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bookshelves, inventory management in autonomous vertical
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example below, cycle-following incurs 14 units of end-effector
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1 cycle-following algorithm does well for large n.

3J2)la)a) »  [2){a)(1]) » (2](a)(2]) » (2](3](2}

Pickup Move Swap

In this work, we examine the ensuing structures resulting from v 4 ! i ii N | | |
the pick-n-swap manipulation primitive, where the end effector 4J(2)(5) (1)) La)(2)(5])(] (5] + Proposition. The cycle-following algorithm for LTR is

may pick up, place down, and swap items. To accomplish the ! ' asymptotically optimal.

a 5y il

Total distance: 14 Total distance: 10 1!
task using pick-n-swaps, the robot must carefully plan a
sequence with which the items are picked and subsequently
placed, to minimize the number of pick-n-swaps N and end-
effector travel, which is usually easier to execute than pick-n-
swaps and less time-consuming. That is, we perform a
sequential optimization in this study.
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Together, cycle-following + cycle-switching yields an optimal 1 . ,
. . i methods to LTR and PTR, which significantly improve the
algorithm for LOR. The figures below show the expected ; N , , ,
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. . . 1 example, in the figure below, switching from the green to the

end-effector travel distances between optimal (cycle-following +
L . . ' cyan cycle can save some end-effector travel.
cycle-switching) and greedy (cycle-following only) algorithmes. !

The x-axis indicates the number of items. 1
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1 Cycle-following only With cycle-switching

p;: i-th pick-n-swap location on a lattice.

: . : The algorithm for PTR is essentially a combination of algorithms
C,,: single pick-n-swap cost. c;: unit travel cost.

Plan P = {p(); P1 - »PN>»DPN+1 — pO} i
E for POR and LTR.

Similar to LOR, we can compute the expected end-effector travel
due to cycle-following for PTR. The left figure below validates
our computation. The figure on the right shows the effect of
applying cycle-switching. The solid lines are total distance over
distance induced by cycle-following with cycle-switching. The
dotted lines are the ratio with only cycle-following.
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For POR, cycle-following does not directly work because items
are no longer labeled. We can however perform matchings of
items and goals, which induces a set of cycles, over which cycle-
following can be performed.

We study four variants in detail:
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Labeled Two-dim. Rearrangement (LTR)  Partially-labeled 2D Rearrangement (PTR)
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