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Objective

𝑝𝑖: 𝑖-th pick-n-swap  location on a lattice. 
𝑐𝑝: single pick-n-swap cost. 𝑐𝑡: unit travel cost.
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Efficient solutions for rearrangement tasks in lattice-like settings 
find many practical applications, including the rearrangement of 
products at stores and showroom, the sorting of books on 
bookshelves, inventory management in autonomous vertical 
warehouses, to list a few. 

In this work, we examine the ensuing structures resulting from 
the pick-n-swap manipulation primitive, where the end effector 
may pick up, place down, and swap items. To accomplish the 
task using pick-n-swaps, the robot must carefully plan a 
sequence with which the items are picked and subsequently 
placed, to minimize the number of pick-n-swaps 𝑁 and end-
effector travel, which is usually easier to execute than pick-n-
swaps and less time-consuming. That is, we perform a 
sequential optimization in this study. 
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Partially-labeled 1D Rearrangement (POR)

We study four variants in detail:

Structure and Optimal Algorithm for LOR
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A key structural insight is that lattice rearrangement problem 
induces cycles. For example, in the following LOR problem, there 
are two cycles, (341) and (98572). The problem may be solved 
by cycle-following: for (341), we pick up 3, swap with 4, then 
swap with 1, and then put 1 at its goal. Same can be down for 
(98572). The cycle-following simple procedure gives us the 
optimal number of pick-n-swap operations for labeled problems.

3 9 4 1 7 6 2 5 8

4

9 3 1 7 6 2 5 8

1

9 3 4 7 6 2 5 81 9 3 4 7 6 2 5 8

We note that, if we further perform cycle-switching operations, 
end-effector travel distance can sometimes be reduced. In the 
example below, cycle-following incurs 14 units of end-effector 
travel. If we switch from the (41) cycle to the (53) cycle in the 
middle, we can reduce the distance traveled to 10. 

4 2 5 1 3

Total distance: 14

4 2 5 1 3

Total distance: 10

Together, cycle-following + cycle-switching yields an optimal 
algorithm for LOR. The figures below show the expected 
distance of restoring items to goals (left) and comparison of 
end-effector travel distances between optimal (cycle-following + 
cycle-switching) and greedy (cycle-following only) algorithms. 
The 𝑥-axis indicates the number of items. 

Optimal Algorithm for POR

For POR, cycle-following does not directly work because items 
are no longer labeled. We can however perform matchings of 
items and goals, which induces a set of cycles, over which cycle-
following can be performed. 

Matching (colored arrows)  Induced (three) cycles

We can reduce the total number of pick-n-swaps by performing 
cycle-merging. There are two types: one that does not change 
end effector travel distance

And one that does

Hardness of LTR and PTR

Combing the three pieces, cycle-following + cycle-merging + 
cycle-switching (via computing a minimum spanning tree), yields 
an optimal algorithm for POR.

As we move from one dimension to two dimensions, the 
problem becomes hard, because computing the shortest end-
effector travel embeds a TSP problem. 

Theorem. Optimizing end-effector travel for LTR and PTR, 
and their higher dimensional versions, is NP-hard. 

But, because there are about log 𝑛 cycles for 𝑛 items, a greedy 
cycle-following algorithm does well for large 𝑛. 

Proposition. The cycle-following algorithm for LTR is 
asymptotically optimal. 

Near-Optimal Algorithms of LTR and PTR

We can also extend the cycle-switching and cycle-merging 
methods to LTR and PTR, which significantly improve the 
optimality when the number of items is relatively small. As an 
example, in the figure below, switching from the green to the 
cyan cycle can save some end-effector travel. 

The algorithm for PTR is essentially a combination of algorithms 
for POR and LTR. 

Similar to LOR, we can compute the expected end-effector travel 
due to cycle-following for PTR. The left figure below validates 
our computation. The figure on the right shows the effect of 
applying cycle-switching. The solid lines are total distance over 
distance induced by cycle-following with cycle-switching. The 
dotted lines are the ratio with only cycle-following. 

Cycle-following only With cycle-switching

❑ Proposed lattice rearrangement w pick-n-swap primitive
❑ Optimal polynomial-time algorithms for LOR and POR 
❑ Computational intractability for LTR/PTR
❑ Asymptotically optimal algorithms for LTR/PTR
❑ Fast 1. 𝑥-optimal algorithms for LTR/PTR, small 𝑛
❑ Extends to arbitrary dimensions 

Contributions

Source code of algorithm implementations

https://github.com/arc-l/lattice-rearrangement

Conclusions and Source Code


