copper and aluminum content.
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Fig. 3: System architecture. The system has three main components. The ML modeling and training system is composed of a Mask R-CNN [28] classification
model, which outputs accurate metal scrap classification result, and a user interface, which is used to inspect and label the training data for Mask R-CNN.
To improve the labeling efficiency, the classification model can automatically label the training data for further manual tuning. The second part, named
robotics analytic system, employs a camera and a push and grasp policy to handle and analyze small batches of scraps. The robot analytic system can help
generate extra training data for the ML model, or directly sort small batch of metal scraps with high accuracy and efficiency. The third part is a conveyor
belt production system for large scale metal sorting. Both the robotics and production systems use the Mask R-CNN model to perform object classification.

III. SYSTEM ARCHITECTURE

Until recently, no apparent economical autonomous so-
lutions exist for ISMM: image-based and non-image-based
solutions cannot reliably tell Cu apart from CuAl due to their
similarities. However, rapid advances in machine learning
have yielded CNN (convolutional neural network) based
Machine Learning (ML) models for reliably discriminating
similar objects with levels of accuracy sufficient for solving
ISMM. Progress in robot learning further makes it possible to
automate a significant part of data collection, analysis, and
model training. Based on these observations, we leverage the
latest development in machine learning and robot learning to
develop sorting methods and systems for ISMM that overcome
the shortcomings of existing methods.

As mentioned in Section I, to tackle ISMM, we have
developed an effective recognition and classification method.
Then, surrounding the flexible and robust method, we have
built a complete software-hardware stack comprised of (1)
a machine learning modeling and training subsystem, (2) a
compact robotic subsystem for automated sample analysis
and data collection, and (3) a metal sorting production system.
The high-level architecture of the system is given Fig. 3.

In Sections IV, we describe the core recognition and
classification methods and the training subsystem. Then, in
Section V, we describe the robotic analytics subsystem.

IV. ML MODELINGS AND TRAINING SUBSYSTEM

The machine learning modeling and training subsystem
contains multiple models we have developed for recognition

and classification of scrap metal pieces, including one that
builds on the the well known Mask R-CNN [28] convolutional
neural network model. The subsystem can apply existing
trained models for fast classification of training data through
its user interface, significantly speeding up the data labeling
process. It also has an intuitive user interface for manual data
labeling. Here, we first describe the classification models
including a color-based model using pixel counting and
Support Vector Machine (SVM) [29], and a Mask R-CNN
based deep-learning model. Then, we describe the machine
learning model training interface. Here, the color-based model,
which is a popular choice in industry, is selected as a baseline
for comparison purpose.

A. Color-Based Classification

We first develop a baseline color-based classification
method that is close to the ones used in the industry [9].
Given an input RGB image (denoted IRGB) captured by a
camera above the workspace, the color-based method uses
color filters to perform segmentation and classification.

The pseudocode for this method is provided in Alg 1. In
line 1, we use dilation and erosion to remove image noise and
make the image smoother. Then, in line 2, we apply a filter to
remove all background pixels and only retains the pixels that
are relevant to the objects. Here, only the pixels with HSV
value in some specific range (specified by HSVBG) can pass
the filter. An example of the resulting image is provided in
Fig. 4b. After another noise removal, in line 4, we retrieve the
connected components. If the metal pieces are well-separated



and the background removal is perfect, each C ∈ C would
correspond to all pixels of one single metal piece. In line 5-8,
we check each piece C using a color filter HSVAl (Fig. 4c)
to get the percentage pAl of Al in the visible part of the piece,
and then use pAl to decide whether the piece is Cu or CuAl.
These lines (5-8) can be replaced with other classification
methods, e.g., a Support Vector Machine (SVM) model that
can be readily trained. An example classification result is
provided in Fig. 4d.

Algorithm 1: Baseline Color-Based Classification

1 I ← DILATEANDERODE(IRGB)
2 I ← COLORFILTER(I,HSVBG)
3 I ← DILATEANDERODE(I )
4 C ← CONNECTEDCOMPONENTS(I )
5 for C ∈ C do
6 pAl ← |COLORFILTER(C,HSVAl)|/|C|
7 if pAl > ε then tC ← CuAl
8 else tC ← Cu

9 return {(C, tC)|C ∈ C}

(a) Input image (b) Background removed

(c) Aluminum pixels (d) Result
Fig. 4: (a) An input image of Cu and CuAl scrap pieces. (b) The input
image after background extraction. (c) The white pixels corresponds to the
aluminum pixels in the original image. (d) The classification result of the
color-based method after parameter tuning. The red (resp. blue) lines sketch
the contours of Cu (resp. CuAl) pieces. The images are zoomed in for better
visualization.

In our implementation, the size for IRGB is 512×512, which
reaches a sufficient image clarity. The image smoothing steps
(line 1, 3) use 9× 9 kernel size. To ensure the color-based
system works accurately, the parameters, including the ones
for smoothing, the background extraction filter HSVBG, and
the material classification filter HSVAl, must be tuned by an
expert with computer vision background knowledge, which
makes the method difficult to use by non-experts. Apart

from manual parameter tuning, another shortcoming for the
color-based method is low level of robustness: the accuracy
is sensitive to objects’ color variation and change of light
condition. A slight alternation of such conditions may result
in a completely failure of the method and brings the necessity
of repeated parameter tuning.

B. Mask R-CNN Based Classification

To overcome the shortcomings of the color-based method,
we adapt a deep learning based method that utilizes Mask
R-CNN [28]. Mask R-CNN is a flexible and general learning
framework for object instance segmentation. It directly works
on the raw input image IRGB and is capable of accurately
classify all object instances (scrap metal pieces). A high level
network structure for Mask R-CNN is provided in Fig. 3: it
first finds regions of interest in the image, and then uses a
class box for classification and a convolutional network to
generate segmentation masks in a pixel-to-pixel manner.

The application of Mask R-CNN has two phases, namely
the training phase and the inference phase. During the training
phase, we first take images of metal pieces and then label
the pieces inside the images with their respective classes.
Such a process is called labeling. Note that although it
requires manual labor, the amount of images needed is only
a few hundreds. Further more, labeling does not require any
expertise in computer vision, as opposed to the color-based
method where parameter tuning can only be performed by
an expert. The labeled images are sent to a training program
to automatically generate the Mask R-CNN neural network
parameters for inference.

The inference stage is the actual classification process,
where the images taken from an running metal sorting system
is sent to the trained Mask R-CNN network. The segmentation
and classification results are then automatically generated.

C. User Interface for Labeling and Training

To facilitate the deployment and update of the machine
learning models, we developed a companion software user
interface (see Fig. 5). Its main function is for anyone,
including non-expert users, to be able to quickly label sample
images for training and updating the Mask R-CNN based
ML models. After initialization with pre-trained models, at
image loading time, through the UI, an end user can apply
existing models (or alternatively, color-based methods) to
autonomously label new training images. Then, the end user
can manually update any incorrect labels as needed. We
have built an easy-to-use tool for creating polygonal object
masks for label creation. After a image’s labels are verified
and saved, the use can schedule background processes to
update existing models’ parameters to incorporate the newly
labeled data. The user interface is straightforward and easy
to use. With a basic understanding of the software interface,
a human worker without expert computer vision knowledge
can readily label at least 30 images in an hour from scratch
(i.e., only manual labeling) with around 20 objects per image;
the labeling speed can be further increased by several times
when automatic labeling is applied.



Fig. 5: The user interface for labeling and training Mask R-CNN. The
top-left area is used to navigate and manage image data set. The bottom-left
area is used for manual and automatic class labeling. User can inspect images
and draw labeling polygons with mouse gestures in the right big window.

V. ROBOTIC ANALYTICS SUBSYSTEM

Although our classification algorithms have very high
precision/recall and are adaptive, as with any deep-learning
methods, it needs to be updated as the data distribution
changes. In our case, this can happen as a new batch of
recyclables is being processed. Therefore, to obtain optimal
performance, the models should be updated before each large
new batch of recyclables is processed in production.

To provide automated sample processing for facilitating
the collection of training data for model tuning, we have
designed a compact robotic analytics subsystem that can
automatically process, analyze, and sort small samples of
metal scraps from a batch using the trained classification
model. The subsystem is capable of efficiently spreading
mixed metal pieces into individual ones. The subsystem
can then apply trained recognition/classification models to
classify and pick/sort the pieces into separate bins for further
analysis. The spread and picking functionality is realized using
robot learning (in particular, an adapted Deep-Q Learning
Network or DQN [30] is applied). In this section, we present
the subsystem from the metal sorting perspective, i.e., the
objective is to directly sort different types of metal materials
in to different bins. The other functionalities of the subsystem,
e.g., object spreading and subsequently data collection, can
be directly built on successful metal sorting.

A. Hardware Setup and High Level Workflow
The robotic subsystem (Fig. 6) consists of a manipulator

(UR-5 + Robotiq 2F-85), an RGB-D camera (Intel D-435),
a square workspace, and control software with an intuitive
user interface. With scrap metal pieces arbitrarily placed in
the workspace, the robotic system processes the pieces by
iteratively performing the following procedures:

1) Sensing: the camera captures an RGB image and a
depth image to to get the problem state.

2) Classification: the color image is sent to the machine
learning classification subsystem to accurately segment
and classify the metal scraps in the scene.

3) Planning: given a set of grasp and push motion primi-
tives and all information from sensing and classification,
a DQN is used to select the optimal action.

4) Execution: the robot executes the planned action.

These four steps are repeated until all objects in the workspace
are successfully sorted. In the rest of this section, we will
describe the planning and execution steps in more detail.

B. Motion Primitives

We use a set of pre-defined motion primitives to avoid
on-line motion planning while keeping a high level of
action efficacy. Our robotic subsystem has two basic motion
primitives: grasp and push, both are executed in an overhead
manner, i.e., directly from the top of the workspace.

Grasp actions are designed for the robot to transfer a single
object. For a grasp action (x, y, θ, t), the robot hand first
moves above the 2D (x, y) location in the workspace with the
end-effector pointing straight down, rotated θ degrees along
the global z axis (the axis perpendicular to the workspace).
Then, the end-effector moves down, closes the fingers, and
transports the grasped object to a sorting bin t.

To reach a higher action efficiency and accuracy when
processing mixed metal scraps (e.g., see the middle pile
in Fig. 6a), we design push actions to help spreading and
eventually grasping the objects. For a push action (x, y, θ),
we use the end-effector to perform a fixed-distance horizontal
sweep motion starting from position (x, y) in direction θ. To
increase the contact area and improve the push efficiency, a
brush is used. A complete push action includes grasping the
brush, moving to an overhead position, performing the sweep
action, and then returning the brush to its original position.

The grasp and push actions are visualized in Fig. 6.

(a) Grasp action finger placement (b) Candidate push actions

(c) Pre-grasp (d) Grasp (e) Pre-push (f) Push
Fig. 6: Example grasp and push actions for handling metal scraps. (a) The
pre-grasp end-effector fingertip positions are shown as green circles. Such a
grasp action maximizes the likelihood of picking up the metal piece, while
minimizing the chance of fingertip colliding with other objects. (b) candidate
push actions that can effectively spread the objects. (c), (d), (e), (f) shows
the execution of the grasp and push actions in (a), (b). Notice the single
object is successfully retrieved using the grasp action and the scrap pile is
well-spread after one push action.

C. Reinforcement Learning of Push and Grasp Strategies

We developed a push and grasp strategy to coordinate and
figure out the best grasp and push actions at each iteration.



The strategy is adapted from our related work [30], [31] on
object manipulation with reinforcement learning, but with a
few key modifications on decision making and reward design
to customize it to the metal sorting task.

The strategy’s outline is provided in Alg. 2. In line 1,
we use a Deep Q-Network, named Grasp Network (GN), to
predict the optimal grasp action (x, y, θ) and the predicted
grasp confidence r̂ ∈ [0, 1] given the current observation, i.e.,
the RGB image IRGB and the depth image ID. The higher the
value of r̂ is, the larger the confidence of GN is in the success
of the associated grasp action. Then, in line 2, a decision
between grasping and pushing is made based on the value
of r̂: if r̂ < 0.6, or when the last grasp failed and r̂ < 0.8,
the algorithm chooses to perform a push action. Here, the
candidate push actions are generated by uniformly sampling
push contact locations on the boundary of objects with push
directions pointing to the centers of the objects (see Fig. 6b).
Then, a random push action is chosen. When the algorithm
chooses to grasp, the target bin t is decided by the class (i.e.
Cu or CuAl) of object C at the grasp position (x, y) (line 5).
The thresholds used in this algorithm are empirically selected
based on the observed performance in the experiments.

Algorithm 2: The Learning-based Manipulation Pol-
icy

1 (x, y, θ), r̂ ← GN(IRGB, ID, C)
2 if (r̂ < 0.6) or (r̂ < 0.8 and last grasp failed) then
3 return push action: SAMPLEPUSH(C)
4 else
5 t← argmaxtC |C∈C |C ∩ {(x, y)}|
6 return Grasp, (x, y, θ, t)

We now provide more background about GN. GN shares
a similar structure as the one in [30], which is visualized
in Fig. 7. GN focuses its attention on local regions that are
relevant to each single grasp and finds the optimal policy
for maximizing a single-step grasp reward. It takes an input
RGB-D image and outputs a score for each candidate grasp
centered at each pixel. The input image is rotated to align with
the end-effector frame to reason the rotated end-effector (see
the left image in Fig. 7). Structural wise, ResNet-50 FPN [32]
is used as the backbone; we design the last layer with our own
customized head structure shown in Fig. 7. Similar to [30],
we also employ image-based self-supervised pre-training to
achieve a good initialization of network parameters.

Given the basic structure of GN, we designed the reward
function to make the trained policy more suitable to the
metal sorting task. For an output grasp action (x, y, θ, t),
the possible cases are: (i) The grasp is successful and the
grasped object is sorted correctly, i.e., the object is put into
the correct bin; in this case, the reward is +1. (ii) The grasp is
unsuccessful due to finger collisions and mechanical reasons;
in this case, the reward is 0. (iii) The grasp is successful
but the grasped object is sorted incorrectly; we punish such
actions with reward −1. In the experiments, the third case
typically happens when the objects are too close to each

320×320×4 256-80×80 64-160×160 1-320×320 320×320×1
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ReLU
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Fig. 7: Architecture of the Grasp Network (GN). Pink, blue, and green text
are used for channel count, image size, and kernel size, respectively. The
size of the last layer (11×57) is dependent on the end-effector’s dimension.

other, due to sub-optimal pushing actions, which results in a
lower classification accuracy and sometimes multiple objects
grasped at the same time.
Remark. Prior to the learning-based push-grasping method,
we also developed an engineering-based push-grasping
method that decides when to grasp and when to push
based on a handcrafted heuristic. This engineered method,
which does not learn from experience, keeps performing
random push actions and only grasps an object when it is
classified to be isolated with sufficient clearance. Results of
extensive experiments, summarized in the following section,
clearly demonstrate the merits of the proposed learning-based
approach.

VI. EXPERIMENTAL RESULTS

Extensive experiments were performed to evaluate the
classification and robotics subsystems. All systems and
methods were trained and evaluated on a machine with an
Intel Core™ i7-6800K Processor at 3.40Ghz and an Nvidia
GeForce GTX 1070 graphics card.

A. Classification Result on Cu and CuAl
We used the machine learning and modeling subsystem to

train the Mask R-CNN and classify Cu and CuAl. We collect
data by manually spreading scrap pieces in the workspace
and take pictures. A total of 100 images with 168 Cu and
81 CuAl pieces was used for training and parameter tuning,
and another 40 images with 61 Cu and 26 CuAl pieces was
used for testing and evaluation. Two performance metrics
are compared: for a class of objects, precision is the number
of correctly sorted objects over the total number of objects
actually in the class, while recall is the number of correctly
sorted objects over the total number of objects sorted into in
the class. For both metrics, higher is better.

The precision and recall of classifying CuAl is reported in
Table I. Rows 2-4 are the baseline color-based methods with
classification variations, including pixel counting and support
vector machine (SVM) (see Alg. 1). The last row is the
result of the proposed subsystem. The results show that Mask
R-CNN is much more accurate than the industrial standard
color-based methods, with both precision and recall close to
100%; moreover, the gap between the current performance
and 100% is caused by human error in labeling and rare
occations where objects are not completely scattered.

We report that the Mask R-CNN classification method
can process 480p images at around 30 fps or 1080p images



Precision (%) Recall (%)
SVM + HSV histogram 95.1 97.9
SVM + RGB histogram 95.0 94.6

Aluminum pixel counting 95.1 96.4
Mask R-CNN 99.3 99.6

TABLE I: Classification Result on CuAl

at around 10fps, a speed that satisfies the requirement for
industrial metal sorting tasks.

B. Classification Results under Different Conditions

To show that the proposed system can handle different
object shapes, colors, and lighting conditions, we report the
classification result with aluminum, copper, and brass metal
scraps under various lightning conditions (Fig 8). 300 images
were collected to train Mask R-CNN and a total of 96.1%
precision and 97.6% recall were achieved for all metal types
and light conditions. As a comparison, due to large color
variations and similarity between copper and brass, we did
not find appropriate parameters for the color-based method
to successfully classify this data set.

(a) Ambient light (b) White light (c) Yellow light

(d) Al, Cu, Br under ambient light (e) Classification result
Fig. 8: (a) (b) (c) Aluminum (Al), copper (Cu), and brass (Br) under different
light conditions. (d) (e) Example image and classification result.

To test how the method adapts to image artifacts when
captured on a moving conveyor belt instead of on a static
workspace, we simulate the conveyor belt’s movement by
mounting the camera on the robotic arm in the robotics
subsystem and sweeping the arm above the workspace while
taking pictures. The classification result (e.g., Fig. 9) is
consistent with what is reported above.

C. Applying the Learning-based Classification Method to a
Stator Classification Problem

To show our learning-based classification method is easily
applicable to new and potentially more complex objects, we
apply it to a stator classification problem. In this classification
problem, we are given a recycled stator, containing copper
coils and silicon steel. The objective is to classify the steel
and the coil parts for further processing. An example is shown
in Fig 10. The learning-based classification method is trained

(a) Image with motion blur (b) Classification result
Fig. 9: The Mask R-CNN model can successfully work with blurry images.

using 100 labeled stator images, and can accurately perform
the classification. For this task, the color-based classification
method does not work since the object classes are different
mainly in terms of texture but could have very similar colors.

(a) Stators (b) Input image (c) Classification result
Fig. 10: The stator classification problem tasks a classifier to accurately
locate the center steel part and the coils of a stator. The stators could vary
in terms of size, shape, and color. (a) A collection of stators. (b) A stator is
put inside of the workspace. (c) The classification result after training.

D. Experiment on the Robotic Analytics Subsystem

Recall that the main purpose of the robotic analytics sub-
system is to automatically process batch samples, spreading
them apart, and analyzing the result using existing models. A
key measure of its efficiency is the number of actions needed
to process a given number of mixed metal pieces (see an
example in Fig. 1b). As the grasping portion of the robotic
analytics subsystem is learning based, it is also important to
examine its data efficiency.

The learning rate of the Grasp Network (GN) is plotted in
Fig. 11, which measures the data-efficiency of the learning the
grasp policy. We observe that the reward shaping, as detailed
in Section V-C, yields fairly good results; the algorithm
reaches a fairly high success rate (above 75%) with just
around 350 training samples. A 75% success rate means that
it takes 1.33 tries to successfully pick up one metal piece
from a dense pile of pieces, without any assistance from push.

For the entire push-grasping pipeline, we compare the
learning based solution with our initial engineered non-
learning-based solution. For the evaluation, we use a total
of 100 mixed aluminum and copper pieces (20 pieces per
trial) and count the number of push and grasping actions
needed for spreading the a pile. Whereas the engineering
based method required a total of 239 actions to spread a total
of 100 metal pieces, the learning-based method used only
115 actions in total. That is, the robot learning solution only
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Fig. 11: GN learning curve. The x-axis is the number of grasp actions
performed during training. The y-axis is the likelihood to use a single grasp
to successfully sort an object.

needs to use 15 actions in addition to the bare minimum of
100 grasping actions to sort and pick the 100 metal pieces.
The 100/115 ≈ 87% rate is a further improvement over GN,
which is an expected outcome.

In the accompanying video of this paper, we demonstrate
the functionalities of the user interface (Fig. 5) and a metal
spreading clip using the robotics subsystem.

VII. CONCLUSION

In this paper, we introduce a novel machine learning based
metal sorting system comprised of multiple subsystems aimed
at high-accuracy separation of scrap metal pieces that are
challenging to sort using existing procedures. The system
centers around fast and effective classification models that
achieve over 95% precision and recall. Surrounding these
models, an ML modeling and training subsystem and a robotic
analytics subsystem are built to further enhance the robustness
and levels of automation of the entire system. Systems like
ours bring significant contributions to recycling automation
with positive financial and environmental impact, and help
free human workers from highly repetitive and labor intensive
tasks that also have long-term adverse health risks.
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