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Abstract—We study the problem of minimizing the total dis-
tance incurred in assigning a group of mobile robots to an equal
number of static targets. Assuming that the robots have limited,
range-based communication and target-sensing capabilities, we
present a necessary and sufficient condition for ensuring distance
optimality when robots and targets are uniformly randomly
distributed. We then provide an explicit, non-asymptotic formula
for computing the number of robots needed for guaranteeing
optimality in terms of the robots’ sensing and communication
capabilities with arbitrarily high probabilities. The bound given
in the formula is also asymptotically tight. Due to the large
number of robots needed for high-probability optimality guar-
antee, we continue to investigate strategies for cases in which
the number of robots cannot be freely chosen. We show that
a properly designed strategy can be asymptotically optimal or
suboptimal with constant approximation ratios.

I. INTRODUCTION

In this paper, we study permutation-invariant assignments of
a set of networked robots to a set of targets of equal cardinality,
with a primary focus on minimizing the total path distance.
Both robots and targets are assumed to be uniformly randomly
distributed in a two-dimensional unit square. Under commu-
nication and target-sensing limitations, we seek optimality
guarantees, in terms of necessary and sufficient conditions,
as well as asymptotically optimal or suboptimal strategies
when the conditions for optimality cannot be satisfied. In
characterizing the performance of suboptimal strategies, we
show that these strategies can often provide constant ratio
approximations with respect to distance optimality.

Our problem considers the problem of target assignment
in robotic networks. This problem is studied by, among
others, Smith and Bullo in [25], in which the performance
of several classes of algorithms for achieving time optimality
(i.e., minimizing the time until every target is occupied) were
established. In contrast, we focus on minimizing the total
distance traveled by all robots. The total distance serves as
a proper proxy to quantities such as the energy consumption
of all robots. Simple examples show that a distance-optimal
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solution for the target assignment problem generally does not
imply time optimality and vice versa [33].

The problem of target assignment in robotic networks re-
quires the resolution of an assignment (or matching) problem.
Assignment problems are extensively studied in the area of
combinatorial optimization, with efficient algorithms available
for solving many of its variations [1], [4], [5], [7], [11], [18],
[35]. If we instead put more emphasis on multi-robot systems,
the problems of robotic task allocation [16], [27], [28], [34],
swarm reconfiguration [9], multi-robot path planning [17],
[24], [29], and multi-agent consensus [10], [15], [19], [20]
come up. For a review on some of these topics, see [6].

Our work is also related to the study on the connectivity
of wireless networks. If n robots are uniformly randomly
distributed in a unit square, then each robot needs to have
k = Θ(logn) nearest neighbors for the entire network to
be asymptotically connected [31]. In particular, the authors
of [31] showed that k < 0.074logn leads to an asymptoti-
cally disconnected network wheres k > 5.1774logn guarantees
asymptotic connectivity. This pair of bounds was subsequently
improved [3]. These nearest neighbor based connectivity mod-
els were further studied in [13], [14], [21], to list a few. In
these work, a geometric graph structure is often used [23].

Our contribution is twofold. First, for robots with arbi-
trarily limited range-based sensing and communication ca-
pabilities (with ranges captured by radii rsense and rcomm,
respectively), we derive necessary and sufficient conditions for
ensuring a distance-optimal solution. In particular, we provide
a probabilistic estimate of the number of robots (denoted n)
sufficient for all robots to form a connected network given
a communication range (some radius rcomm). In contrast to
related connectivity results [22], [31], we give n as an explicit
function of rcomm without asymptotic assumptions. Therefore,
our bounds do not depend on n being large. We further
show that our bound is also asymptotically tight when a high
probability guarantee is required.

Second, adopting results on one-dimensional random walk,
we show that an infinite family of hierarchical strategies can
produce assignments in a decentralized way while simultane-
ously ensuring that the total distance traveled by the robots is
within a constant (asymptotic) bound of the optimal distance.
Our simulation results show that the approximation ratio can
often be smaller than two. Moreover, because hierarchical
strategies avoid running a centralized assignment algorithm,
significant saving on computation time (in certain cases, a
speedup of 1000× or more) can be achieved.

The rest of the paper is organized as follows. In Section
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II, we introduce notations and formally define the problem
that we study. Sections III and IV then elaborate on the two
stated contributions, one contribution per section. We conduct
simulations in Section V to confirm our theoretical findings
and conclude in Section VI. Due to limited space, some proofs
are sketched or omitted; for complete proofs, see [32].

II. PROBLEM STATEMENT

We introduce some notations before formally defining the
target assignment problem. The symbols R,R+,N denote the
set of real numbers, the set of positive reals, and the set
of positive integers, respectively. For a positive real number
x, logx denotes the natural logarithm of x; the function �x�
(respectively, �x�) denotes the smallest (respectively, largest)
integer that is larger (respectively, smaller) than x. | · | denotes
the cardinality for sets and the absolute values for real num-
bers. We use ‖v‖2 to denote the Euclidean 2-norm of a vector
v. The unit square [0,1]× [0,1] ⊂ R

2 is denoted as Q. The
expectation of a random variable X is denoted as E[X ]. We
use E(·) to denote a probabilistic event and the probability
with which an event e occurs is denoted as P(e).

Given two functions f ,g : R+ →R
+, f (x) = O(g(x)) (resp.

Ω(g(x))) if limx→∞ f (x)/g(x) < ∞ (resp. limx→∞ f (x)/g(x) ≥
c > 0). Note that under this context, “=” behaves as “∈”.
If f (x) = O(g(x)) and f (x) = Ω(g(x)), then we say f (x) =
Θ(g(x)). Finally, f (x) = o(g(x)) (respectively, f (x) =ω(g(x)))
if and only if f (x) = O(g(x)) (respectively, f (x) = Ω(g(x)))
and ¬( f (x) = Θ(x)).

We now move to stating the problem. Let X 0 =
{x0

1, . . . ,x
0
n},Y 0 = {y0

1, . . . ,y
0
n}⊂Q be two uniformly randomly

selected point sets of cardinality n.1 The superscript empha-
sizes that these points are obtained at the start time t = 0. Place
n point robots on the points in X 0, with robot ai occupying x0

i .
Each robot has a unique integer label (e.g., i). In general, we
denote robot ai’s location (coordinates) at time t ≥ 0 as xi(t).
The basic task, to be formally defined, is to move the robots
so that at some final time t f ≥ 0, every y ∈Y 0 is occupied by
a robot (we may assume that there is a final time t f

i for each
robot ai, such that xi(t)≡ xi(t

f
i ) for t ≥ t f

i ). For convenience,
we also refer to X 0 and Y 0 as the set of initial locations and
the set of target locations, respectively.

Motion model: The control space for a robot a i is ẋi = ui

with ‖ui‖2 ∈{0,1}. We assume that robots’ sizes are negligible
with respect to the distance they travel and ignore collisions
between robots.

Communication model: A robot ai may communicate with
other robots within a disc of radius rcomm centered at xi(t).2

At any given time t ≥ 0, we define the (undirected) commu-
nication graph G(t) as follows, which is a geometric graph
[23] that changes over time. G(t) has n vertices v1, . . . ,vn,
corresponding to robots a1, . . . ,an, respectively. There is an
edge between two vertices vi and v j if the corresponding robot

1Via scaling, our result readily extends to arbitrary square environments.
2While discs may be too simple for modeling the communication or sensing

range of a robot precisely, they remain valid for purposes such as establishing
performance bounds (the subject of this paper).

locations xi(t) and x j(t), respectively, satisfy ‖xi(t)−x j(t)‖2 ≤
rcomm.

Since the communication overhead is often negligible with
respect to the time it takes for the robots to move, we assume
that all robots corresponding to vertices in a connected compo-
nent of the communication graph may exchange information as
needed instantaneously. In other words, robots in a connected
component of G(t) can be effectively treated as a single robot
as far as as decision making is concerned.

Target-sensing model: We assume that a robot is aware of a
point y ∈ Y 0 if ‖y− xi(t)‖2 ≤ rsense, the target sensing radius.

The problem we consider is defined as follows.

Problem 1 (Target Assignment in Robotic Networks)
Given X0, Y 0, rcomm, and rsense, find a control strategy
u = [u1, . . . ,un], such that for some 0 ≤ t f

i < ∞ and some
permutation σ of the numbers 1, . . . ,n, xi(t

f
i ) = y0

σ(i) for all
1 ≤ i ≤ n.

Over all feasible solutions to an instance of Problem 1, we
are interested in minimizing the total distance traveled by all
robots, which can be expressed as

Dn =
n

∑
i=1

∫ t f
i

0
‖ẋi(t)‖2dt. (1)

As a proper proxy to measures such as the energy con-
sumption of the entire system, the cost defined in (1) is an
appropriate objective in practice. Unless otherwise specified,
optimality refers to minimizing Dn in this paper. Assuming
that robots must follow continuous paths, we let D∗

n denote
the best possible Dn, which may or may not be achievable
depending on the capabilities of the robots (e.g, if the robots
cannot follow straight line paths, then Dn >D∗

n). Let U denote
the set of all possible control strategies that solve Problem 1
given a fixed set of capabilities for the robots, infU Dn is then
the greatest lower bound achievable under these capabilities. 3

III. GUARANTEEING OPTIMALITY FOR ARBITRARY rcomm

AND rsense

Intuitively, without global communication, optimality can
be hard to guarantee (i.e., infU Dn = D∗

n), because global
assignment is not possible in general at t = 0. For example,
as rsense → 0, the robots must search for the targets before
assignment can be made; it is unlikely that the paths taken by
the robots toward the targets will be straight lines, which is
required to obtain D∗

n. This raises the following question: For
arbitrary fixed rcomm and rsense, under what conditions can we
ensure optimality? This question is answered in the following
Theorem.

Theorem 1 Under sensing and communication constraints,
infU Dn =D∗

n if and only if G(0) is connected and every target
y ∈ Y 0 is within a distance of rsense to some x ∈ X 0.

PROOF. We first prove the necessary conditions with two
claims: 1) an optimal assignment that minimizes Dn is possible

3Here inf is used instead of min because it is not immediately clear that
the minimum can always be reached.
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in general only if G(0) is connected, and 2) an optimal
assignment that minimizes Dn is possible only if for all y∈Y 0,
y is within a distance of rsense to some x ∈ X 0.

For establishing the first claim, note that the robots must
decide at t = 0 a pairing between elements of X 0 and Y 0

that minimizes Dn. We now show that this is impossible in
general for n = 2 and rcomm <

√
2. A possible configuration

of two robots and two targets (a1, a2, y1, y2, respectively)
under these assumptions is given in Fig. 1 (solid blue and
red dots). Because they are more than rcomm apart, the robots
cannot communicate. Robot a1 is of equal distance to y1 and
y2 wheres robot a2 is closer to y2 than it is to y1. An optimal
assignment must have a1 go to y1 and a2 go to y2. However,
it is impossible for a1 to decide at t = 0 to go to y1 or y2

without knowing where a2 is. We may expand the locations
of the robots and targets to include neighborhoods around them
(the dotted circles in Fig. 1) to establish that there is a non-
zero probability with which an optimal assignment cannot be
made at t = 0. Thus, for distance optimality, G(0) cannot have
more than one connected component and must be connected.

rcomm

rcomm

a1

a2

y1

y2

Fig. 1. A general setup in which two robots cannot communicate at t = 0
and therefore, cannot decide an optimal assignment at t = 0.

For the second claim, suppose that at t = 0, some y ∈ Y 0

is not within a distance of rsense to any x ∈ X 0. Then some
robot must move to search for that y. This will cause
the robot to follow a path that is not a straight line with
probability one, implying that Dn = D∗

n with zero probability.
It straightforward to see that the two necessary conditions
from the two claims are also sufficient for optimality. �

Theorem 1 provides a simple way of ensuring optimality
by either increasing the number of robots or increasing r comm

and/or rsense, which leads to a centralized strategy (Strategy 1).
Note that given the assignment permutation σ , each robot a i

can easily compute its straight-line path between x0
i and y0

σ(i).
Since every robot can carry out the computation in Strategy
1, to resolve conflicting decisions and avoid unnecessary
computation, we may let the highest labeled robot (e.g., a n)
dictate the assignment process. An optimal assignment in the
unit square can be computed in O(n3) using the strongly
polynomial4 Hungarian algorithm [11], [18] or other asymp-
totically faster algorithms [1], [30].

4A polynomial time algorithm runs in strongly polynomial time only if its
running time does not depend on the size of the input parameters. Note that
n is the number of input parameters in this case.

Strategy 1: CENTRALIZED ASSIGNMENT

Initial condition: X 0,Y 0

Outcome: permutation σ that assigns robot ai to y0
σ(i)

1 compute di, j = ‖xi − y j‖2 between each pair of (xi,y j) in
which xi ∈ X0 and y j ∈ Y 0

2 based on {di, j}, compute an optimal assignment for the
robots that minimizes Dn

3 communicate the assignment to all robots

The rest of this section establishes how the conditions
from Theorem 1 can be met. Although connectivity results on
Random Geometric Graphs [22] can be used for this purpose,
these results only yield implicit formulas of an asymptotic
nature. We take a different approach and produce the number
of robots n as an explicit function of rcomm, without the
asymptotic assumption.

A. Guaranteeing a Connected G(0)

When the robots can be anywhere in the unit square Q, given
a communication radius of rcomm <

√
2, at least Θ(1/r2

comm)
robots are needed for a connected G(0), which requires the
robots to take a roughly “regular” formation such as a grid. It
turns out that when the robots are randomly distributed, not
a great many more robots are needed to ensure a connected
communication graph G(0).

Lemma 2 Given a fixed rcomm <
√

2 and 0 < ε < 1, the
communication graph G(0) is connected with probability at
least 1− ε if the number of robots n satisfies

n ≥ �
√

5
rcomm

�2 log(
1
ε
�

√
5

rcomm
�2). (2)

PROOF. We divide the unit square Q into m = b2 equal-sized
small squares with b= �√5/rcomm�. Label these small squares
as {q1, . . . ,qm}. Under this division scheme, if a small square
qi (see, e.g., the gray one in Fig. 2) contains at least a robot,
the robot can communicate with any other robot in the four
squares sharing a side with qi. Therefore, G(0) is connected if

1

2

b

.

.

.

rcomm

Fig. 2. If the small squares have a side length of �√5/rcomm� or smaller,
then a robot in such a square (e.g., the gray square) can communicate with
any robot in the four neighboring small squares.

each qi contains a robot. Let ni denote the number of robots in
qi. Then P(ni = 0) = (1−1/m)n < e−

n
m . The inequality holds

because (1− x)n < e−nx for 0 < x < 1. By Boole’s inequality,
the probability that at least one of the squares q1, . . . ,qm is
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empty can be upper bounded as

P(
m⋃

i=1

E(ni = 0))≤
m

∑
i=1

P(ni = 0)< me−
n
m .

Setting me−n/m = ε and replacing m = �√5/rcomm�2 shows
that (2) guarantees that each small square contains at least
one robot with probability 1− ε . �

Remark. In contrast to asymptotic results (see, e.g., [22]),
Lemma 2 provides n as an explicit function of r comm. The
sufficient condition on n given in (2) is non-asymptotic and
applies to an arbitrary rcomm. On the other hand, if we let
rcomm → 0, then an asymptotic statement can also be made.

Lemma 3 As rcomm → 0, the communication graph G(0) is
connected with arbitrarily high probability e−e−c

(for some
c > 0) if the number of robots n satisfies

n ≥ (2log�
√

5
rcomm

�+ c)�
√

5
rcomm

�2. (3)

PROOF. Given the division scheme used in the proof of
Lemma 2, distributing robots into the unit square Q is
equivalent to tossing the robots (balls) into the m small
squares (bins), uniformly randomly. By classical results
on balls and bins (e.g., Inequality (2) from [12]), having
n≥m logm+cm= (2log�√5/rcomm�+c)�√5/rcomm�2 robots
guarantees that all m small squares must have at least one
robot each with probability e−e−c

. �

Since f (x) = cx grows slower than g(x) = x logx as x → ∞,
Lemma 3 says that n=Θ((1/rcomm)

2 log(1/rcomm)) robots can
ensure that G(0) is connected with probability arbitrarily close
to one asymptotically. This many robots turns out to be also
necessary for the high probability guarantee, which we prove
next.

Let Pn,m(E) denote the probability of event E happening
after tossing n balls into m bins. We work with two events:
E0, the event that “at least one bin has zero balls in it”, and
E1, the event that “at least one bin contains exactly one ball”.
We want to show that Pn,m(E1) is not arbitrarily small for n
up to m logm.

Lemma 4 Suppose that 1 ≤ n < m logm balls are tossed
uniformly randomly into m bins. As m → ∞, Pn,m(E1)> 0.34.
PROOF SKETCH. We sketch the general idea behind the proof
due to limited space. Our proof partitions all n ∈ [1,m logm)
into two pieces: n ∈ [1,m] and n ∈ (m,m logm). When
1 ≤ n ≤ m, since on average there is no more than one ball
per bin, intuitively some bin must have exactly one ball in it.
We can show that Pn,m(E1) > e−1. For m < n < m logm, we
first establish that Pn′,m(E0) is large for n′ up to m logm−m
using again Inequality (2) from [12]. Using P n′+k,m(E1) ≥
Pn′,m(E0)Pk,m(exactly one ball falls in the empty bin), we
can show that Pn,m(E1)≥ 0.34 for m < n < m logm. �

We now show that n = Θ((1/rcomm)
2 log(1/rcomm)) is a

tight bound on the number of robots for guaranteeing the
connectivity of G(0) with high probability.

Theorem 5 For uniformly randomly distributed robots in a
unit square with a communication radius rcomm,

n = Θ(
1

r2
comm

log
1

rcomm
) (4)

robots are necessary and sufficient to ensure a connected
communication graph at t = 0 with arbitrarily high probability
as rcomm → 0.

PROOF SKETCH. Lemma 3 covers sufficiency; we are
to show that there is some non-trivial probability that
G(0) is disconnected if the number of robots satisfies
n = o((1/r2

comm) log(1/rcomm)). To prove the claim, we
partition the unit square Q into m = b2 = �1.1/rcomm�2 small
squares and group them into 3× 3 blocks. We set the size
of the square so that a robot in the center square of a 3× 3
block cannot communicate with others if the other eight
squares of the same block are unoccupied. By Lemma 4, the
probability that one of the 3×3 blocks gets exactly one robot
is non-trivial even when the number of robots is of order
m logm. Since there is 1/9 chance the robot is in the center
of the block, we are done. �

B. Ensuring Target Observability

With a connected communication graph G(0), we can solve
a single assignment problem if for each y ∈ Y 0, ‖y− x‖2 ≤
rsense for some x ∈ X 0. Similar techniques used in the proof
of Lemma 2 lead to a similar lower bound.

Lemma 6 For fixed rsense and 0 < ε < 1, every target y ∈ Y 0

is observable by some robot at t = 0 with probability at least
1− ε when

n ≥ �
√

2
rsense

�2 log(
1
ε
�
√

2
rsense

�2). (5)

Putting together Lemmas 2 and 6, we obtain a lower bound
on n that makes a distance-optimal assignment possible; we
omit the straightforward proof.

Theorem 7 Fixing 0 < ε < 1, the communication graph is
connected and every target y∈Y 0 is observable by some robot
at t = 0 with probability at least 1− ε when

n ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
√

2
rsense

�2 log(
1
ε
�
√

2
rsense

�2), rsense <

√
10rcomm

5

�
√

5
rcomm

�2 log(
1
ε
�

√
5

rcomm
�2), rsense ≥

√
10rcomm

5
(6)

Remark. Theorem 7 is not an asymptotic result and works
for all rcomm and rsense. If high-probability asymptotic result is
desirable, Lemma 6 can be easily turned into a version similar
to Theorem 5, following essentially the same proof techniques;
we omit the details. In view of this fact, the bounds from
Theorem 7 are asymptotically tight.
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IV. HIERARCHICAL ASYMPTOTICALLY OPTIMAL AND

SUBOPTIMAL STRATEGIES

In view of Theorem 7, a large number robots may be nec-
essary to guarantee an optimal solution with high probability.
When such a guarantee is unavailable due to the lack of
resources, alternative strategies are needed. In this section,
we seek asymptotically optimal and suboptimal strategies for
arbitrary rcomm and rsense that do not require as many robots.

To make our strategies more modular, sensing and commu-
nication are treated orthogonally; we now handle the sensing
part. Because there can be targets anywhere in Q, the robots’
joint sensing area must cover all of Q to obtain all target loca-
tions. For this to happen for arbitrary r sense, Q must be swept
through. To achieve this, we partition Q into �1/(2r sense)�2

small squares and let a robot in the top-left square “zig-zag”
through Q (i.e., follows a Boustrophedon path [8]) until it
covers the bottom side of Q. If there is no robot in the top-left
square, then a robot in a square along the Boustrophedon path
is used; implicit timing can be used to determine this. Once the
end of the path is reached, the robot then reverses its course
until it gets back to the top-left small square. At this point, this
robot is aware of all target locations. It then repeats a similar
path (the unit square is now divided into �1/(2rcomm)�2 small
squares) to communicate that information to all other robots.
This procedure ensures that all robots are aware of all target
locations. The total distance cost of the above procedure is
at most 2�1/(2rsense)�+�1/(2rcomm)�. Taking this penalty, we
assume that all robots are aware of all target locations.

A. Generic Abstract Hierarchical Strategy

Because the strategies to be proposed share the general
feature of being hierarchical, we first characterize the per-
formance of an abstract hierarchical strategy. Let h ≥ 1 be the
number of hierarchies and mi,1 ≤ i ≤ h, be the number of
regions (disjoint squares within Q) at hierarchy i, we require
that: 1. m1 ≡ 1, 2. mi+1 > mi, and 3. a region at a higher
numbered hierarchy does not span multiple regions at a lower
numbered hierarchy. Given such a setup, a straightforward
strategy is to assign the robots to targets locally when possible
and balance the surplus or deficit of robots at higher (lower
numbered) hierarchies. The pseudo code of such a strategy is
outlined in Strategy 2.

Strategy 2: GENERIC HIERARCHICAL STRATEGY

Initial condition: X 0,Y 0,h,m1, . . . ,mh

Outcome: permutation σ that assigns robot ai to y0
σ(i)

1 for each hierarchy i in decreasing order do
2 for each region j, 1 ≤ j ≤ mi do
3 let na and ng be the number of unmatched robots

and targets in region j, respectively; assign any
na (or ng if na > ng) unmatched robots to any
(equal number of) unmatched targets in the
region

Note that in Strategy 2, we did not mention how the robots
reach consensus under limited communication; this will be
specified in each concrete strategy. The total distance Dn

incurred by Strategy 2 consists of two parts: 1. Da
n, the distance

between robots and their assigned targets, and 2. Dc
n, the

distance the robots must travel to compensate for the lack
of global communication and sensing (i.e., the extra distance
traveled for reaching consensus). We note that regardless of
the strategy, the best possible Da

n cannot be smaller than

D∗
n = min

σ

n

∑
i=1

‖x0
σ(i)− y0

i ‖2, (7)

in which minσ is taken over all permutations σ of the integers
1, . . . ,n. Ajtai, Komlós, and Tusnády proved the following.

Theorem 8 (Optimal Matching [2]) With high probability,

C1

√
n logn ≤ D∗

n ≤C2

√
n logn, (8)

in which C1,C2 are positive constants.

Although the authors did not provide formulas for C 1 and
C2 in [2], simulation seems to suggest that C1 < C2 < 1 and
C2/C1 → 1 as n → ∞. Moreover, the second inequality in (8)
also hold in expectation [26] with a universal constant C.

With h ≥ 2 hierarchies, to bound Da
n, at each hierarchy i,

we need to know the number of robots that can be matched
locally (Lemma 9) and the assignment distance incurred by
these robots (Lemma 10).

Lemma 9 Suppose that the unit square Q is divided into m
equal-sized small squares. The number of robots that are not
matched locally is

√
mn/2 in expectation.

PROOF SKETCH. The process of picking X 0 and Y 0 is
equivalent to picking (x0

i ,y
0
i ) pairs for n times. For each

small square q, we are interested in the events x0
i ∈ q,y0

i /∈ q
and x0

i /∈ q,y0
i ∈ q (each having probability (m − 1)/m2).

Combining these two aspects, in each small square we end
up with a random walk of n steps on the integer line with
each step having a probability of (m − 1)/m2 moving ±1.
Applying Jensen’s inequality to the concave function

√
x with

x being the total variance summed over all small squares
gives us the bound

√
mn/2. �

Lemma 10 Dividing the unit square into m equal sized
squares and matching robots and targets within the boundaries
of each small square, the total distance of matchings made
this way is no more than C

√
n logn in expectation for some

constant C.

PROOF SKETCH. In a square qi with ni robots, local matching
distance is bounded by C

√
ni logni/m (see [26]). Applying

Jensen’s inequality to the concave function
√

x logx and
letting x = ni yields the result. �

We now give an upper bound on Da
n.
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Theorem 11 Suppose that the unit square Q is divided into
mi equal-sized small squares at hierarchy i with a total of
h ≥ 2 hierarchies. in expectation,

Da
n ≤C

√
n logn+

h−1

∑
i=1

√
nmi+1

mi
. (9)

PROOF. The C
√

n logn term is due to Lemma 10. Then at
each hierarchy i with 2 ≤ i < h, the number of matched robots
in total at this hierarchy is bounded by

√
mi+1n/2. Since

each of these robots needs to travel at most a distance of√
2/mi, we get the second term on the RHS side of (9). �

Remark. We observe that for fixed h and {mi} that do not
depend on n, the first term C

√
n logn dominates the other terms

in (9) as n→∞. This implies that Strategy 2 yields assignments
of which Da

n is at most a multiple of the true optimal distance.
As long as Da

n is not dominated by Dc
n, an hierarchical strategy

based on Strategy 2 achieves constant approximation ratio on
distance optimality.

B. A Near-Optimal Rendezvous Strategy

Our first concrete strategy uses moving robots for commu-
nication until a robot is aware of the locations of all robots
and targets, at which point a centralized optimal assignment
can be made. To carry out the strategy, the unit square Q is
divided into m = b2 disjoint, equal-sized small squares, with
b = �√2/rcomm�. These small squares are labeled as qi, j’s, in
which i and j are the row number and column number of the
square, respectively (see, e.g., Fig. 3).

q
2,5

Fig. 3. Directions for robots to move in the rendezvous strategy.

Based on its initial location, each robot can identify the
small square qi, j it lies in. At t = 0, the robots in the squares
on row 1 and row b start moving in the direction as indicated
in Fig. 3. We want to use these robot to pass the information of
where all robots are. At most one robot per square is required
to move since all robots in a small square can communicate
with each other by the assumption b = �√2/rcomm�. The
pseudo code of the strategy is given in Strategy 3.

Strategy 3 is correct by construction. Besides the distance
from the assignment and sensing penalty, the robots in each
column travel at most a total distance of two. The middle
row incurs an extra distance of at most two. Thus, Dn ≤ D∗

n +
2�1/(2rsense)�+�1/(2rcomm)�+2�√2/rcomm�+2. Since D∗

n =
Θ(

√
n logn), it dominates the other terms when, for example,

n = Θ(1/r2
comm) and n = Θ(1/r2

sense). Therefore, Strategy 3
yields asymptotically optimal solution without requiring an n
as large as (6) with respect to 1/rcomm and 1/rsense.

Strategy 3: RENDEZVOUS

Initial condition: X 0,Y 0,rcomm

Outcome: produces permutation σ that assigns robots to
targets and communicate σ to all robots

1 each robot computes its square qi, j based on rcomm, let
the highest labeled robot within each qi, j be ai, j, which
represents qi, j for each qi, j , 1 ≤ i, j ≤ b = �√2/rcomm�
do

2 if i �= �b/2� then
3 ai, j waits for up to |�b/2�− i|/b units of time

for information from the previous square; after
receiving information or after the wait time
passes, it starts moving to the next squares and
delivers its information once it can communicate
with another robot in these squares; it then stops

4 else
5 ai, j waits for up to 1/2+ |�b/2�− j|/b units of

time for information from the previous square;
after receiving information or after the wait time
passes, it starts moving to the next squares and
delivers its information once it can communicate
with another robot in these squares; it then stops

6 robot a�b/2�,�b/2� computes σ ; the earlier communication
process is then reversed to deliver σ to all robots.

Among other shortcomings, Strategy 3 requires running a
centralized assignment algorithm for all robots, which can be
computationally intensive for large n. Decentralized hierarchi-
cal strategies, to be discussed next, can address such issues.

C. Decentralized Hierarchical Strategies

By playing with h and {mi}, many decentralized strategies
are possible; we first look at one that combines Strategies 2 and
3. Instead of waiting for a centralized assignment to be made,
in each of the small square qi, j as specified in Strategy 3, we
let the robots in the square be assigned to targets that belong to
the same square (we refer to these as local assignments). The
robots that are not matched to targets then carry out Strategy
3. We denote this hierarchical rendezvous strategy as Strategy
4 and omit the pseudo code.

Corollary 12 For strategy 4 (2-level Hierarchical Ren-
dezvous), in expectation,

Dn ≤C2

√
n logn+ 2�1/(2rsense)�+ �1/(2rcomm)�+

�
√

2
rcomm

�√n+ 2�
√

2
rcomm

�+ 2.
(10)

PROOF. Simple application of Theorem 11. �

Similar to Strategy 3, for any fixed rcomm and rsense,
Dn/D∗

n = O(1) (as n → ∞). Suppose that a centralized as-
signment algorithm requires time t(n), using the same al-
gorithm, Strategy 4 has a computational time complexity
O(mt(n/m)+ t(

√
mn)) (recall that m = b2 = �√2/rcomm�2). If
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t(n) =O(n3) (e.g., the Hungarian method), then Strategy 4 has
a running time of O(n3/m2+(mn)3/2). For n= 10000,m= 10,
we get a roughly 1000-time speedup.

The second decentralized strategy we look at is an extension
to Strategy 4 with three hierarchies; let us call this strategy
Strategy 5. After partitioning the bottom (third) hierarchy to m
squares, the middle (second) hierarchy is partitioned into

√
m

small squares. At either the third or the second hierarchy, local
assignments are made, followed by applying the rendezvous
strategy as given in Strategy 3. This yields following corollary.

Corollary 13 For Strategy 5 (3-level Hierarchical Ren-
dezvous), in expectation,

Dn ≤C2

√
n logn+ 2�1/(2rsense)�+ �1/(2rcomm)�+

2

√
n�

√
2

rcomm
�+ 4�

√
2

rcomm
�+ 2.

(11)

Again, Dn/D∗
n = O(1) as n → ∞, fixing other parameters.

Following similar analysis, the overall computation time re-
quired by Strategy 5 is O(mt(n/m)+

√
mt(

√
n)+ t(

√
n
√

m))
given a centralized assignment algorithm that runs in t(n) time.

V. SIMULATION STUDIES

A. Number of Required Robots for a Connected G(0)
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Fig. 4. Effects of n on the connectivity of G(0) for different values of rcomm.

In this subsection, we show a result of simulation to verify
our theoretical findings in Section III. Since the bounds
over rcomm and rsense are similar, we focus on rcomm and
confirm the requirement for the connectivity of G(0) for
several rcomm’s ranging from 0.01 to 0.2. For each fixed
rcomm, varying numbers of robots are used starting from
n = log(1/rcomm)/r2

comm = − logrcomm/r2
comm (the number of

robots goes as high as 3× 105 for the case of rcomm = 0.01).
1000 trials were run for each fixed combination of r comm

and n; the percentages of the runs with a connected G(0)
were reported in the simulation result shown in Fig. 4. The
simulation suggests that the bounds on n from Theorem 5 are
fairly tight.

B. Performance of Near-Optimal Strategies

Next, we simulate Strategies 3-5 and evaluate Dn and
computational time for these strategies over varying values of
n and rcomm. Since the effect of rsense on optimality is not as
important, we assume rsense ≥

√
2 so that all robots are aware

of all target locations. Due to our choice of subdivisions in
Strategy 5, for uniformity, we pick specific rcomm’s so that

m = �√2/rcomm� is a always perfect square. These values
are rcomm = 0.16,0.09,0.057, and 0.04, which correspond to
m= 81,256,625, and 1296, respectively. The number of robots
used in each simulation ranges from 100 to 10000. For each
n, 10 problems are randomly generated and used across all
strategies.
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Fig. 5. Distance optimality of Strategy 3 over varying n and rcomm.

Distance optimality: The ratios Dn/D∗
n for Strategy 3 over

different n and rcomm are plotted in Fig. 5. We observe that
the overhead for establishing global communication among the
robots becomes insignificant as n increases, driving Dn/D∗

n to
close to one.
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Fig. 6. Distance optimality of Strategy 4 over varying n and rcomm.
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Fig. 7. Distance optimality of Strategy 5 over varying n and rcomm.

For Strategy 4, the ratios were plotted similarly in Fig. 6. As
expected, for a fixed rcomm, Dn/D∗

n decreases as n increases.
For n = 10000, the approximation ratios for our choices of
rcomm are around 1.4. On the other hand, for a fixed n, as
the division of the unit square Q gets finer, Dn/D∗

n increases,
implying that decreasing communication radius has a negative
effect on optimality. We observe similar results on distance
optimality of Strategy 5 (see Fig. 7).

Computational time: We list the computational time, in
seconds, for Strategies 3-5 in Table I, for n = 1000,5000, and
10000. The standard O(n3) Hungarian method is used as the
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baseline assignment algorithm. Each main entry of the table
lists three numbers corresponding to the computational time
of Strategies 3, 4, and 5, respectively, for the given r comm and
n combination. As expected, hierarchical assignment greatly
reduces the computational time, often by a factor over 10 3.
The computation was performed on a Intel Core-i7 3970K
cpu under a 8GB Java virtual machine.

TABLE I
COMPUTATIONAL TIME FOR STRATEGIES 3-5

# of robots, n
rcomm(m)

0.16 (81) 0.09 (256) 0.057 (625) 0.04 (1296)

1000
2.76 s

0.015 s
0.002 s

2.76 s
0.07 s

0.003 s

2.76 s
0.22 s

0.003 s

2.76 s
0.54 s

0.006 s

5000
345 s
0.02 s

0.069 s

345 s
0.78 s

0.032 s

345 s
2.84 s

0.043 s

345 s
8.28 s

0.058 s

10000
2756 s
0.83 s
0.43 s

2756 s
2.32 s
0.11 s

2756 s
8.35 s
0.11 s

2756 s
24.4 s
0.14 s

VI. CONCLUSION

Focusing on the distance optimality for the target assign-
ment problem in a robotic network setting, we have char-
acterized a necessary and sufficient condition under which
optimality can be achieved. We further provided an explicit
formula for computing the number of robots sufficient for
probabilistically guaranteeing such an optimal solution. Then,
we took a different angle and looked at strategies with good
asymptotic performances as the number of robots goes to
infinity. We showed that these strategies generally yield a
constant approximation ratio when it comes to minimizing the
total distance traveled by all robots. Some of these decentral-
ized strategies also provide computational advantages over a
centralized one.
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