
Towards Robust Product Packing with a Minimalistic End-Effector

Rahul Shome*, Wei N. Tang*, Changkyu Song, Chaitanya Mitash, Hristiyan Kourtev,
Jingjin Yu, Abdeslam Boularias, and Kostas E. Bekris

Abstract— Advances in sensor technologies, object detection
algorithms, planning frameworks and hardware designs have
motivated the deployment of robots in warehouse automation.
A variety of such applications, like order fulfillment or packing
tasks, require picking objects from unstructured piles and
carefully arranging them in bins or containers. Desirable
solutions need to be low-cost, easily deployable and controllable,
making minimalistic hardware choices desirable. The challenge
in designing an effective solution to this problem relates to
appropriately integrating multiple components, so as to achieve
a robust pipeline that minimizes failure conditions. The current
work proposes a complete pipeline for solving such packing
tasks, given access only to RGB-D data and a single robot
arm with a vacuum-based end-effector, which is also used as
a pushing finger. To achieve the desired level of robustness,
three key manipulation primitives are identified, which take
advantage of the environment and simple operations to suc-
cessfully pack multiple cubic objects. The overall approach
is demonstrated to be robust to execution and perception
errors. The impact of each manipulation primitive is evaluated
by considering different versions of the proposed pipeline,
which incrementally introduce reasoning about object poses and
corrective manipulation actions.

I. INTRODUCTION

The past decade has witnessed a vast growth of intelligent
robotic solutions for logistics and warehouse automation
tasks, with the Amazon Kiva mobile robotic fulfillment
system serving as a prime example [1]. Nevertheless, the
completion of many tasks still rely on the use of repetitive
human labor, such as for picking and packing of products
and building customer orders. In particular, tightly packing
products that are picked from an unstructured pile, the focal
task of this work, still remains primarily manual, even though
it is integral to warehouse automation and manufacturing.

Packing objects to fit in confined spaces, such as a small
shipping box as the one in Fig. 1, is highly challenging.
It can be argued that is more difficult than clearing clutter
since packing requires placing objects in close vicinity to
each other, in an ordered manner and also to be well aligned
with the boundary of the container. This demands high levels
of accuracy from the perception component as well as the
manipulation strategy. Indeed, surprisingly little prior work
seems to exist that explicitly addresses this problem, let alone
using a simple, suction-based end-effector.

The authors are affiliated with the Computer Science
Dept. of, Rutgers University, New Brunswick, NJ, USA.
email:{jingjin.yu,abdeslam.boularias,kostas.bekris}@cs.rutgers.edu

*These authors have equally contributed to the work.
The authors would like to acknowledge the support of NSF IIS:1617744

and JD-X Research and Development Center (RDC). Any opinions ex-
pressed here or findings do not reflect those of the sponsor.

Fig. 1. The product packing problem for cuboid products: initial configu-
ration (left), and achieved goal configuration (right).

To help narrow the application gap and enable the reliable,
fully autonomous execution of such tasks, this system paper:

A. Proposes a complete hardware stack and an accom-
panying software pipeline for developing and testing al-
gorithmic solutions for robot-enabled packing tasks. The
hardware setup involves a single robotic arm as shown in
Fig. 2, which depends only on depth-imaging technology
to sense its environment. The result is a fully autonomous
integrated system for picking objects from unstructured piles
and placing them to satisfy a desirable packing arrangement,
such as the one shown in Fig. 1.

B. Explores the use of a suction-based end-effector, which
is also treated as a pushing finger, for product packing. The
placement of objects, given the packing objective, requires
the vacuum-based end-effector to pick objects from specific
orientations, which may not be immediately accessible. Nev-
ertheless, the paper demonstrates that the end-effector can
still address such challenges in a reliable manner.

C. Develops and evaluates corrective prehensile and
non-prehensile manipulation primitives that increase the
pipeline’s robustness despite uncertainty regarding the pose
of the objects. The uncertainty arises from the end-effector’s
minimalistic nature and the use of only visual input. A criti-
cal aspect of the primitives is the intentional use of collisions,
which exploit the inherent compliance of objects, the bins,
and the end-effector for enhancing accuracy. Furthermore,
the proposed primitives are tightly integrated with sensing
to achieve in real-time:
i) toppling of objects in the initial unstructured bin to

expose a desirable surface of the object for picking;
ii) pulling an object towards its target placement while

pushing neighboring objects to further pack by operating
directly over point cloud data; and

iii) real-time monitoring of potential failures and corrective
pushing to achieve tight packing.
The evaluation uses the platform of Fig. 2. The

experiments execute the pipeline in real-world scenes and
show that the proposed manipulation primitives provide
robustness despite the minimalism of the setup.

ar
X

iv
:1

90
3.

00
98

4v
1 

 [
cs

.R
O

] 
 3

 M
ar

 2
01

9



Fig. 2. Experiments are performed using a Kuka LBR iiwa arm equipped
with a suction-based end-effector and depth-sensing cameras SR300. Two
bins are within the reachability region of the arm given overhand picks.

II. RELATED WORK

Picking Objects in Clutter Most efforts in robot picking
relate to grasping with form- or force-closure using fin-
gered hands [2]. While early works focused on standalone
objects [3], recent efforts are oriented toward objects in
clutter [4]–[6]. Either analytical or empirical [4], grasping
techniques typically identify points on object surfaces and
hand configurations that allow grasping. Analytical methods
rely on mechanical and geometric object models to identify
stable grasps. Empirical techniques rely on examples of
successful or failed grasps to train a classifier to predict the
success probabilities of grasps on novel objects [7]. Analyt-
ical methods can be applied in many setups but are prone
to modeling errors. Empirical methods are model-free and
efficient [8] but require a large number of data. The heuristic
picking strategy presented here inherits the properties of
analytical methods while reducing computational burden.
Bin Packing The 3D bin packing problem, which is NP-
hard [9], [10], requires objects of different or similar volumes
to be packed into a cubical bin. Most strategies search for
ε-optimal solutions via greedy algorithms [11]. While bin
packing is studied extensively, to the best of the authors’
knowledge there are few attempts to deploy bin packing
solutions on real robots, where inaccuracies in vision and
control are taken into account. Such inaccuracies have been
considered in the context of efforts relating to the Amazon
Robotics Challenge [12] [13] [14] [15] [16] [17] but most
of these systems do not deal with bin packing. Most de-
ployments of automatic packing use mechanical components,
such as conveyor trays, that are specifically designed for
certain products [18], rendering them difficult to customize
and deploy. Industrial packing systems also assume that
the objects are already mechanically sorted before packing.
While this work makes the assumption that the objects have
the same dimensions, the setup is more challenging as the
objects are randomly thrown in the initial bin.
Non-prehensile Manipulation Non-prehensile manipula-
tion, such as pushing, has been shown to help grasping
objects in clutter [19], [20]. In these works, pushing is used
to reduce the uncertainty of a target object’s pose. Through
pushing, target objects move into graspable regions. This
work follows the same principle and relies on pushing actions

to counter the effects of inaccurate localization and point
cloud registration. The problem is different because pushing
is used for placing instead of grasping objects. The proposed
method also uses pushing actions for toppling picked objects
to change their orientations as well as to re-arrange mis-
aligned objects. Other efforts have also considered pushing as
a primitive in rearrangement tasks [21], [22]. The proposed
system takes advantage of the compliance properties of the
end-effector and leverages collisions with the environment to
accurately place objects or topple them. A closely related ap-
proach [23] performs within-hand manipulation of a grasped
object by pushing it against its environment.
6D Pose Estimation Recent efforts in 6D pose estimation
use deep learning. In particular, regression over quaternions
and centers can predict the rotations and centers of objects in
images [24]. An alternative first predicts 3D object coordi-
nates, followed by a RANSAC scheme to predict the object’s
pose [25]. Similarly, geometric consistency has been used
to refine the predictions from learned models [26]. Other
approaches use object segmentation to guide a global search
process for estimating 6D poses [27]–[29]. This work is
based on the authors’ prior effort [27], where uncertainty
over pixel labels returned by a convolutional neural network
is taken into account when registering 3D models into the
point cloud. The approach used here is different from the
previous work as it can handle multiple instances of the same
category of objects.

III. PROBLEM SETUP AND NOTATION

Consider a robotic arm in a workspace W with known
static obstacles, two bins Binit and Bgoal, as well as n
movable, uniform objects O = {o1, . . . , on} of known cubic
dimensions. The bins Binit and Bgoal are static but also
compliant bodies in known poses that define a cuboid volume
in W where the objects can be placed.

A labeled arrangement A = {p1, . . . , pn} is an assignment
of poses pi ∈ SE(3) to each object oi. Initially, the objects
are in a start arrangement Ainit, where the objects are inside
Binit in random but “stable” poses, i.e., the objects are stably
resting and not moving. The Ainit arrangement is not known
a-priori to the robot.

The objective is to move O to an unlabeled arrangement
Âgoal = {p̂1, . . . , p̂n}, which achieves a tight packing in
Bgoal. Âgoal depends on the pose of Bgoal, its dimensions
and the object dimensions. The target arrangement and the
picking order is input for the proposed process. The target
arrangement maximizes the number of objects inside Bgoal,
while the objects rest on a stable face, and minimizes the
convex hull of the volume the objects O occupy in W . This
is typically a grid-like regular packing for cuboid objects.
The unlabeled nature of Âgoal means it is satisfied as long
as one of the objects is placed at each target pose, i.e.,

∀p̂j ∈ Âgoal : ∃ oi ∈ O so that D(p̂j , pi) < ε, (1)

where ε is a threshold for achieving the target poses; D(·, ·)
is distance between object poses, which should consider the
3-axis symmetry of the cubic objects. In particular, if two



Fig. 3. Left: Pipeline in terms of control, data flow (green lines) and failure handling (red lines). The blocks identify the modules of the system. Sensing
receives an RGBD image of Binit and object CAD models to return a grasp point. Based on the picking surface, the object is either transferred to Bgoal

or is handled by the Toppling module, which flips the object and places it back in Binit. When the object is transferred, a robust Placement module
places the object at the target pose p̂i. The Packing module validates and corrects the placement to achieve tight packing. Right: a) Instance segmentation.
b) Pose estimation and picking point selection are provided by sensing, c) Picking d) Toppling e) Placement and f) Packing.

poses result into an object occupying the same volume, then
their distance is 0. For instance, rotation by π about the
vertical axis for a stably resting cube on a flat surface results
in distance 0. A popular distance metric for 6D poses is the
ADI metric [30]. The evaluation section will describe the
distance used in the experimental process for evaluating the
error of the final arrangement given point cloud data.

The arm has d joints that define the arm’s configuration
space Cfull ⊂ Rd, which has a collision-free subset Cfree.
Valid arm motions correspond to a continuous C-space curve
π : [0, 1] → Cfree. The arm has an end-effector, such as a
suction cup, for which discrete operations {pick, release}
give rise to discrete modes: M = {transfer, transit}.
No within hand manipulation operations are available. The
state space of the arm is: X = Cfree × M. Sensing is
used to reason about the current object poses. Overall, the
robot operations involve (i) moving the joints, (ii) picking or
releasing objects and (iii) sensing.

The arm’s forward kinematics define a mapping FK :
Cfull → SE(3), which provides the pose g ∈ SE(3)
of the end-effector given q ∈ Cfull. The reachable task
space defines the end-effector poses the arm can reach
without collisions: T = {∀ q ∈ Cfree : FK(q) ∈
SE(3)}. For the arm to pick oi at pi, it has to be that the
arm’s end-effector pose g satisfies a binary output function:
is pick feasible(oi, pi, g), where g ∈ T . For instance,
the pose g of a suction cup must align it with at least one
of the surfaces of an object oi at pi. Then, it is possible to
define the set of end-effector poses, which allow to pick an
object at a specific pose:

G(oi, pi) = {g ∈ T : is pick feasible(oi, pi, g) = true}.

Assume the sets G(oi, pi) are non-empty for all objects O
and poses in Ainit or Âgoal (and their vicinity inside bins
Binit and Bgoal). Otherwise, the task is not feasible. Note
that it may be necessary to reconfigure the objects inside
the initial bin so as to pick them from the appropriate face
before placing them. This is due to the lack of within-hand
manipulation.

Given the above definitions, the task is to identify a
sequence of motions for the arm as well as end-effector
and sensing operations to transfer the objects O from the
unknown initial stable arrangement Ainit inside Binit to a
tight, grid-based packing inside Bgoal defined by an unla-
beled arrangement Âgoal, so as to satisfy Eq. 1.

IV. SYSTEM COMPONENTS

This section describes critical components that influence
the design of the proposed pipeline:

a) Hardware Setup: The robot used in the setup is
the Kuka IIWA14 7-DoF arm (Fig. 2). A customized end-
effector solution extrudes a cylindrical end-effector that ends
with a compliant suction cup, to engage vacuum grasps.
Two RealSense SR300 cameras are mounted on a frame and
pointed to containers Binit and Bgoal from the other side
relative to the robot as Fig. 2 shows. While far from the
robot, the cameras’ frame is statically attached to the robot’s
base such that calibration errors are minimized in estimating
the camera poses in the robot’s coordinate system.

b) Workspace Design: Fig. 2 shows the setup designed
for the target task. The annular blue region represents the
subset of the reachable workspace that allowed for top-
down picks with the robot’s end-effector. This region is
computed by extensively calling an inverse kinematics (IK)
solver for top-down picks with the end-effector. The IK
solutions indicate that the radial region between 40cm and
70cm from the robot center maximizes reachability and IK
solution success given the setup. The bins (red rectangles) are
placed so that they lie inside the optimal reachable region.

c) Software: MoveIt! [31] is used for motion plan-
ning. Most of the motions are performed using Cartesian
Control, which guides the arm using end-effector waypoints.
Ensuring the motions occur in reachable parts of the space
increases the success of Cartesian Control, simplifies motion
planning and speeds-up execution. To decrease planning
time, motion between the bins is precomputed using the RRT∗

algorithm [32] and simply replayed at appropriate times.



V. PROPOSED SOLUTION

The proposed pipeline, described in Fig. 3, provides the
steps undertaken to perform the desired packing. The base-
line steps correspond to:
a) (Sensing): sense and select a target object oi to pick up;
b) (Picking): execute action {pick};
c) (Transfer): move oi to the next available target pose p̂j

and execute action {release}.
The experimental section considers this baseline pipeline,
where it is observed that it performs poorly due to mul-
tiple sources of uncertainty, ranging from pose estimation
and calibration errors, to object non-uniformity and object
interaction with the bin and other objects, among others.
These issue necessitate the introduction of remedies, which
actively reduce the impact of the uncertainty. To this end,
3 manipulation primitives for a simplistic end-effector are
designed to increase robustness and are integrated with the
overall architecture:
i) Toppling;
ii) Robust Placement; and
iii) Corrective Packing.

A. Baseline: Pose Estimation and Picking

Given an RGB-D image of the source bin and a CAD
model of the object, the objective is to retrieve (oi, pi) such
that it maximizes the chance of achieving target configuration
p̂j , where D(pi, p̂j) ≤ ε. To achieve this, the image is passed
through a MaskRCNN convolutional neural network [33],
which is trained to perform segmentation and retrieve the
set of object instances O. An image segment is ignored
if it has a number of pixels below a threshold. It is also
ignored, if MaskRCNN has small confidence that the seg-
ment corresponds to the target object. Among the remaining
segments, instances oi ∈ O are arranged in a descending
order of the mean global Z-coordinate of all the RGBD pixels
in the corresponding segment. Then, 6D pose estimation is
performed for the selected instance [34] [35].

If, given the detected 6D pose of the instance, the top-
facing surface does not allow the placement of the object via
a top-down pick, the next segment instance is evaluated in
order of the mean global Z-coordinate. If no object reveals
a top-facing surface, then the first object in terms of the
maximum mean global Z-coordinate is chosen for picking.

For the selected object, a picking point, i.e., a point where
the suction cup will be attached to the object, is computed
over the set of points registered against the object model. It
utilizes a picking-score associated in a pre-processing step
with each model point, which indicates the stability of the
pick on the object’s surface. The score calculates the distance
to the center of the object mesh. A continuous neighborhood
of planar pickable points is required to make proper contact
between the suction cup and the object surface. Thus, a
local search is performed around the best pick-score point
to maximize the pickable surface.

Fig. 4. Adaptive pushing: (left) The black border is the bin and the gray
rectangle a previously placed object. The green rectangle represents the
target pose for the current object. The light green boundary represents an
ε-expanded model that intersects the point cloud at the purple points. These
points result in the black vector that pushes the object away from them.
(right) A screen shot of a scene’s point cloud, where the white points are
collision points with previously placed objects and the red volume shows
the computed pre-push pose for the new object.

B. Toppling

The toppling primitive is invoked if there exists no object
that exposes the desirable top-facing surface, or if the object
was erroneously picked from the wrong face. The latter is
detected after the pick by performing pose estimation once
the objet is attached to the suction cup. For instance this can
happen for the soaps shown in Figure 3 (right)(d), if the thin
side is available for pick but the soap needs to be placed on
their wider side. In this case, a toppling primitive is used to
reorient the object.

Given a starting pose of an object pstart and a toppling
action of the arm, the object ends up at a new pose ptopple.
The objective is to allow the existence of a pick ĝ ∈
G(oi, ptopple) so that there is a transfer action from pick
ĝ that achieves the final placement pend close enough to the
desired target placement p̂j , i.e., D(pend, p̂

j) ≤ ε. For the
considered setup, this means that the top-facing surface of
the object at ptopple and p̂j is the same.

The toppling module inspects the visible point cloud in the
source bin to identify the best toppling plane, which is suf-
ficiently empty and flat. The accompanying implementation
restricts actions to ones that change the pose of the cubic
objects by shifting the most upward facing surface to only
one of the adjacent surfaces. While this does not guarantee
toppling the object to all possible poses, the symmetry of
cubic products resolves this issue.

Prior work [36] has shown the efficacy of minimal end-
effectors used in tandem with the environment to achieve
toppling. In the previous work, the friction against a conveyor
belt is used to topple an object about a resting surface. The
conveyor belt’s motion is parallel to the initial resting surface
plane. In the current setup, the compliance of the suction cup
is used to emulate the same effect using a lateral motion on
the same plane as the top-surface along the direction of the
desired transformation between pstart and ptopple. Due to
symmetry, at least one neighboring surface allows top-down
picks, so a successful toppling action exists. Using the pose
of the object, the lateral motion direction is executed once
the object is placed on the detected plane, and the object is
released during this action. Results show that this is highly
effective in the target setup.



C. Point Cloud Driven Adaptive Pushing

Directly placing objects at the goal pose p̂i into bin Bgoal
is prone to placement failures due to errors in perception
as well as prior placements. This may result in damaging
the objects. A safer alternative is to drop the object from
a certain height, right above the goal pose, so as to avoid
pressing against previously erroneously placed objects. Still,
however, this alternative results in low quality packing. A
key realization is that during placement, the object being
manipulated will inevitably approach or even collide with
other objects or the target container. To sidestep undesirable
collisions, an adaptive pushing primitive is developed, which
directly operates over point cloud data for the target bin.

The process is shown in Fig. 4. The adaptive pushing
begins by growing the object model at the target pose p̂i.
Given the uncertainty value ε, the model is enlarged by 2ε
along each dimension. The enlarged model is intersected with
the point cloud to retrieve collision points. A collision vector
is computed as a vector pointing from a collision point to
the center of the object model. Summing all collision vectors
yields the displacement vector. By iteratively moving the
object model along the unit displacement vector, where the
displacement vector is recomputed after each movement, a
collision-free pre-push pose for the object is obtained. During
the execution, the robot first moves the object above the pre-
push pose, then lowers the object to the pre-push pose and
finally pushes the object to the target pose.

D. Fine Correction using Push and Pull Primitives

The final primitive deals with the remaining failure cases.
Fine corrections are required because objects can be placed
in incorrect poses due to unexpected collisions as well
as calibration and pose estimation errors. The proposed
corrective manipulation procedure continuously monitors the
scene and triggers corrective actions whenever necessary.

PUSH
PULL

�𝒑𝒑𝟏𝟏

�𝒑𝒑𝟐𝟐

�𝒑𝒑𝟒𝟒

�𝒑𝒑𝟓𝟓

�𝒑𝒑𝟔𝟔
�𝒑𝒑𝟗𝟗

𝜷𝜷

Fig. 5. Fine layout adjustment
and correction.

The process first removes
the background, the box, the
robot’s arm and end-effector
from the observed point cloud
and computes its surface
normals. The observed point
cloud is then compared
against the desired alignment
of the objects in their target poses. As shown in Fig. 5,
two types of misalignment errors can occur. The first
type occurs when the top surface normal of an object
is not perpendicular to the support surface. This error
is corrected by pushing the object along a direction and
for a distance computed based on its surface normal in a
manner that makes it aligned with the support surface. The
second type of error happens when a peripheral object is
not entirely within the desired footprint of the pile. The
proposed procedure systematically detects pivot points that
are outside the desired footprint of the pile and pulls their
objects inside accordingly. The correction is repeated until
the point cloud is aligned with the desired goal poses given
a threshold ε, or a timeout occurs.

VI. EVALUATION

To evaluate the performance of the proposed pipeline, ex-
tensive experiments were executed on the Kuka platform of
Fig. 2, to accurately represent the motivating complications
that arise in real-world setups. The experiments are designed
to showcase the hardness of tight packing as well as the
benefits of adding robust environment-aware manipulation
primitives that aid in increasing success rate and accuracy.

For consistency, an identical version of the problem is
tested, with “dove soap bars” that are randomly thrown into
the source bin Binit, which is placed on one side of the
robot’s reachable workspace (Fig 2). Only top-down grasps
are allowed within a given alignment threshold. The start
arrangement Ainit of objects is intended to reflect a random
pile, with 10 repetitions of each experimental condition.
The target bin Bgoal contains a 3 × 3 grid arrangement
of 9 objects, on the same plane, with the stable face of
the object targeted for placement. The complete pipeline
uses a) corrective actions for fine adjustments, b) push-to-
place actions for robust placement, c) toppling actions for
increasing successes, and d) pose estimation for adjusting the
object. The improvements introduced by these strategies are
evaluated through the following comparison points, within
the context of the proposed pipeline:
V1 - Full pipeline: The complete pipeline with all the
primitives achieves the highest accuracy and success rate.
V2 - No corrective actions: The experiment corresponds to
the use of V1 without the fine correction module of Fig. 5.
V3 - No push-to-place actions: This version is V2 without
the use of the robust placement module (Fig. 4) that performs
push actions to achieve robust placement.
V4 - No toppling actions: These experiments used V2
without considering toppling actions to deal with objects not
exposing a valid top surface that allows the target placement.
V5 - (Baseline) No push-to-place, toppling, pose-
estimation: The naive baseline that solely uses a pose-
unaware grasping module that reports locally graspable
points and drops the grasped object at an end-effector pose
raised from the center of the desired object position, with no
adjustment in orientation.

The metrics evaluated include the fraction of successful
object transfers that succeed in moving objects to the target
bin. The accuracy is captured in the threshold mentioned
in Eq. (1) that is expressed in terms of a percentage of
unoccupied volume within the ideal target placement volume.
This was measured with a voxel discretization sufficient to
elucidate the difference between the methods. The average
data recorded is reported in Fig. 6. This error measure is
proportional to the accuracy. The points to note for every
version are detailed as follows.

The low error for V1 corroborates the final bin placement
evidence. On average 7 corrective actions per experiment
were invoked to achieve the high degree of accuracy.

The accuracy improvement obtained from corrective ac-
tions is evaluated in V2. While this version succeeded in
dropping all the objects close to the correct target poses,



Best
Error rate
(percentage)

Worst
Error rate
(percentage)

0 38.060.1414.680

0.18 60.13100.038.062.85

V1 V3V2

V1

V4 V5

Fig. 6. (left)The final set of object poses in the target poses at the end of every experiment. Different column represents different versions. The top row
is the best case, and the bottom row is the worst case. (middle) the blue bar represents the fraction of successful object transfers, the orange bar represents
the percentage of unoccupied volume within the ideal target placement volume.(right)the blue bar represents the average number of correction actions
happened per experiment, the green bar represents the average number of toppling actions happened per experiment.

application use-cases where a higher degree of accuracy is
desired motivate the use of corrective actions. The integration
of the corrective actions was done with higher error threshold
during intermediate steps, and a much finer one for the final
adjustment. Errors can typically arise from execution failure
and pose misalignments. The less accurate these underlying
processes are, the more important corrective actions become.

V3 only performs adjustments using pose estimation, and
toppling. While, this is sufficient to successfully transfer
all the objects, any difference of accuracy to V2 would be
introduced by the lack of push-to-place actions. Here there
is complete reliance on the exactness of the execution and
pose adjustments. Due to the proximity of adjacent object
surfaces in the target grid arrangement, even minor errors
get aggravated. However, due to the ability to reason about
toppling, all the objects can be transferred to the target bin,
even with this low accuracy. This is demonstrated in the
occurrence of the failure to transfer all the objects.

In V4 any object that does not expose an permitted picking
surface that makes the prehensile placement possible, is not
picked. Any instance of the source bin, which ends with
no such objects results in no valid picking actions that can
make the approach proceed, and a failure is declared. The
current behavior of V4 drops the object if it is mistakenly
grasped from the wrong surface. This can itself be used as
a naive toppling primitive. It is important to note that there
might be other alternative strategies that can deal with this
failure, but the intent of this comparison is to demonstrate
the importance of having a deliberate toppling strategy in
the pipeline, that can change the object’s orientation in the
context of random starting arrangements of the object. On
average, over V1, V2, and V3 the toppling primitive was
required 4 times per experiment. This highlights the necessity
of this reasoning. Deliberate toppling however requires at
least one additional pick action. The number of pick attempts
per successful object transfer was 2.56 for V4, whereas, in
V2 the same was 1.98. This indicates that toppling is indeed
necessary both in terms of success and efficiency of actions.

Expectedly, V5 has the lowest accuracy. However, since
there is no reasoning about the pick surface, every object
was transfered to the space of the bin. This has no guarantee
to work if the object is larger. This drives the motivation for
using a set of robust primitives for the packing problem.

Overall, the time for the experiments show a trend of

increasing with the increasing complexity of the pipeline.
The trade-off of accuracy versus time persists. On average,
V1 ran for 945s while V5 ran for 323s.

Fig. 7. Result for
toothpaste and two-
layer packing

Multi-layer packing: With a suffi-
ciently tall bin, objects can be packed
in multiple layers. Running the method
beyond the first plane of the grid ef-
fectively shifts all the operations to the
higher plane. This is demonstrated in a
standalone run.
Different objects: To validate the ap-
plicability of the method to other
cuboidal objects, V1 was performed for
toothpastes. Over 5 experiments, with 4
objects, every run succeeded in placing
the object inside the bin.

VII. DISCUSSION

The proposed pipeline indicates intriguing nuances of the
packing problem. The use of a minimal, suction-based end-
effector is a cost-effective, simple and relatively robust way
to pick objects but does not easily allow for complex grasp
reasoning, regrasping, or within-hand manipulation. The
proposed pipeline achieves high accuracy by leveraging the
compliance of the suction cup and the environment, while the
object is attached. It uses robust reasoning to incrementally
correct errors, instead of compounding them. While it can
be argued that better baseline components can be developed
to minimize uncertainty, the overall philosophy of robust,
minimal, and compliant reasoning remains unchanged.

The proposed system and primitives can also deal with
cubic objects with different sizes and can be extended to
non-cubic objects by adapting the object models. The key
adaptation corresponds to identifying an appropriate packing
arrangement Âgoal (potentially labeled in this case) in the tar-
get bin and the corresponding picking order from the initial
bin. Future work will also explore speeding up performance
and dealing with algorithmic challenges: the combinatorial
reasoning over possible placements, physics-based reasoning
to further improve pushing and toppling, as well as extending
to more adaptive end-effectors. The platform can also be
utilized as a training testbed for reinforcement learning to
automatically discover robust primitives for solving packing
tasks.



REFERENCES

[1] J. J. Enright and P. R. Wurman, “Optimization and coordinated
autonomy in mobile fulfillment systems,” in Proc. of the 9th AAAI
Conference on Automated Action Planning for Autonomous Mobile
Robots, 2011, pp. 33–38.

[2] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3d object
grasp synthesis algorithms,” Robot. Auton. Syst., vol. 60, no. 3, pp.
326–336, Mar. 2012.

[3] K. Shimoga, “Robot grasp synthesis algorithms: A survey,” The
International Journal of Robotics Research, vol. 15, no. 3, pp. 230–
266, 1996.

[4] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis: A survey,” Trans. Rob., vol. 30, no. 2, pp. 289–309, Apr.
2014.

[5] A. Boularias, J. A. D. Bagnell, and A. T. Stentz, “Efficient optimization
for autonomous robotic manipulation of natural objects,” in Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial Intelligence
(AAAI). AAAI, November 2014, pp. 2520–2526.

[6] A. Boularias, J. A. Bagnell, and A. Stentz, “Learning to manipulate
unknown objects in clutter by reinforcement,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, ser.
AAAI’15. AAAI Press, 2015, pp. 1336–1342. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2887007.2887192

[7] D. Morrison, J. Leitner, and P. Corke, “Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach,” in Pro-
ceedings of Robotics: Science and Systems, Pittsburgh, Pennsylvania,
June 2018.

[8] J. Mahler and K. Goldberg, “Learning deep policies for robot bin pick-
ing by simulating robust grasping sequences,” in Proceedings of the 1st
Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
vol. 78. PMLR, 13–15 Nov 2017, pp. 515–524.

[9] J. O. Berkey and P. Y. Wang, “Two-dimensional finite bin-
packing algorithms,” Journal of the Operational Research Society,
vol. 38, no. 5, pp. 423–429, May 1987. [Online]. Available:
https://doi.org/10.1057/jors.1987.70

[10] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin
packing problem,” Oper. Res., vol. 48, no. 2, pp. 256–267, Mar. 2000.
[Online]. Available: http://dx.doi.org/10.1287/opre.48.2.256.12386

[11] S. Albers and M. Mitzenmacher, “Average-case analyses of
first fit and random fit bin packing,” in Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, ser.
SODA ’98. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1998, pp. 290–299. [Online]. Available:
http://dl.acm.org/citation.cfm?id=314613.314718

[12] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis
and observations from the first amazon picking challenge,” IEEE
Transactions on Automation Science and Engineering, 2016.

[13] M. Schwarz, C. Lenz, G. M. Garcı́a, S. Koo, A. S. Periyasamy,
M. Schreiber, and S. Behnke, “Fast object learning and dual-arm
coordination for cluttered stowing, picking, and packing,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 3347–3354.

[14] D. Morrison, A. W. Tow, M. McTaggart, R. Smith, N. Kelly-Boxall,
S. Wade-McCue, J. Erskine, R. Grinover, A. Gurman, T. Hunn,
et al., “Cartman: The low-cost cartesian manipulator that won the
amazon robotics challenge,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7757–7764.

[15] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, et al., “Robotic pick-and-place
of novel objects in clutter with multi-affordance grasping and cross-
domain image matching,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 1–8.

[16] Z. Littlefield, S. Zhu, C. Kourtev, Z. Psarakis, R. Shome, A. Kimmel,
A. Dobson, A. Ferreira De Souza, and K. E. Bekris, “Evaluating end-
effector modalities for warehouse picking: A vacuum gripper vs a
3-finger underactuated hand,” in CASE, 2016.

[17] C. Rennie, R. Shome, K. E. Bekris, and F. A. De Souza, “A dataset
for improved rgbd-based object detection and poe estimation for
warehouse pick-and-place,” IEEE Robotics and Automation Letters
(RA-L), 2016.

[18] S. Hayashi, S. Yamamoto, S. Tsubota, Y. Ochiai, K. Kobayashi, J. Ka-
mata, M. Kurita, H. Inazumi, and R. Peter, “Automation technologies

for strawberry harvesting and packing operations in japan 1,” Journal
of Berry Research, vol. 4, no. 1, pp. 19–27, 2014.

[19] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
in Proceedings of Robotics: Science and Systems, Los Angeles, CA,
USA, June 2011.

[20] M. Dogar and S. Srinivasa, “A planning framework for non-prehensile
manipulation under clutter and uncertainty,” Autonomous Robots,
vol. 33, no. 3, pp. 217–236, Oct 2012.

[21] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. Asfour, “Nonpre-
hensile whole arm rearrangement planning on physics manifolds,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on. IEEE, 2015, pp. 2508–2515.

[22] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning for
object placement on cluttered table surfaces,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE,
2011, pp. 4627–4632.

[23] N. Chavan-Dafle and A. Rodriguez, “Prehensile pushing: In-hand
manipulation with push-primitives,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015,
pp. 6215–6222.

[24] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” in Proceedings of Robotics: Science and Systems, Pittsburgh,
Pennsylvania, June 2018.

[25] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6d object pose estimation using 3d object
coordinates,” in European conference on computer vision. Springer,
2014, pp. 536–551.

[26] F. Michel, A. Kirillov, E. Brachmann, A. Krull, S. Gumhold,
B. Savchynskyy, and C. Rother, “Global hypothesis generation for
6d object pose estimation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 462–471.

[27] C. Mitash, A. Boularias, and K. Bekris, “Robust 6d object pose estima-
tion with stochastic congruent sets,” arXiv preprint arXiv:1805.06324,
2018.

[28] V. Narayanan and M. Likhachev, “Discriminatively-guided deliberative
perception for pose estimation of multiple 3d object instances.” in
Robotics: Science and Systems, 2016.

[29] C. Mitash, A. Boularias, and K. E. Bekris, “Improving 6d pose
estimation of objects in clutter via physics-aware monte carlo tree
search,” arXiv preprint arXiv:1710.08577, 2017.

[30] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes,” in Asian conference
on computer vision. Springer, 2012, pp. 548–562.

[31] S. Chitta, I. Sucan, and S. Cousins, “Moveit!” IEEE Robotics &
Automation Magazine, vol. 19, no. 1, 2012.

[32] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal
Motion Planning,” IJRR, vol. 30, no. 7, June 2011.

[33] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[34] C. Mitash, K. E. Bekris, and A. Boularias, “A self-supervised learning
system for object detection using physics simulation and multi-view
pose estimation,” in IROS, 2017.

[35] C. Mitash, A. Boularias, and K. E. Bekris, “Robust 6d object pose
estimation with stochastic congruent sets,” in British Machine Vision
Conference, 2018.

[36] K. M. Lynch, “Toppling manipulation,” in Proceedings 1999 IEEE
International Conference on Robotics and Automation, vol. 4. IEEE,
1999, pp. 2551–2557.

http://dl.acm.org/citation.cfm?id=2887007.2887192
https://doi.org/10.1057/jors.1987.70
http://dx.doi.org/10.1287/opre.48.2.256.12386
http://dl.acm.org/citation.cfm?id=314613.314718
http://arxiv.org/abs/1805.06324
http://arxiv.org/abs/1710.08577

	I Introduction
	II Related Work
	III Problem Setup and Notation
	IV System Components
	V Proposed Solution
	V-A Baseline: Pose Estimation and Picking
	V-B Toppling
	V-C Point Cloud Driven Adaptive Pushing
	V-D Fine Correction using Push and Pull Primitives

	VI Evaluation
	VII Discussion
	References

