
Anytime Planning of Optimal Schedules for a Mobile Sensing Robot

Jingjin Yu Javed Aslam Sertac Karaman Daniela Rus

Abstract—We study the problem in which a mobile sensing
robot is tasked to travel among and gather intelligence at a
set of spatially distributed points-of-interest (POIs). The quality
of the information collected at a POI is characterized by some
sensory (reward) function of time. With limited fuel, the robot
must balance between spending time traveling to more POIs
and performing time-consuming sensing activities at POIs to
maximize the overall reward. In a dual formulation, the robot is
required to acquire a minimum amount of reward with the least
amount of time. We propose an anytime planning algorithm for
solving these two NP-hard problems to arbitrary precision for
arbitrary reward functions. The algorithm is effective on large
instances with tens to hundreds of POIs, as demonstrated with an
extensive set of computational experiments. Besides mobile sensor
scheduling, our algorithm also applies to automation scenarios
such as intelligent and optimal itinerary planning.

I. INTRODUCTION

Consider the scenario in which an environmental scientist
wants to plan an automated, GPS-guided trip for an aerial
robot to collect valuable data (e.g., audio, video, temperature,
and so on) at a set of spatially distributed, remote geolocations
(equivalently, points-of-interest or POIs). To execute its task,
the robot must travel to these POIs and then perform data col-
lection at each visited POI, both of which are time consuming.
Frequently, the quality of the information gathered at a POI
directly depends (in a diminishing manner) on the amount of
time spent at the POI. When the robot is only available to
the scientist for a limited time, which is the case for many
shared resources, our environmental scientist is faced with the
challenge of designing an optimal plan for the robot to get the
most valuable combination of data according to some metric.
Is there a principled approach that she can use for planning
such a trip with optimality guarantees?

In this paper, we propose the Optimal Tourist Problem1

(OTP) and an associated anytime algorithm to address the
above mentioned autonomous planning and scheduling sce-
nario. In the basic setup, a robot (equivalently, a tourist) is
tasked to visit up to n POIs that are spatially distributed.
Each POI is associated with a sensory reward function (or
simply reward function), a non-negative bounded function of

J. Yu and D. Rus are with the Computer Science and Artificial Intelli-
gence Lab at the Massachusetts Institute of Technology. E-mail: {jingjin,
rus}@csail.mit.edu. J. Aslam is with the College of Computer and Information
Science at Northeastern University. Email: jaa@ccs.neu.edu. S. Karaman
is with the Department of Aerospace and Astronautics Engineering at the
Massachusetts Institute of Technology. E-mail: karaman@mit.edu.

This work was supported in part by ONR projects N00014-12-1-1000
and N00014-09-1-1051, and the Singapore-MIT Alliance on Research and
Technology (SMART) Future of Urban Mobility project.

1The name of the problem is inspired by the Traveling Salesperson Problem
(TSP), a planning problem contained in our problem formulation.

Fig. 1. [top] A scientific monitoring scenario in which a UAV collects
data (e.g., image, video, air quality, temperature, and so on) from multiple
geolocations (POIs). In this case, there are four mountainous regions and
three lakes. [bottom] Each POI is associated with a known sensory function
that characterizes the information gain over the time spent at a POI. With
limited fuel, the UAV must maximize the total information gain by carefully
selecting the subset of POIs to visit and deciding how long to carry out its
sensing activity at each visited POI. As an illustration, the best schedule may
only visit two mountainous regions and two lakes.

the time spent at the POI. Because traveling between POIs
and doing sensing at a POI to gain information are both
time consuming, optimization problems naturally arise. We
introduce two related formulations that are duals of each other.
In the first problem, a reward-maximizing tourist (RMT) seeks
to maximize the total collected information given limited time
budget. From a dual perspective, in the second problem, a
budget-minimizing tourist (BMT) seeks to minimize the time
spent to collect a predetermined amount of reward. We provide
a mixed integer programming (MIP) based anytime algorithm
for solving both RMT and BMT.

Motivation and related work. The primary motivation be-
hind our study of OTP is its application to robotic surveillance
and monitoring problems such as automated reconnaissance
and scientific survey, which we refer to under the umbrella
term of informative path and policy planning. In such a

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9994-1/15/$31.00 ©2015 IEEE 5279

problem, a path or a policy is planned to satisfy some
information collection objective, sometimes under additional
constraints such as path length or total time limit. In [1],
an O(logn) approximation algorithm yields iterative TSP
paths that minimize the maximum latency (the inverse of the
frequency with which a node is visited) across all n nodes in a
connected network. In [2], the authors proposed a method for
generating speed profiles along predetermined cyclic paths to
keep bounded the uncertainty of a varying field using single
or multiple robots. For the problem of observing stochastically
arriving events at multiple locations with a single mobile
robot, a (1 + ε)-optimal algorithm was proposed in [3] to
solve the multi-objective optimization problem of maximizing
event observation in a balanced manner and minimizing delay
between event observations across the locations. Recently, a
method called Recursive Adaptive Identification is proposed as
a polynomial time polylogarithmic-approximation algorithm
for attacking adaptive informative path planning (IPP) [4].
Under suitable conditions, submodularity can be explored
to provide approximation guarantees for IPP variants [5].
Sampling based methods [6]–[8] have also been applied to IPP
problems with success. For example, in [9], Rapidly-Exploring
Random Graphs (RRG) are combined with branch-and-bound
methods for planning most informative paths.

A problem intimately connected to OTP is the Orienteering
Problem (OP) [10]–[12], which is obtained when rewards at
the POIs are fixed in RMT. The fixed reward is collected
in full once a POI is visited. OP, which is easy to see as
an NP-hard problem, is observed to be difficult to solve
exactly for instances with over a hundred POIs. On the side
of approximation algorithms, constant approximation ratios
down to (2 + ε) are only known under metric settings for
OP with uniform reward across the POIs [13]. On the other
hand, many MIP-based algorithms exist for OP and related
problems [11], [12]. These algorithms often allow the precise
encoding of the problem in the MIP model. A work in
this domain that is closest to ours studies an OP problem
in which the reward may depend on the time spent at the
POIs [14]. It proposes a solution method that iteratively adds
constraints that are violated by the incomplete model. The
method applies to only limited reward function classes and
does not always bound the achievable approximation ratio as
we do. On the side of trip planning problems, many interesting
work [15]–[17] compute “optimal” itineraries according to
some reward metric. For example, the authors of [15] apply
a recursive greedy approximation algorithm for OP [18] to
plan suggested itineraries. However, the provided guarantee is
over 2-optimal, which is unsatisfactory in practice. In the end,
most of these work focus on the data mining aspect of trip
planning problems, e.g., how POI related data, such as the
average visiting times for POIs and tourist preference through
POI correlations, may be derived and used.

Contributions. Our study brings two main contributions.
First, we introduce two novel, complementary planning prob-
lems that allow the traveling and sensing costs of a mobile
robot to be jointly considered through a single and natu-

ral optimality criterion. Both formulations are applicable to
practical mobile sensor scheduling scenarios. In addition, the
formulations are highly flexible, supporting arbitrary sensory
reward functions. Second, we derive a mixed integer pro-
gramming (MIP) model capable of approximating arbitrary
reward functions to arbitrary precision. Furthermore, the MIP
model directly leads to an anytime algorithm that can quickly
compute optimal or near optimal solutions to instances with
tens to hundreds of POIs.

Organization. The rest of the paper is organized as follows.
In Section II, we formulate the two variants of the optimal
tourist problem. In Section III, we provide a step-by-step in-
troduction of our MIP model for solving the proposed problem
variants. In Section IV, we discuss the overall algorithm and
some of its important properties in more detail. We present
computational simulations as well as data-driven experiments
in Section V, and conclude in Section VI. Due to limited space,
we omit proofs and some experimental results.

II. PROBLEM FORMULATION

Let the set V = {v1, . . . ,vn} represents n points-of-interest
(POIs) in R2. There is a directed edge ei, j between two POI
vertices vi,v j ∈ V if there is a path from vi to v j that does
not pass through any intermediate POIs. When an edge ei, j
exists, let di, j denote its length. There is a mobile robot
(equivalently, a tourist) that travels between the POIs following
single integrator dynamics. Denoting the robot’s location as p,
when the robot is traveling from one POI to another, ṗ = u
with ∥ u ∥= 1. Otherwise, ṗ = 0.

The robot is tasked to visit the POIs and perform infor-
mation collection. To do so, it starts from some base vertex
vB ∈ B⊂V with |B|= nB ≤ n, travels between the POIs, and
eventually returns to vB. Each vi ∈ V is associated with a
maximum sensing reward ri. We assume that the obtained
reward depends on the time ti the robot spends at vi. More
precisely, the obtained reward is defined as ri fi(ti), in which
fi ∈ [0,1] is some function of ti that is non-decreasing. We
further require that fi is C1 continuous and f ′i (0) is bounded
away from zero. That is, for all 1 ≤ i ≤ n, f ′i is continuous
and f ′i (0) ≥ λ for some fixed λ > 0. We also assume that
f (0) = 0 for convenience (note that the assumption does not
reduce generality).

Whereas our result supports arbitrary reward functions, in
this paper, two specific types of one-parameter family of
reward functions are studied further: linear and exponential.
Let λi > 0 denote the (sensory) learning rate. In the case of
a linear reward,

fi(ti) = λiti, 0≤ ti ≤
1
λi
. (1)

The exponential reward function is specified as

fi(ti) = 1− e−λiti , 0≤ ti ≤+∞, (2)

which captures the notion of “diminishing return” that are
often present in such sensing tasks.

After a trip is completed, the robot would have traveled
through a subset of the edges Etr ⊂ E and have spent time

5280

t1, . . . , tn, ti ≥ 0 at the n POIs. It would have spent a total time
of

JT := ∑
ei, j∈Etr

di, j +
n

∑
i=1

ti (3)

and gained a total reward of

JR :=
n

∑
i=1

ri fi(ti). (4)

Note that the robot may pass throught some edges ei, j more
than once, in which case di, j is included once each time ei, j
is enumerated in (3). That is, Etr is a multi-set. We define
T := {t1, . . . , ti}, R := {r1, . . . ,rn}, and F := { f1, . . . , fn}.

During the planning phase, one often faces the challenging
task of planning ahead so as to spend the optimal amount of
time to travel and to perform sensing to gain the most out of
a trip. This gives rise to two OTP variants. In the first, the
robot is given a time budget MT , during which one hopes to
maximize the total reward. That is,

Problem 1 (Reward-Maximizing Tourist (RMT)) Given a
5-tuple (V,B,D,R,F) and MT > 0, compute the sets Etr and
T such that JR is maximized under the constraint JT ≤MT .

We do not need to specify the edge set E because it is
implicitly fixed by D. The second, equally natural problem is
in a sense a dual problem of RMT, in which the goal is to
minimize the time spent to achieve a predetermined reward.

Problem 2 (Budget-Minimizing Tourist (BMT)) Given a
5-tuple (V,B,D,R,F) and MR > 0, compute the sets Etr and
T such that JT is minimized under the constraint JR ≥MR.

III. MIP MODELS FOR BMT AND RMT

In this section, we propose mixed integer programming
(MIP) models for solving RMT and BMT. First, we describe
an MIP model derived from an existing one for the orienteering
problem (OP) that applies to RMT and BMT problems with
|B|= 1 (i.e., a single base) and linear reward functions. Then,
the MIP model is generalized to allow multiple bases and
arbitrary reward functions. We point out that the proposed
problems are computationally intractable, which can be easily
shown, given their similarity to TSP and OP.

A. MIP Model for a Single Base and Linear Rewards

In this subsection, we introduce an MIP model for RMT
and BMT with a single base and with the set F being linear
functions. The model is partially based on models from [11],
[14]. Without loss of generality, let the robot start from v1.
Because the reward at a given POI only depends on the total
time spent at the POI, we also assume that the time the robot
spent at a POI is spent during a single visit to the POI. When
the robot spends time at a POI, we say it stays at the POI.
With these assumptions, the robot will eventually have stayed
at some ℓ POIs with the order vs1 , . . . ,vsℓ , and have spent time
ts1 , . . . , tsℓ at these POIs. For i /∈ {s1, . . . ,sℓ}, ti = 0.

Although the robot only needs to stay at a POI at most once,
it may need to pass through a POI multiple times (e.g., if the
POI is a travel hub). To distinguish these two types of visits
to a POI, we perform a transitive closure on the set D. That is,
we compute all-pairs shortest paths for vi,v j ∈V,1≤ i, j ≤ n.
This gives us a set of shortest directed paths P = {pi, j} with
corresponding lengths D′ = {d′i, j}. We say that the robot takes
a path pi, j if it stays at v j immediately after staying at vi,
except when the robot starts and ends its trip at v1. With this
update, the robot’s final tour is simply ps1,s2 , . . . , psℓ,s1 . Let xi j
be a binary variable with xi j = 1 if and only if pi, j is taken
by the robot.

The number of times that the robot stays at (resp. leaves
after staying) a POI vertex vi is ∑n

j=1, j ̸=i x ji (resp. ∑n
j=1, j ̸=i xi j).

Both summations can be at most one since by assumption, the
robot never stays at a POI twice. The tour constraint then says
they must be equal, i.e., ∑n

j=1, j ̸=i x ji = ∑n
j=1, j ̸=i xi j. Let xi be

the binary variable indicating whether the robot stayed at vi.
We have the following edge-use constraints

n

∑
j=1, j ̸=i

xi j =
n

∑
j=1, j ̸=i

x ji = xi ≤ 1, ∀2≤ i≤ n. (5)

The case of i = 1 is special since v1 is always visited, even
if the robot does not actually stay at v1. For this purpose, we
add a self-loop variable x11 at v1 and require

n

∑
j=1

x1 j =
n

∑
j=1

x j1 = x1 = 1. (6)

The constraints (5) and (6) guarantee that the robot takes
a tour starting from v1. However, they do not prevent mul-
tiple disjoint tours from being created. To prevent this from
happening, a sub-tour restriction constraint is introduced. Let
2 ≤ ui ≤ n be integer variables for 2 ≤ i ≤ n. If there is a
single tour starting from v1, then ui can be chosen to satisfy
the constraints (see [11], [14] for the technical details)

ui−u j +1≤ (n−1)(1− xi j), 2≤ i, j ≤ n, i ̸= j. (7)

With the introduction of the variables {xi j}, the time spent
by the robot is given by

JT =
n

∑
i=1

n

∑
j=1, j ̸=i

xi jd′i j +
n

∑
i=1

ti. (8)

To represent the total reward JR, we introduce a continuous
variable wi,1≤ i≤ n, to denote the reward collected at vi. For
a linear fi, λi, the learning rate, is simply the slope of fi. The
reward wi and the visiting time ti then satisfy

wi ≤ rixi, wi = tiλi, (9)

The first constraint in (9) allows reward only if the robot
stays at vi and limits the maximum reward at ri. The second
constraint reflects the linear dependency of the reward wi over
the visiting time ti. The total reward JR is simply

JR =
n

∑
i=1

wi. (10)

Solving RMT with a single base and linear reward functions
can then be encoded as an MIP maximizing JR subject to

5281

JT ≤MT , (5), (6), (7),and (9). Similarly, solving BMT with a
single base and linear reward functions can be encoded as an
MIP minimizing JT subject to JR ≥MR, (5), (6), (7), and (9).

B. Incorporating Multiple Bases
For the case of |B| > 1, to enable the selection of any

particular vi ∈ B, a virtual origin vertex o is created, which
is both a source and a sink. Then, each base vertex vi is split
into two copies, vin

i and vout
i . The edges connecting vi to other

POI vertices of V are split such that all edges going from
vi to other POI vertices are now rooted at vout

i and all edges
connecting other POI vertices to vi are now ending at vin

i . In
addition, two crossover edges between vin

i and vout
i are added,

one in each direction. Lastly, an outgoing edge from o to vout
i

and an incoming edge from vin
i to o are added. An illustration

of this gadget is given in Figure 2. The gadget is duplicated for
every element of B using the same origin vertex o. The basic
MIP model from the previous subsection is then updated to

v i v i
out

v i
in

o

Fig. 2. [left] A base vertex vi and its outgoing (dotted) and incoming (solid)
edges. [right] The gadget that split vi into vin

i and vout
i , along with the split

edges and the newly added four (bold) edges.

enable the routing of the robot through at least one element of
B. For each vi ∈ B, we create four additional binary variables
to represent whether the four newly added edges are used in a
solution. These variables are xo,out

i (edge from o to vout
i), xin,o

i
(edge from vin

i to o), xout,in
i (edge from vout

i to vin
i), and xin,out

i
(edge from vin

i to vout
i). To ensure that at least one vertex of

B is used, we add the constraint

∑
vi∈B

xo,out
i = 1. (11)

The edge-use constraints also need to be updated accord-
ingly. Due to the vertex split for vertices from the set B, we
have two sets of such edge-use constraints. The constraint (5)
now applies to all non-base vertices. The constraint (6) is
updated for all base vertices vi ∈ B to

n

∑
j=1, j ̸=i

xi j + xout,in
i − xin,out

i − xo,out
i = 0, (12)

n

∑
j=1, j ̸=i

x ji + xout,in
i − xin,out

i − xin,o
i = 0. (13)

With constraint (11), o goes to exactly one vout
i and later

returns to vin
i . Then, constraints (12) and (13), along with

the existing edge-use constraint (5), ensure that one or more
tours are created. Finally, to prevent multiple tours from being
created, we update the variables ui’s to 1≤ ui≤ n for 1≤ i≤ n.
For a base vertex vi ∈ B, we add the constraint

ui−u j +1≤ (2− xi j− xin,out
i)n. (14)

If vi is not a base vertex, we require

ui−u j +1≤ (1− xi j)n. (15)

Constraints (14) and (15) replace the constraint (7). The
constraint (15) has the same effect as the constraint (7)
in preventing a separate tour from being created. For base
vertices, when xin,out

i = 1, which is the case when xo,out
i ̸= 1,

the constraint (14) is the same as (15). If xo,out
i = 1, then (14)

becomes ui−u j +1≤ n+(1−xi j)n, which always holds. That
is, the constraint (14) treats the selected base vertex differently.

C. Linearization of Arbitrary Reward Functions

To accommodate arbitrary reward structure into our MIP
model, a linearization scheme is used. We show that, with
carefully constructed linear approximations of fi’s, arbitrarily
optimal MIP models can be built. The basic idea behind our
linearization scheme is rather simple. Given a C1 continuous
fi ∈ [0,1] with f ′i (0) ≥ λ > 0, it can be approximated to
arbitrary precision with a continuous, piecewise linear function
f̃i such that for arbitrary ε > 0 and all ti ≥ 0,

| fi− f̃i|
fi

≤ ε, (16)

with f̃i having the form (see, e.g., Figure 3)

f̃i =

ai,1ti +bi,1, 0≤ ti ≤ ti,1
ai,2ti +bi,2, ti,1 ≤ ti ≤ ti,2
. . . , . . .
ai,kiti +bi,ki , ti,ki−1 ≤ ti ≤ ∞

(17)

A procedure for computing such an f̃i is provided by
Theorem 3 in Section IV.

fi

t i,2 t i,3t i,1 t i,4

a i,2 +t i b i,2

fi~

Fig. 3. Approximation of some fi with a continuous, piecewise linear function
(bold dashed line segments). The approximation is concave between [0, ti,2],
[ti,2, ti,3], and so on.

Once a particular f̃i is constructed, the constraints on the
reward wi must be updated. To make the explanation clear,
we use the f̃i from Figure 3 as a concrete example. Starting
from ti = 0, we introduce a new continuous variable t1

i over
the first maximally concave segment of fi. In the case of the f̃i
in Figure 3, the first maximally concave segment contains two
line segments, ending at ti,2. In this case, we have 0≤ t1

i ≤ ti,2.
To represent the reward obtained over the first maximally

5282

concave segment, a continuous variable w1
i is introduced,

which satisfies w1
i ≤ ai,1t1

i +bi,1 and w1
i ≤ ai,2t1

i +bi,2.
Then, for the next maximally concave segment, another

continuous variable t2
i is introduced. In our example, the

second maximally concave segment contains one line segment
and thus

ti,2 ≤ t2
i ≤ ti,3. (18)

We need to ensure that t2
i is active only if t1

i is maximized.
We achieve this through the introduction of an additional
binary variable x2

i , which is set to satisfy the constraint
x2

i ≤ t1
i /ti,2. The constraint ensures that x2

i = 1 only if t1
i

is maximized and takes the value ti,2. To avoid potential
numerical issues that may prevent x2

i = 1 from happening, in
practice, we may write the constraint as x2

i ≤ (t1
i + δ)/ti,2,

in which δ is a small positive real number. We can then
activate t2

i through t2
i ≤ x2

i (ti,3− ti,2)+ ti,2, which also renders
the constraint (18) unnecessary. The reward for this second
maximally concave segment, w2

i , is then

w2
i ≤ ai,3t1

i +bi,3− (ai,2ti,2 +bi,2).

After all of f̃i are encoded as such, we combine the
individual time and reward variables into ti and wi as

ti = t1
i +(t2

i − ti,2)+ . . . , (19)

wi = w1
i +w2

i + (20)

We note that the additional constraints that are introduced
is proportional to the complexity of f̃i. It can be shown that
the overall MIP model constructed in this way allows arbitrary
approximations of the original problem.

Theorem 1 Given an RMT instance specified by a 5-tuple
(V,B,D,R,F), MT > 0, and a positive real number ε , a (1+ε)-
optimal solution of this RMT instance can be computed by
solving a mixed integer programming problem, obtained over
a (1+ ε/2) piece-wise linear approximation of F.

For BMT, since time is split between traveling and actually
staying at POIs, a direct (1+ε)-optimality assurance cannot be
established. Nevertheless, for a BMT instance requiring MR >
0, assuming that the optimal solution requires J∗T time, we can
guarantee that a reward of at least (1−ε)MR is achieved using
time no more than J∗T .

Theorem 2 Given a BMT instance specified by a 5-tuple
(V,B,D,R,F), MR > 0, and a positive real number ε , let
its solution have a required total time of J∗T . Then, an MIP
model can be constructed that computes a solution with
JR ≥ (1− ε)MR and JT ≤ J∗T .

IV. THE ALGORITHM AND ITS ANALYSIS

The overall algorithm construction is outlined in Algo-
rithm 1. In Line 1 of the algorithm, it computes all-pairs
shortest paths and their respective lengths using a transitive
closure based algorithm, for example, the Floyd-Warshall al-
gorithm [19], [20]. Then, in Lines 2-4, the algorithm computes

a piece-wise linear (1+ε/2)-approximation of each fi ∈ F , if
necessary. Finally, once D′ is computed and all of F̃ is built,
Lines 5-11 of the algorithm can be carried out according to
the steps outlined in Section III. In the rest of this section, we
cover two important properties of our algorithm.

Algorithm 1: OTP PLANNER

Input : V,B,D,R,FMT (or MR), and ε
Output: J∗R (or J∗T) and Etr

%Compute all pairs of shortest paths

1 (P′,D′)← FLOYDWARSHALL(V,D)

%Compute for each reward function a

piece-wise linear approximation

2 for fi ∈ F,1≤ i≤ n do
3 f̃i← COMPUTEEPSILONAPPROXIMATION(fi,ε/2)
4 end
%Set up and solve the MIP

5 (V ′,D′)← VERTEXSPLIT(V,B,D′) ; %Split bases

6 BUILDMODEL(V ′,D,R, F̃) ; %Build the MIP model

7 if MT is given then
8 Set JT ≤MT and maximize JR ; %Maximize reward

9 else
10 Set JR ≥MR and minimize JT ; %Minimize time

11 end
12 return J∗R, the maximum reward (or J∗T , the minimum

time), and the associated Etr

A. Finite Complexity of Piece-Wise Linear Approximation

In Section III, we mentioned that a reasonably nice reward
function can be approximated to arbitrary precision using a
piece-wise linear function, which is not difficult to imagine.
However, to encode the approximated piece-wise linear func-
tion into the MIP model, the function must have finitely many
line segments, which can always be achieved.

Theorem 3 Let f ∈ [0,1] be a C1 continuous, non-decreasing
function with f (0)= 0 and f ′(0)≥ λ for some fixed λ > 0. For
any given ε > 0, there exists a piece-wise linear approximation
of f containing only a finite number of line segments, denoted
f̃ , such that

| f (t)− f̃ (t)|
f (t)

≤ ε. (21)

B. The Anytime Property

A very useful property of Algorithm 1 that we obtain for
free is that it yields an anytime algorithm.2 The anytime
property is a direct consequence of solving the MIP models
for RMT and BMT using an MIP solver, which generally
use some variations of the branch-and-bound algorithm [21].
Roughly speaking, a branch-and-bound algorithm works with

2We note that both RMT and BMT admit trivial non-optimal solutions that
can be easily computed. For example, for RMT a zero-reward trip requires
no computational effort.

5283

a (high-dimensional) polytope that contains all the feasible
solutions to an optimization problem. The algorithm then iter-
atively partitions the polytope into smaller ones and truncates
more and more of the polytope that are known not to contain
the optimal solution. After some initial steps, a tree structure
is built and the leaves of the tree contain portions of the
original feasibility polytope that are still active. For each of
these polytopes, suppose we are working on a maximization
problem, it is relatively easy to locate a feasible solution
with the correct integrality condition (i.e., a feasible solution
in which binary/integer variables get assigned binary/integer
values). The maximum of all these feasible solution is then
a lower bound of the optimal value. On the other hand, it is
also possible to compute for each leaf the maximum achievable
objective without respecting the integrality constraints, which
yields an upper bound on the optimal value. The difference
between the two bounds is often referred to as the gap. When
the gap is zero, the optimal solution is found. Over the running
course of a branch-and-bound algorithm, if the gap gradually
decreases, an anytime algorithm is obtained.

For our particular problems, the anytime property is quite
useful since computing the true optimal solution to the (po-
tentially approximate) MIP model for RMT and BMT can
be very time consuming. We will see in Section V that for
medium sized problems, a 1.2-optimal solution, which is fairly
good for practical purposes, can often be computed quickly.

V. COMPUTATIONAL EXPERIMENTS

In this section, we evaluate our proposed algorithm in
several computational experiments. In these experiments, we
look at the solution structure, computational performance,
and an application to planning a day tour of Istanbul. The
simulation is implemented using Java. Gurobi [22] is used as
the MIP solver. Our computational experiments were carried
out on an Intel Core-i7 3930K PC with 64GB of memory.

A. Anytime Solution Structure

Our first set of experiments was performed over a randomly
generated example, created in the following way. The example
contains 30 uniformly randomly distributed POIs in a 10×15
rectangle (see Figure 4). Each POI vi is associated with a
λi ∈ [1,2) and an ri ∈ [1,2) that were both uniformly randomly
selected. The λi’s and ri’s are selected not to vary by much
because we expect that in practice, this will present a more
difficult choice for a mobile robot. For fi, both linear (e.g.,
with the form (1)) and exponential (e.g., with the form (2))
types were used, with the learning rates specified by the λi’s.
We set ε = 0.05 when we approximate the non-linear fi’s with
piece-wise linear functions. Note that ε = 0.05 yields a 1.1-
optimal MIP model for exponential fi’s. These steps determine
the sets V , R, F , F̃ . We let B to be the set {v1,v9,v17,v25}. For
deciding E and D, we let there be an edge between two POI
vertices vi,v j if the Euclidean distance between them is no
more than 10. Finally, the constraints were set as follows. For
RMT, MT = 50 for both linear and exponential fi’s. For BMT,
MR = 30.55 for linear fi’s and MR = 25.78 for exponential

fi’s. These MR’s were selected because they are the optimal
JR value for the respective RMT problems with MT = 50.

J = 23.52
R

J = 27.30
R

(a) (b)
J = 30.26
R

J = 30.55
R

(c) (d)
Fig. 4. Figures (a) - (d): POIs visited by the best solution to the RMT
problem after the gap dips just below 50%, 20%, 10%, and 5%, respectively.
The solution obtained after the gap dips below 5% is in fact the optimal
solution for this particular example. The black and the green dots are the
POIs and the green dots are the base vertices. The solutions are returned after
1.05, 2.16, 3.70, and 10.2 seconds of computation, respectively.

For each problem instance, we extract the solution after
the gap becomes no more than 100%,50%,20%,10%,5%,1%,
and 0%. Some of these solutions for the RMT instance with
linear reward functions are illustrated in Figure 4. Because the
large number of POIs involved, we do not list the computed
ti’s but point out that, in the linear case, when the set
of POIs for staying is selected, it is always beneficial to
exhaust the reward at POIs with the largest learning rate since
time is best used this way. The computation of these four
solutions took 1.05,2.16,3.70, and 10.2 seconds, respectively.
Confirming that the last solution (Figure 4(d)) is indeed the
optimal solution took 76 seconds. For the BMT instance with
MR = 30.55, we obtained a similar set of plots, which is
omitted here due to space limit.

For exponential rewards, similar results were obtained. The
optimal tours for RMT and BMT are illustrated in Figure 5,
which, as expected, are the same. Computing the optimal
solution to these more complex 1.1-optimal MIP models took
27.6 and 30.1 seconds, respectively.

J = 25.78
R

J = 50.00
T

(a) (b)

Fig. 5. (a) Optimal solution to RMT with exponential reward functions and
MT = 50.00. (b) Optimal solution to BMT with exponential reward functions
with MR = 25.78.

B. Computational Performance
Since the models for RMT and BMT attempt to solve

an NP-hard problem precisely (note that the problem after

5284

TABLE I
COMPUTATION TIME FOR SOLVING RMT AND BMT OVER POIS LOCATED AT THE LATTICE POINTS ON VARIOUS SIZED INTEGER GRIDS.

grid size problem reward MIP gap (100% = 2-optimal, 0% = optimal)
100% 50% 20% 10% 5% 1% 0%

4×5

RMT linear 0.085s (10) 0.135s (10) 0.203s (10) 0.261s (10) 0.675s (10) 2.285s (10) 2.357s (10)
BMT linear 0.070s (10) 0.108s (10) 0.271s (10) 0.571s (10) 0.974s (10) 1.101s (10) 1.102s (10)
RMT exponential 0.149s (10) 0.171s (10) 0.240s (10) 0.388s (10) 0.471s (10) 1.293s (10) 1.343s (10)
BMT exponential 0.061s (10) 0.090s (10) 0.174s (10) 0.364s (10) 0.505s (10) 0.605s (10) 0.608s (10)

6×7

RMT linear 0.683s (10) 0.687s (10) 0.816s (10) 1.009s (10) 5.790s (10) 161.3s (7) 209.8s (7)
BMT linear 0.501s (10) 0.514s (10) 6.308s (10) 31.76s (10) 79.22s (10) 127.9s (10) 129.0s (10)
RMT exponential 0.870s (10) 0.914s (10) 1.784s (10) 5.268s (10) 17.91s (10) 182.6s (8) 234.6s (8)
BMT exponential 0.701s (10) 0.715s (10) 3.718s (10) 11.37s (10) 78.40s (10) 79.43s (8) 80.87s (8)

8×10

RMT linear 2.272s (10) 2.443s (10) 2.953s (10) 21.58s (10) 87.13s (10) 454.6s (3) 809.0s (1)
BMT linear 2.188s (10) 2.382s (10) 3.111s (10) 20.75s (10) 134.1s (9) 284.2s (6) 295.2s (6)
RMT exponential 2.134s (10) 2.345s (10) 5.664s (10) 22.75s (10) 67.28s (10) 342.5s (4) 498.5s (3)
BMT exponential 2.530s (10) 2.849s (10) 20.64s (10) 79.32s (10) 274.6s (9) 492.9s (6) 524.7s (6)

10×20

RMT linear 17.31s (10) 17.31s (10) 18.96s (10) 98.66s (10) 433.9s (7) N/A N/A
BMT linear 43.28s (10) 48.84s (10) 93.40s (10) 241.9s (9) 346.8s (4) N/A N/A
RMT exponential 17.33s (10) 26.87s (10) 48.06s (9) 59.64s (5) 317.3s (1) N/A N/A
BMT exponential 37.17s (10) 44.29s (10) 241.3s (10) 424.2s (6) 435.4s (1) N/A N/A

linearization remains NP-hard), no polynomial time algorithm
exists unless P = NP. Therefore, our evaluation of the algo-
rithm’s computational performance is limited to an empirical
one. For this, two large sets of computations are performed.
In the first set of computations, rectangular grids of various
sizes were constructed. The POIs reside on the lattice points
on these grid, with the reward and learning rate selected
uniformly randomly from [1,2). Vertices n/3 and 2n/3 are
selected as base vertices. For each choice of grid sizes, 10
example problems are created. For the RMT instances, a time
budget of 1.5 times the grid perimeter is used. For the BMT
instances, a reward requirement of 0.6 times the grid perimeter
is used. These constraints are chosen to allow the tour to go
through 10% to 25% of the total POIs. For both RMT and
BMT instances, we perform computations with both linear
and exponential reward functions (with 5% linearization). The
average time, in seconds, required to compute a solution up
to given accuracy is listed in Table I. The numbers in the
parentheses denote the number of times, out of a total of
ten, that the computation completed within a limit of 900
seconds.3 Due to the combinatorial nature of the branch-and-
bound algorithm, quality improvement is not always gradual.
For example, for the 10× 20 grid and linear RMT for all
10 instances the gap went from above 100% to below 50%,
causing the time taken for these two scenarios to be identical.

Our second set of computations generates the POI locations
uniformly randomly according to the same rules used in Sec-
tion V-A, in a |V |×1.2|V | rectangle. Then, for RMT instances,
a time budget of 4

√
|V | is used. For BMT instances, a reward

requirement of 2
√
|V | is used. The rest of the setup is done

similarly as in the grid case. Representative computational
result over the RMT instances is listed in Table II.

From the computational experiments, we observe that in
the grid case, for up to 200 POIs, the proposed method can
compute a 1.2-optimal (corresponding to a 20% gap) MIP
solution for almost all instances (199 out of 200 instances),

3We opted to use a table instead of a graph or a plot as a table is more
compact and allow us to show the number of successful runs easily.

under very reasonable computation time. Moreover, for up
to 80 POIs, the method can compute a 1.05- optimal MIP
solution for almost all instances (158 out of 160 instances).
When the POIs are selected randomly, the computation seems
to be more challenging. Computing 1.2-optimal MIP solution
starts to become challenging when there are more than 40
POIs. The difficulty seems to come from the fact that randomly
selected POIs can potentially be packed more densely in
certain local regions. Nevertheless, we were still able to
compute 1.5-optimal MIP solutions in most of the cases when
there are 100 POIs. Overall, the two large sets of computations
suggest that our algorithm can be used to do itinerary planning
for practical-sized instances in large cities.

C. Application to Intelligent Itinerary Planning

As a last computational example, we illustrate how our
work may be applied to other planning problems such as
autonomous trip planning. For this purpose, we show how
to use real data to compute a day tour of Istanbul over
20 attractions (POIs). These 20 POIs are selected by taking
the top-ranked attractions from TripAdvisor’s4 city guide for
Istanbul. We select the top 20 POIs that are not general areas
and have at least 300 user reviews. The first few of these POIs
are (the ordering is by the POI’s rank): Suleymaniye Mosque,
Rahmi M. Koc Museum, Rustem Pasha Mosque, Hagia Sophia
Museum, Kariye Museum, and Basilica Cistern.

After the POIs are selected, we compute the maximum
reward of these POIs using the formula 3

√
nreview+10−rank/5,

in which nreview is the total number of reviews received for the
POI on TripAdvisor and rank is the POI’s rank on TripAdvisor.
The attractions are mostly museums and architectural sites,
to which we assign the learning rates of 1− 0.01ri, i.e., we
expect a tourist to spend more time at more renowned POIs.
Using Google Map5, we extracted the pair-wise distances
between any two of these POIs and build the sets E and D.
The base vertex set is selected to contain the 1st, 6th, 11th,

4http://www.tripadvisor.com
5http://maps.google.com.

5285

TABLE II
COMPUTATION TIME FOR SOLVING RMT AND BMT OVER POIS THAT ARE UNIFORMLY RANDOMLY SELECTED.

of samples problem reward MIP gap (100% = 2-optimal, 0% = optimal)
100% 50% 20% 10% 5% 1% 0%

20 RMT linear 0.118s (10) 0.236s (10) 0.730s (10) 2.645s (10) 4.832s (10) 5.887s (10) 5.92 s (10)
RMT exponential 0.274s (10) 0.379s (10) 3.780s (10) 6.499s (10) 13.38s (10) 17.49s (10) 17.57s (10)

42 RMT linear 6.058s (10) 13.73s (10) 49.33s (8) 164.5s (6) 262.9s (3) 170.2s (1) 187.8s (1)
RMT exponential 14.13s (10) 24.80s (10) 93.65s (10) 132.2s (6) 288.2s (4) 375.9s (3) 381.1s (3)

100 RMT linear 54.26s (10) 57.26s (10) 439.3s (8) N/A N/A N/A N/A
RMT exponential 59.45s (10) 125.3s (9) 309.0s (5) 790.8s (1) N/A N/A N/A

200 RMT linear 40.26s (10) 255.0s (8) N/A N/A N/A N/A N/A
RMT exponential 34.50s (10) 229.5s (8) N/A N/A N/A N/A N/A

and 16th ranked POIs. With these parameters, we solve the
RMT problem with exponential reward functions and a time
budget of 9 hours. From the solution (an exact solution to the
1.1-optimal MIP model, computed in about five seconds) we
extracted the itinerary listed in Table III. The itinerary visits
14 POIs and yields a reward of 115 out of a total possible
reward of 380. Visual inspections and consulting people local
to Istanbul both suggest that the itinerary is a reasonable one.

TABLE III
A 9-HOUR COMPUTED ITINERARY IN ISTANBUL.

1 Start from the Suleymaniye Mosque, stay for 0.84 hour
2 Take a taxi to Topkapi Palace (8 min), stay for 0.88 hour
3 Take a taxi to Kucuk Ayasofya Camii (6 min), stay for 0.14 hour
4 Walk to Blue Mosque (6 min), stay for 0.90 hour
5 Walk to Basilica Cistern (4 min), stay for 0.90 hour
6 Walk to Hagia Sophia Museum (4 min), stay for 0.93 hour
7 Walk to Gulhane Park (4 min), stay for 0.11 hour
8 Walk to Archaeological Museums (2 min), stay for 0.78 hour
9 Take a taxi to Rustem Pasha Mosque (6 min), stay for 0.78 hour
10 Take a taxi to Rahmi M. Koc Museum (9 min), stay for 0.76 hour
11 Take a taxi to Kariye Museum (8 min), stay for 0.82 hour
12 Take a taxi and return to Suleymaniye Mosque (12 min)

VI. CONCLUSION

In this paper, we have proposed the Optimal Tourist Problem
that ties together the problem of maximizing information
collection efforts at points-of-interest (POIs) and minimizing
the required time spent on traveling between the set of discrete,
spatially distributed POIs. A particular novelty is that our
formulation encompasses a general class of time-based reward
functions, which can be used to model robot sensory reward
functions or learning curves for tourists. For solving the two
variants of OTP, RMT and BMT, we construct an exact (when
reward function is linear) or an arbitrarily optimal (when
reward function is non-linear) MIP model that gives rise to an
anytime algorithm for solving such problems. Computational
results suggest that our algorithm is applicable to practical
informative path planning problems.

REFERENCES

[1] S. Alamdari, E. Fata, and S. L. Smith, “Persistent monitoring in discrete
environments: Minimizing the maximum weighted latency between
observations,” The International Journal of Robotics Research, vol. 33,
no. 1, pp. 138–154, 2014.

[2] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks:
Monitoring and sweeping in changing environments,” IEEE Transactions
on Robotics, vol. 28, no. 2, pp. 410–426, April 2012.

[3] J. Yu, S. Karaman, and D. Rus, “Persistent monitoring of events with
stochastic arrivals at multiple stations,” IEEE Transactions on Robotics,
vol. 31, no. 3, pp. 521–535, 2015.

[4] Z. W. Lim, D. Hsu, and W. S. Lee, “Adaptive informative path planning
in metric spaces,” in Proceedings Workshop on Algorithmic Foundations
of Robotics, 2014.

[5] D. Golovin and A. Krause, “Adaptive submodularity: Theory and
applications in active learning and stochastic optimization,” Journal of
Artificial Intelligence Research, vol. 42, pp. 427–486, 2011.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics & Automation, vol. 12, no. 4,
pp. 566–580, Jun. 1996.

[7] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Tech. Rep., Oct 1998, computer
Science Department TR 98-11.

[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, June 2011. [Online]. Available:
http://ares.lids.mit.edu/papers/Karaman.Frazzoli.IJRR11.pdf

[9] G. A. Hollinger and G. S. Sukhatme, “Sampling-based motion planning
for robotic information gathering,” in Robotics: Science and Systems,
2013.

[10] I. Chao, B. Golden, and E. Wasil, “Theory and methodology - the
team orienteering problem,” European Journal of Operational Research,
vol. 88, pp. 464–474, 1996.

[11] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, “The orien-
teering problem: A survey,” European Journal of Operational Research,
vol. 209, pp. 1–10, 2011.

[12] D. Gavalas, C. Konstantopoulos, J. Mastakas, and G. Pantziou, “A survey
on algorithmic approaches for solving tourist trip design problems,”
Journal of Heuristics, vol. 20, no. 3, pp. 291–328, 2014.

[13] C. Chekuri, N. Korula, and M. Pál, “Improved algorithms for orienteer-
ing and related problems,” ACM Transactions on Algorithms (TALG),
vol. 8, no. 3, p. 23, 2012.

[14] G. Erdoǧan and G. Laporte, “The orienteering problem with variable
profits,” Networks, vol. 61, no. 2, pp. 104–116, 2013.

[15] M. De Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi, R. Lem-
pel, and C. Yu, “Automatic construction of travel itineraries using social
breadcrumbs,” in Proceedings of the 21st ACM conference on Hypertext
and hypermedia, 2010, pp. 35–44.

[16] S. Basu Roy, G. Das, S. Amer-Yahia, and C. Yu, “Interactive itinerary
planning,” in Proceedings IEEE 27th International Conference on Data
Engineering (ICDE), 2011, pp. 15–26.

[17] H. Yoon, Y. Zheng, X. Xie, and W. Woo, “Social itinerary recom-
mendation from user-generated digital trails,” Personal and Ubiquitous
Computing, vol. 16, no. 5, pp. 469–484, 2012.

[18] C. Chekuri and M. Pál, “A recursive greedy algorithm for walks in
directed graphs,” in Proceedings 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2005, pp. 245–253.

[19] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

[20] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM
(JACM), vol. 9, no. 1, pp. 11–12, 1962.

[21] A. H. Land and A. G. Doig, “An automatic method of solving discrete
programming problems,” Econometrica, vol. 28, no. 3, pp. 497–520,
1960.

[22] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” 2014.
[Online]. Available: http://www.gurobi.com

5286

