
min
𝑷

𝐽 𝑷 = 𝑁𝒄𝒑 +෍

𝑖=0

𝑁

𝑑𝑖𝑠𝑡 𝑝𝑖 , 𝑝𝑖+1 𝒄𝒕

𝑷 = {𝑝0, 𝑝1… , 𝑝𝑁, 𝑝𝑁+1 = 𝑝0}Plan

Objective

𝑝𝑖: 𝑖-th pick-n-swap location on a lattice.
𝑐𝑝: single pick-n-swap cost. 𝑐𝑡: unit travel cost.

Rearrangement on Lattices with Pick-n-Swaps

Rearrangement on Lattices with Pick-n-Swaps:
Optimality Structures and Efficient Algorithms

Jingjin Yu ⋅ Computer Science @ Rutgers University at New Brunswick

This work is supported in part by NSF awards IIS1734492, IIS-1845888, and CCF-1934924. We sincerely thank the anonymous reviewers for many insightful suggestions and questions.

Efficient solutions for rearrangement tasks in lattice-like settings
find many practical applications, including the rearrangement of
products at stores and showroom, the sorting of books on
bookshelves, inventory management in autonomous vertical
warehouses, to list a few.

In this work, we examine the ensuing structures resulting from
the pick-n-swap manipulation primitive, where the end effector
may pick up, place down, and swap items. To accomplish the
task using pick-n-swaps, the robot must carefully plan a
sequence with which the items are picked and subsequently
placed, to minimize the number of pick-n-swaps 𝑁 and end-
effector travel, which is usually easier to execute than pick-n-
swaps and less time-consuming. That is, we perform a
sequential optimization in this study.

3 2 4 1

3

2 4 1

3

2 4 1 32

4

1

Pickup Move Swap

1 2 3 4 5 6 7 8 9

3 9 4 1 7 6 2 5 8

Labeled One-dim. Rearrangement (LOR)

10 15 16 6

3 5 13 1

8 11 2 9

12 14 4 7

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Labeled Two-dim. Rearrangement (LTR) Partially-labeled 2D Rearrangement (PTR)

Partially-labeled 1D Rearrangement (POR)

We study four variants in detail:

Structure and Optimal Algorithm for LOR

(Structurally) Related Work

❑ K. Treleaven, M. Pavone, and E. Frazzoli, “Asymptotically optimal algorithms for one-
to-one pickup and delivery problems with applications to transportation systems,”
IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2261–2276, 2013.

❑ S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu, “Complexity results and
fast methods for optimal tabletop rearrangement with overhand grasps,” The
International Journal of Robotics Research, vol. 37, no. 13-14, pp. 1775–1795, 2018.

❑ A. Gal and P. B. Miltersen, “The cell probe complexity of succinct data structures,”
Theoretical computer science, vol. 379, no. 3, pp. 405–417, 2007.

❑ E. Curtin and M. Warshauer, “The locker puzzle,” The Mathematical Intelligencer,
vol. 28, no. 1, pp. 28–31, 2006.

A key structural insight is that lattice rearrangement problem
induces cycles. For example, in the following LOR problem, there
are two cycles, (341) and (98572). The problem may be solved
by cycle-following: for (341), we pick up 3, swap with 4, then
swap with 1, and then put 1 at its goal. Same can be down for
(98572). The cycle-following simple procedure gives us the
optimal number of pick-n-swap operations for labeled problems.

3 9 4 1 7 6 2 5 8

4

9 3 1 7 6 2 5 8

1

9 3 4 7 6 2 5 81 9 3 4 7 6 2 5 8

We note that, if we further perform cycle-switching operations,
end-effector travel distance can sometimes be reduced. In the
example below, cycle-following incurs 14 units of end-effector
travel. If we switch from the (41) cycle to the (53) cycle in the
middle, we can reduce the distance traveled to 10.

4 2 5 1 3

Total distance: 14

4 2 5 1 3

Total distance: 10

Together, cycle-following + cycle-switching yields an optimal
algorithm for LOR. The figures below show the expected
distance of restoring items to goals (left) and comparison of
end-effector travel distances between optimal (cycle-following +
cycle-switching) and greedy (cycle-following only) algorithms.
The 𝑥-axis indicates the number of items.

Optimal Algorithm for POR

For POR, cycle-following does not directly work because items
are no longer labeled. We can however perform matchings of
items and goals, which induces a set of cycles, over which cycle-
following can be performed.

Matching (colored arrows) Induced (three) cycles

We can reduce the total number of pick-n-swaps by performing
cycle-merging. There are two types: one that does not change
end effector travel distance

And one that does

Hardness of LTR and PTR

Combing the three pieces, cycle-following + cycle-merging +
cycle-switching (via computing a minimum spanning tree), yields
an optimal algorithm for POR.

As we move from one dimension to two dimensions, the
problem becomes hard, because computing the shortest end-
effector travel embeds a TSP problem.

Theorem. Optimizing end-effector travel for LTR and PTR,
and their higher dimensional versions, is NP-hard.

But, because there are about log 𝑛 cycles for 𝑛 items, a greedy
cycle-following algorithm does well for large 𝑛.

Proposition. The cycle-following algorithm for LTR is
asymptotically optimal.

Near-Optimal Algorithms of LTR and PTR

We can also extend the cycle-switching and cycle-merging
methods to LTR and PTR, which significantly improve the
optimality when the number of items is relatively small. As an
example, in the figure below, switching from the green to the
cyan cycle can save some end-effector travel.

The algorithm for PTR is essentially a combination of algorithms
for POR and LTR.

Similar to LOR, we can compute the expected end-effector travel
due to cycle-following for PTR. The left figure below validates
our computation. The figure on the right shows the effect of
applying cycle-switching. The solid lines are total distance over
distance induced by cycle-following with cycle-switching. The
dotted lines are the ratio with only cycle-following.

Cycle-following only With cycle-switching

❑ Proposed lattice rearrangement w pick-n-swap primitive
❑ Optimal polynomial-time algorithms for LOR and POR
❑ Computational intractability for LTR/PTR
❑ Asymptotically optimal algorithms for LTR/PTR
❑ Fast 1. 𝑥-optimal algorithms for LTR/PTR, small 𝑛
❑ Extends to arbitrary dimensions

Contributions

Source code of algorithm implementations

https://github.com/arc-l/lattice-rearrangement

Conclusions and Source Code

