
Efficient Formation Path Planning on Large Graphs
Max Katsev Jingjin Yu Steven M. LaValle

Abstract—For the task of transferring a group of robots from
one formation to another on a connected graph with unit edge
lengths, we provide an efficient hierarchical algorithm that can
complete goal assignment and path planning for 10,000 robots
on a 250,000 vertex grid in under one second. In the extreme,
our algorithm can handle up to one million robots on a grid with
one billion vertices in approximately 30 minutes. Perhaps more
importantly, we prove that with high probability, the algorithm
supplies paths with total distance within a constant multiple of
the optimal total distance. Furthermore, our hierarchical method
also allows these paths to be scheduled with a tight completion
time guarantee. In practice, our implementation yields a total
path distance less than two times of the true optimum and a
much shorter completion time.

I. INTRODUCTION

Controlling the formation of a group of robots with optimal-
ity guarantees has many practical applications. For example, in
deploying a mobile sensor network, it may often be necessary
to move the indistinguishable mobile sensors from one forma-
tion to another one to accommodate changes such as sensor
outages. Doing so economically is then important to extend
the operational efficiency and online time of the network.
Although finding paths with minimum total distance can be
achieved with the Hungarian algorithm [11] in O(n3) time
with n being the number of robots, it is not clear how long it
will take to schedule these paths so that no collision will occur
between the robots. Recently, it was proven that such paths,
when restricted on a graph network with unit edge lengths, can
be scheduled with time n+ℓ−1 (in which ℓ is the largest of the
distances between all pairing of start/goal formation locations),
which is a tight time bound [27]. Furthermore, it was shown
that a minimum time constraint and a minimum distance
constraint cannot be satisfied simultaneously in general [27].

Using a fully centralized approach, an O(n3 + nE) al-
gorithm was given in [27], in which E is the number of
edges of the graph. Although it is sufficient for medium
size problems (it takes about 15 minutes to plan the paths
for 5000 robots on a 4×106 vertex graph using a high-end
six-core CPU), the centralized algorithm starts to slow down
significantly on larger instances. In this paper, we address this
problem by proposing a hierarchical method that partitions the
graph into subgraphs. In a two-level approach, at the higher

Max Katsev and Steven M. LaValle are with the Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
E-mail: katsev1@uiuc.edu, lavalle@uiuc.edu.

Jingjin Yu is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA. E-mail:
jyu18@uiuc.edu.

This work is supported in part by NSF grant 0904501 (IIS Robotics), NSF
grant 1035345 (CNS Cyberphysical Systems), DARPA SToMP grant HR0011-
05-1-0008, and MURI/ONR grant N00014-09-1-1052.

An extended version of the paper, with complete proofs, is available at
http://msl.cs.uiuc.edu/∼katsev1/.

level, a network flow method is employed to distribute the
robots so that the number of start and goal locations are
balanced in every smaller subgraph. For the second stage,
the algorithm from [27] is adapted to plan the paths on these
subgraphs. A multi-level hierarchy can also be used. Our main
theoretical contribution is showing that with high probability,
the two-level hierarchical method plans paths with a total
distance within a constant factor of the true optimal distance.
In evaluation, our implementation generally yields a total path
of length no more than double the true optimal. Moreover,
the robots can be scheduled within the same time bound of
n + ℓ − 1. Our implementation, using a different scheduling
algorithm to speed up the process, produces on average a
schedule much better than this theoretical time bound. As an
end result, in approximately 30 minutes, our algorithm can
compute near distance optimal paths for one million robots
on a one billion vertex graph.

The problem of formation path planning, despite its unique
applications, can be viewed as a specialized version of the
multi-robot path planning problem, which has remained an
actively studied problem for many decades [8], [14], [16], [18],
[19], [20], [23], [24], [25], [26], [29]. For more information
on this general problem, see [4], [12], [13] and the references
therein. When the workspace is continuous, the formation path
planning problem, called permutation invariant multi-robot
path planning in [10], is represented using a single polynomial
of which the roots correspond to the unassigned configurations
for the robots in the formation. Recently, a dynamic graph
building approach was employed to solve the continuous
multi-robot path planning problem allowing various levels of
robot distinguishability [21]. A partition-based approach to the
multi-robot task allocation problem is considered in [15].

An alternative approach to solving the continuous space
problem is to build a discrete graph (roadmap) over the
continuous workspace and then solve the discrete problem.
Unless the workspace is very tight, the approach is often
effective. Such formulations have been studied as network
flow problems, for which many efficient algorithms are avail-
able [3], [9]. These algorithms, however, do not directly carry
over to multi-robot formation path planning since the focus
of network flow is usually on transporting goods over a road
network in which the vertices of a graph represent cities. These
“cities” are usually assumed to be able to hold an infinite
amount of goods. On the other hand, we generally do not want
multiple robots occupy the same vertex. Nevertheless, with
some effort, it is possible to apply network flow algorithms
to solve the formation path planning over many optimality
objectives [28].

The rest of the paper is organized as follows. In Section II
we introduce a formal description of the problem we are

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5643-5/13/$31.00 ©2013 IEEE 3606



considering. Section III describes the algorithm that is the
main contribution of this paper and proves its correctness.
Next, we analyze the algorithm’s running time and the quality
of the generated solutions in Section IV. In Section V we
provide experimental data and compare our results to the
optimal solutions. We conclude in Section VI.

II. MODELING FORMATION PATH PLANNING ON GRAPHS

A. Formation Path Planning with Collision Prevention

Let G = (V,E) be a connected, undirected, simple graph
(i.e., no multi-edges) with unit length edges. Let XI , XG ⊂ V
be sets of initial and goal locations on G.

Consider a robot moving along the edges of G at unit speed.
We call a function p : N → V a scheduled path from an initial
location u ∈ XI to a goal location v ∈ XG if p(0) = u, there
exists T ∈ N such that for all t ≥ T p(t) = v, and for all
0 ≤ t < T either (p(t), p(t+1)) ∈ E or p(t) = p(t+1). The
smallest T that satisfies this definition is called the completion
time. Note that p induces a regular path on G if we ignore
specific times when a robot visits each vertex. The length of
p is simply the length of this induced path.

A set of n scheduled paths P is called collision-free if for
any two paths pi, pj ∈ P and for any time t ∈ N, neither
pi(t) = pj(t) (“meet” type collision), nor pi(t) = pj(t + 1)
and pi(t+ 1) = pj(t) (“head-on” type collision).

Problem 1 (Formation Path Planning on Graphs). Given a 3-
tuple (G,XI , XG), find a collision-free set of n = |XI | =
|XG| scheduled paths P such that every initial and goal
location is used exactly once.

We have two metrics to evaluate the quality of a solution to
Problem 1. One is total distance traveled, which is simply a
sum of the lengths of all paths. Another is overall completion
time or makespan, which is the maximum completion time
among all robots. As shown in [27], it is impossible in general
to satisfy both time and distance optimality simultaneously. In
this paper, our main goal is to minimize the total distance, but
we pay attention to the completion time as well.

B. An Example

Fig. 1. A 6×7 grid with some vertices removed. The colored discs on the left
represent the initial formation and the gray discs represent the goal formation.
The colored paths represent the paths (not yet scheduled to avoid collision).

To better characterize Problem 1 and its solution, look
at the example in Fig. 1. For the 6×7 grid with holes, we
assign the top left corner coordinates (0, 0) and bottom right
coordinates (6, 5). There are six robots with XI = {(0, i−1)},

XG = {(6, i − 1)}, i = 1 . . . 6. That is, we want to
move the robots from the leftmost column to the rightmost
one. A distance-optimal solution to this problem is given
in Table I, corresponding to a schedule of the multi-colored
paths in Fig. 1. Each main entry of the table designates the
coordinates a robot should be at the given time step. The
overall completion time of this solution is 8.

TABLE I

Robot Time Step
0 1 2 3 4 5 6 7 8

1 0,0 1,0 2,0 3,0 4,0 5,0 6,0 6,1 6,1
2 0,1 0,0 1,0 2,0 3,0 4,0 5,0 6,0 6,0
3 0,2 1,2 2,2 3,2 3,3 4,3 5,3 6,3 6,2
4 0,3 1,3 1,4 1,4 2,4 3,4 4,4 5,4 6,4
5 0,4 1,4 2,4 3,4 4,4 5,4 6,4 6,5 6,5
6 0,5 1,5 2,5 2,4 3,4 4,4 5,4 6,4 6,3

III. PARTITION-BASED ALGORITHM FOR FORMATION
PATH PLANNING1

A. An Exact Algorithm for the Distance-Optimal Planning
Problem

We start with a brief description of Algorithm 1 [27] that
finds a distance-optimal solution to Problem 1.

The algorithm consists of two parts. In the first part, the
shortest paths between all pairs of initial and goal locations are
found using breadth-first search, and each robot is assigned a
goal location using the Hungarian algorithm [11]. The second
part involves modifying these paths to avoid collisions (if
necessary) and scheduling the robots’ starting times.

Algorithm 1 EXACTPLANNER

Input: Graph G, sets of initial and goal locations XI , XG

Output: Set of scheduled paths on G
1: for all u ∈ XI , v ∈ XG do
2: obtain a shortest path pij between ui, vj
3: pick the optimal subset P of {pij} that covers all locations
4: update P according to Lemma 7 of [27]
5: for all p ∈ P do
6: schedule p to start at start(p) = t
7: t = t+ 1

As shown in [27], Algorithm 1 finds a solution to Problem 1,
which minimizes the total distance traveled by all robots and
has a bounded completion time. Additionally, the schedule
generated by the algorithm has several properties that we will
use later:
(P1) after the robots start moving, they never stop until they

reach their corresponding goal locations;
(P2) certain kinds of delays can be introduced into the sched-

ule while still maintaining the collision-free property;
more specifically, for any time t, all robots that are
scheduled to start after t can be delayed by the same
amount of time ∆t;

1Although the algorithms described here operate on grid graphs, they can
be extended to work for more general classes of planar graphs.

3607



(P3) robots arrive at their goal locations in the same order that
they have started moving, except for the cases when the
goal location is blocking a path of another robot.

B. The Two-Level Approach to the Planning Problem

The basic idea behind our algorithm is to divide a large
graph into smaller ones to avoid computing all-pairs shortest
paths on the large graph. This partition creates a two-level
structure: a collection of smaller subproblems and a high-
level partition graph that encodes the way smaller graphs are
connected. An example partition of a 9 × 12 grid into 3 × 3
grids is given in Fig. 2.

G1

(a) A 9×12 grid with superim-
posed partition lines.

G11G10

G7

G3

G12

G8

G4

G6

G2

G9

G5

G1

(b) Resulting high level 3×4 struc-
ture.

Fig. 2. A partition of a 9×12 grid graph.

We will use Gi = (Vi, Ei), i = 1, . . . , k, to denote k
subgraphs created by the partition, and Γ for the high-level
graph. This process also induces a split on XI and XG. Define
XI

i := XI ∩ Vi and XG
i := XG ∩ Vi to be sets of initial

and goal locations that belong to the corresponding subgraphs.
Finally, let nI

i =
∣∣XI

i

∣∣ and nG
i =

∣∣XG
i

∣∣.
For a given Gi, if nI

i = nG
i , we can use EXACTPLANNER to

solve the subproblem exactly. On the other hand, if nI
i ̸= nG

i ,
it means that this subproblem is unbalanced and some robots
have to cross the partition lines. For example, if nI

i > nG
i , we

need at least nI
i − nG

i robots that start in Gi, but eventually
leave it for the goal locations in some other subgraphs.

In order to minimize the distance traveled by such robots,
we consider a flow network on Γ. In this network, vertices that
correspond to subproblems with nI

i > nG
i (nI

i < nG
i ) become

sources (sinks) with supply (demand) equal to
∣∣nI

i − nG
i

∣∣, all
edge capacities are unlimited, and edge costs are equal to 1
(varying edge costs can be used to accommodate non-uniform
partitions). The solution of the min-cost flow problem [1]
determines how the robots need to travel between subgraphs.

To balance the subproblems, we add artificial initial and goal
locations, which simulate robots moving between subgraphs.
For any directed edge (Gi, Gj) of Γ with positive flow fij , we
need to add fij goal locations to Gi and equal number of initial
locations to Gj . We place them in the newly created nodes,
connected to the midpoints of boundaries of the corresponding
subgraphs, so that they overlap in the original graph G (see
Fig. 3). In other words, a robot traveling from Gi to Gj can be
seen as arriving at an artificial goal location in Gi, crossing
the partition line, and “appearing” at the matching artificial
initial location in Gj .

Now that the subproblems are balanced, we can use Algo-
rithm 1 to solve each Gi independently. The final step is to

-3

+2+1

0

1

3

(a) Flow on Γ. (b) Resulting subproblems.

Fig. 3. In order to balance the original initial and goal locations (dark red
and green) we add artificial ones (light red and green) to every subgraph.

get rid of the artificial locations by “stitching” the generated
local paths together. Here we can use the fact that the order
in which the robots depart an artificial initial location must
be the same as the order in which they have arrived to the
matching goal location.

The pseudo-code for the partition-based planner is presented
in Algorithm 2.

Algorithm 2 PARTITIONPLANNER

Input: Graph G, sets of initial and goal locations XI , XG,
number of subproblems k

Output: Set of global paths P , local schedules for each Gi

1: partition G into {Gi}
2: construct the high-level graph Γ
3: construct the flow network on Γ
4: use network simplex algorithm [6] to solve the min-cost

flow problem
5: for i = 1 to k do
6: add artificial initial and goal locations to Gi

7: plan local paths on Gi using EXACTPLANNER
8: for all edges (Gi, Gj) of Γ with positive flow do
9: for all paths leaving subgraph Gi towards Gj do

10: identify a matching path entering Gj from Gi

11: merge them into a single path on G

C. Scheduling the Global Paths

Our task is to create a schedule for the global paths
on G that would respect the local schedules generated by
Algorithm 1 for each individual Gi.

For every global path p, let local(p, i) be the part of p
that goes through the subgraph Gi, start(p, i) be the starting
time of local(p, i) according to the local schedule of Gi, and
offset(p, i) be the length of the segment of p that starts at
the beginning of p and ends at the beginning of local(p, i)
(see Fig. 4 for an example).

We create a scheduling graph SG, in which every node
is a path and every edge indicates a dependency between
robots’ starting times. More specifically, we add a directed
edge (p, q) with label i to SG if both paths p and q go through
the same subgraph Gi and local(q, i) is scheduled to start

3608



a b c

d e f

g

hi

j

1 2

3 4

Fig. 4. A path p = [a . . . j] (shown in bold) visits the subproblems G1, G2,
and G4. We have: local(p, 1) = [abcd], local(p, 2) = [efg], local(p, 4) =
[hij], offset(p, 1) = 0, offset(p, 2) = 4, and offset(p, 4) = 7.

immediately after local(p, i). Note that if some paths have
several subgraphs in common, SG is a multigraph.

Graph SG is a directed acyclic graph (see the next section
for details) and allows a topological ordering [5]. Therefore,
we can traverse the nodes of SG and compute the earliest
possible starting time for each global path, which results in
Algorithm 3. In lines 7–10 we find a starting time for q
such that the delay between robots entering local(p, i) and
local(q, i) is greater or equal to start(q, i)− start(p, i) (i.e.,
the delay required by the output of Algorithm 1). According
to (P2), this ensures that each local schedule remains valid.

Algorithm 3 PARTITIONSCHEDULER

Input: Graph G, collection of subgraphs {Gi}, set of global
paths P , local schedules for each Gi

Output: Set of scheduled paths
1: construct the scheduling graph SG with P as vertices
2: perform the topological ordering of P according to SG
3: for all q ∈ P do
4: if q has in-degree 0 then
5: schedule q to start at start(q) = 0
6: else
7: for all incoming edges (p, q) do
8: i = label of (p, q)
9: tp = start(p) + (start(q, i)− start(p, i))+

(offset(p, i)− offset(q, i))
10: schedule q to start at start(q) = maxp tp

D. Correctness
Theorem 1. Algorithms 2 and 3 generate a valid solution to
Problem 1.

Proof Idea: We need to show that the resulting schedule
is collision-free. Since Algorithm 3 respects the local sched-
ules for each Gi, collisions between robots that are located
in the same subgraph are impossible. Additionally, since the
robots travel between the subgraphs according to the min-cost
flow on Γ, they always cross the partition lines in the same
direction, which excludes head-on collisions between robots
switching subgraphs. Finally, we prove that the scheduling
graph is acyclic by using (P3), combined with the fact that
the network simplex method [6] for the min-cost flow problem
produces a solution restricted to a spanning tree of Γ.

IV. ALGORITHM ANALYSIS

In this section, we assume that graph G = (V,E) is a
uniform square grid of size m×m with unit distance between
adjacent vertices and that initial and goal locations are chosen
at random, independently from each other, according to a
uniform distribution on V .

As usual, c and C will denote positive universal constants
whose values might change between expressions. Sometimes
we will use a parameter, Ck, to indicate that the value depends
on k, the number of subgraphs in the partition, but not on any
other inputs to the algorithm.

A. Time and Distance Bounds for the Generated Paths

Let D(k) be the total distance traveled by all robots in the
solution generated by Algorithm 2 for a fixed value of k, and
OPT be the cost of the distance-optimal solution. We say that
a parametrized event E(n) happens with high probability if it
happens with probability 1−O(n−c).

Theorem 2.
D(k) ≤ Ck ·OPT

with high probability as n → ∞.

Proof Idea: First, we extend a fundamental result from
the matching theory [2] to derive the bounds on the optimal
solution cost:

Lemma 3. With high probability,

cm
√
n log n ≤ OPT ≤ Cm

√
n logn.

Unfortunately, the lemma cannot be applied directly to the
subproblems on Gi, since artificial locations are not uniformly
distributed. Therefore, we consider a minor modification of
Algorithm 2 that attempts to construct as many paths as
possible without resorting to artificial locations. Next, we
bound the total length of the paths that are limited to a single
subgraph by Ckm

√
n log n, by applying Lemma 3 to them.

The total length of the long-distance paths, which traverse
multiple subgraphs, is bounded by showing that, with high
probability, there is at most Ck

√
n log n of such paths, each

of length no more than 4m. Finally, we show that, since such
a modification does not improve the solution,

D(k) ≤ Ckm
√
n log n ≤ Ck ·OPT,

with high probability, as needed.

Theorem 4. It is possible to use the path set P produced
by Algorithm 2 to construct a solution to Problem 1 with the
same total distance traveled as P and completion time at most
n+ ℓ− 1, in which

ℓ = max
u∈XI ,v∈XG

dist(u, v).

Proof Idea: Simply apply the scheduling approach used
in Algorithm 1 to the paths from P .
Observation 5. Although the scheduling algorithm from The-
orem 4 provides a guaranteed bound for the completion time,
this approach is inefficient for large problems. Therefore, in

3609



practice, we instead employ the scheduler given by Algo-
rithm 3. Even though we do not have a non-trivial theoretical
upper bound for the completion time for this algorithm, results
of Section V demonstrate that, in most cases, the completion
times for this algorithm are, in fact, better than the upper bound
of Theorem 4.

B. Complexity Analysis
In Algorithm 2, lines 1–3 take linear time in the size of the

problem. Line 4 can be implemented to run in O(k3 log k)
using the algorithm from [17]. Each subgraph contains, on av-
erage, O(nk ) balanced and O(

√
n
k ) unbalanced locations. The

total number of unbalanced locations in G, O(
√
nk), is an up-

per bound on the number of artificial locations in any subprob-
lem. Therefore, every iteration of line 6 takes O(

√
nk) time.

Every subproblem passed to EXACTPLANNER is a m
k ×m

k grid
with O(nk +

√
nk) robots. However, since there is only a finite

number of places where artificial locations can be placed in
each Gi (at most one for each neighboring subgraph), we can
reuse some of the BFS results, bringing the running time of
line 7 to O((nk +

√
nk)3 + nm2

k2 ) = O(n
3

k3 + n
3
2 k

3
2 + nm2

k2 )
per iteration. Lines 8 to 11 are executed O(k) times and
take O(nk +

√
nk) time per iteration. The scheduling graph in

Algorithm 3 contains n vertices, each of in-degree O(k), there-
fore its running time is O(nk). Adding everything together,
we conclude that the combined running time of Algorithms 2
and 3 is O(m2 + k3 log k + n3

k2 + n
3
2 k

5
2 + nm2

k ).

Observation 6. The algorithms for the assignment and min-
cost flow problems are extremely efficient, despite their high
asymptotic running time bounds. In practice, Algorithm 2
spends most of the time inside EXACTPLANNER, computing
the shortest paths using BFS. Therefore, its actual running
time is dominated by the O

(
nm2

k

)
term, a claim that is well

supported by the data of the next section.

V. EXPERIMENTAL EVALUATION

In this section we perform an experimental analysis of our
algorithms. All of them have been implemented in C++, using
the LEMON library [7] and Cyrill Stachniss’ implementation
of the Hungarian algorithm [22], and run on a computer with
Intel Core i7-3930K 3.2GHz processor and 64GB RAM. We
used square 2D grids as base graphs in all of the examples,
initial and goal locations were selected randomly, according
to a uniform distribution on V . The algorithms make no
assumptions regarding the graph structure and, therefore, have
to search for the shortest paths using BFS. All of the results
are averaged over 5 runs.

The first two sets of experiments are intended to compare
the performance of Algorithms 2 and 3 to that of Algorithm 1.
The results are listed in Tables II and III. It can be seen that,
in line with Observation 6, the partition-based algorithm is
approximately O(k) times faster than the exact one, in which
k is the number of subproblems. In all cases, the solutions
found had the total length no more than 140% of the optimal.
Interestingly, increasing the number of subproblems does not
lead to a significant (if at all) increase of the total length, while
drastically improving the performance.

TABLE II

Grid size Robots Running
time, sec

Total
distance

Completion
time

100×100
500 0.58 2942.8 536.2
1000 1.18 4152.6 1025.2
5000 22.7 7213.8 5007.2

500×500
500 7.7 15214.6 702
1000 14.8 21556.6 1154.8
5000 102.8 51359.2 5102.2

2000×2000
500 91.7 61341 1338.4
1000 188.6 85224.2 1612.8
5000 1014.3 210614.4 5468.6

Results of Algorithm 1 for various problem sizes, averaged over 5 runs each.

TABLE III

Grid size Robots Sub-
problems

Running
time, sec

Distance
ratio

Completion
time

100×100

500 25 0.031 1.31 160
100 <0.016 1.30 90.4

1000 25 0.059 1.30 246
100 0.028 1.33 105.6

5000 25 0.37 1.31 637.6
100 0.12 1.33 268.6

500×500

500 25 0.15 1.32 499.6
100 0.078 1.31 407

1000 25 0.61 1.32 561.8
100 0.15 1.34 461.2

5000 25 3.2 1.32 1162
100 0.38 1.33 817.8

2000×2000

500 25 2.1 1.29 1961.4
100 1.4 1.30 1728.6

1000 25 3.5 1.30 1905.2
100 2.6 1.30 1399.4

5000 25 26.1 1.28 2540.6
100 5.0 1.32 2022.2

Results of Algorithms 2 and 3 for various problem sizes, averaged over 5
runs each. Column 5 shows the ratio of the total distances for the generated
solutions to the optimal distances.

Due to its two-level nature, our algorithm is able to effi-
ciently check that robots’ paths on the subproblem graph Γ
do not intersect, therefore, their starting times do not need
to depend on each other. As a result, in all but three cases,
the completion times were better than those of the distance-
optimal solutions found by Algorithm 1. Note that Algorithm 1
does not optimize for the completion time and its solutions
can be improved with respect to this metric by scheduling
multiple robots to depart at the same time when it does not
cause conflicts [27]. Here we are not claiming that Algorithm 3
achieves better completion times than modified Algorithm 1,
but rather that it usually performs better than the upper bound
from Theorem 4.

Next, we evaluate the performance of the new algorithms
on large problems, for which Algorithm 1 is impractical. The
results can be seen in Table IV. Here again, we observe that,
despite the lack of strong guarantees, overall completion times
of the solutions are significantly lower than in Theorem 4. The
algorithms scale very well and can tackle graphs with 109

vertices and 106 robots. The amount of memory needed to
store the whole graph becomes the main bottleneck. Although
we do not have distance-optimal solutions to compare the
cost with (it would take many days or even months to run
the EXACTPLANNER on problems of this size), the rate of

3610



TABLE IV

Grid size Robots Sub-
problems

Running
time, sec

Total distance Completion
time

10000×
10000

50000 2500 41.3 4.70×106 4924.4
100000 76.8 7.47×106 6689.2

20000×
20000

50000 2500 193.1 9.16×106 8144.6
100000 339.1 1.36×107 10565.4

30000×
30000 1000000 10000 1959.5 7.20×107 14050.8

Results of Algorithms 2 and 3 for large problems, averaged over 5 runs each.

0.0

0.5

1.0

1.5

1 25 100 2500 10000

Number of subproblems

N
o
rm

al
iz

ed
 t

o
ta

l 
d
is

ta
n
ce

Fig. 5. Total distance values for different values of k, normalized by division
by m

√
n logn. Error bars correspond to one standard deviation.

growth of the total distance is consistent with Lemma 3 (see
Fig. 5). This suggests that the average approximation factor
of Algorithm 2 remains close to 1 even for the large number
of subproblems.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a two-level partition-based
algorithm for planning collision-free paths for multiple in-
distinguishable robots on a graph. The main focus of the
algorithm is efficiency; however, it is still able to generate
solutions that are close to optimal in terms of the total distance
traveled and have low completion times.

Several questions remain regarding the proposed algorithms.
For example, Theorem 2 does not provide a specific value
for the approximation factor. However, experimental results
suggest that it is quite low, at least on average. Additionally,
it would be interesting to obtain a strong bound on the comple-
tion times for the paths scheduled by PARTITIONSCHEDULER.

Although most of the computations in Algorithm 2 are per-
formed on a local subgraph, it still requires global information
in order to deal with locally unbalanced initial or goal locations
and to construct the collision-free schedule. A distributed
version of the algorithm that only relies on communications
between neighboring robots would significantly improve the
applicability.

Finally, another avenue of research would be to extend the
results to continuous domains. It can be done, for example,
by constructing a grid or a roadmap in the continuous space
and planning the paths in the resulting discrete graph.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: theory,
algorithms, and applications. Prentice Hall, 1993.

[2] M. Ajtai, J. Komlós, and G. Tusnády, “On optimal matchings,” Combi-
natorica, vol. 4, no. 4, pp. 259–264, 1984.

[3] J. E. Aronson, “A survey on dynamic network flows,” Annals of
Operations Research, vol. 20, no. 1, pp. 1–66, 1989.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. Cambridge, MA: MIT Press, 2005.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
To Algorithms. MIT Press, 2001.

[6] G. B. Dantzig, Linear Programming and Extensions. Princeton
University Press, 1963.

[7] B. Dezső, A. Jüttner, and P. Kovács, “LEMON – an open source
C++ graph template library,” Electronic Notes in Theoretical Computer
Science, vol. 264, no. 5, pp. 23–45, Jul. 2011.

[8] M. A. Erdmann and T. Lozano-Pérez, “On multiple moving objects,” in
Proceedings IEEE International Conference on Robotics & Automation,
1986, pp. 1419–1424.

[9] L. R. Ford and D. R. Fulkerson, Flows in Networks. New Jersey:
Princeton University Press, 1962.

[10] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Transactions on Robotics, vol. 22, no. 4,
pp. 650–665, 2006.

[11] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1-2, p. 83–97, 1955.

[12] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer, 1991.
[13] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge

University Press, 2006, also available at http://planning.cs.uiuc.edu/.
[14] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for

multiple robots having independent goals,” IEEE Trans. on Robotics
and Automation, vol. 14, no. 6, pp. 912–925, Dec. 1998.

[15] L. Liu and D. A. Shell, “Large-scale multi-robot task allocation via
dynamic partitioning and distribution,” Autonomous Robots, vol. 33,
no. 3, pp. 291–307, Jun. 2012.

[16] R. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-
finding with completeness guarantees,” in Twenty-Second International
Joint Conference on Artificial Intelligence, 2011, pp. 294–300.

[17] J. B. Orlin, “A polynomial time primal network simplex algorithm for
minimum cost flows,” in Proceedings of the seventh annual ACM-SIAM
symposium on Discrete algorithms, ser. SODA ’96. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1996, p. 474–481.

[18] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path
planning,” Journal of Artificial Intelligence Research, vol. 31, pp. 497–
542, 2008.

[19] D. Silver, “Cooperative pathfinding.” in The 1st Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2005, pp. 23–28.

[20] T. Simeon, S. Leroy, and J.-P. Laumond, “Path coordination for multiple
mobile robots: a resolution-complete algorithm,” IEEE Transactions on
Robotics and Automation, vol. 18, no. 1, pp. 42–49, Feb. 2002.

[21] K. Solovey and D. Halperin, “k-color multi-robot motion planning,”
in The Tenth International Workshop on Algorithmic Foundations of
Robotics (WAFR), 2012.

[22] C. Stachniss, “C implementation of the hungarian method,” Sep. 2004.
[Online]. Available: http://www.informatik.uni-freiburg.de/∼stachnis/
misc.html

[23] T. Standley and R. Korf, “Complete algorithms for cooperative pathfind-
ing problems,” in Twenty-Second International Joint Conference on
Artificial Intelligence, 2011, pp. 668–673.

[24] P. Surynek, “A novel approach to path planning for multiple robots in
bi-connected graphs,” in Proceedings IEEE International Conference on
Robotics and Automation, 2009, pp. 3613–3619.

[25] J. van den Berg and M. Overmars, “Prioritized motion planning for
multiple robots,” in Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005.

[26] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans,” in Proceedings Robotics: Science and Systems, 2009.

[27] J. Yu and S. M. LaValle, “Distance optimal formation control on graphs
with a tight convergence time guarantee,” in Proceedings IEEE Interna-
tional Conference on Decision and Control, 2012, to be published.

[28] ——, “Multi-agent path planning and network flow,” in The Tenth In-
ternational Workshop on Algorithmic Foundations of Robotics (WAFR),
2012.

[29] A. Zelinsky, “A mobile robot exploration algorithm,” IEEE Transactions
on Robotics and Automation, vol. 8, no. 6, pp. 707–717, 1992.

3611


