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Target Assignment in Robotic Networks: Distance
Optimality Guarantees and Hierarchical Strategies

Jingjin Yu, Member, IEEE, Soon-Jo Chung, Senior Member, IEEE, and Petros G. Voulgaris, Fellow, IEEE

Abstract—We study the problem of multi-robot target assign-
ment to minimize the total distance traveled by the robots until
they all reach an equal number of static targets. In the first half of
the paper, we present a necessary and sufficient condition under
which true distance optimality can be achieved for robots with
limited communication and target-sensing ranges. Moreover, we
provide an explicit, non-asymptotic formula for computing the
number of robots needed to achieve distance optimality in terms
of the robots’ communication and target-sensing ranges with ar-
bitrary guaranteed probabilities. The same bounds are also shown
to be asymptotically tight. In the second half of the paper, we
present suboptimal strategies for use when the number of robots
cannot be chosen freely. Assuming first that all targets are known
to all robots, we employ a hierarchical communication model in
which robots communicate only with other robots in the same par-
titioned region. This hierarchical communication model leads to
constant approximations of true distance-optimal solutions under
mild assumptions. We then revisit the limited communication and
sensing models. By combining simple rendezvous-based strategies
with a hierarchical communication model, we obtain decentralized
hierarchical strategies that achieve constant approximation ratios
with respect to true distance optimality. Results of simulation show
that the approximation ratio is as low as 1.4.

Index Terms—Networked robots, optimality.

I. INTRODUCTION

IN this paper, we study the permutation-invariant assignment
of a set of networked robots to a set of targets of equal

cardinality. Focusing on minimizing the total distance traveled
by the robots in a planar setting, we seek optimality guarantees
and near-optimal strategies. For robot-to-robot communication,
we investigate both a simple circular range-based model and
a region-based model in which all robots within the same
region can communicate with each other. When we consider the
limited target-sensing capability of the robots, a circular range
sensing model is used.
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The class of problems that we study is denoted as target
assignment in robotic networks as it shares many similarities
with the problems studied in [1]. In [1], the authors character-
ized the performance of ETSP1 ASSGMT and GRID ASSGMT

algorithms (strategies) in achieving time optimality (i.e., mini-
mizing the time until every target is occupied). In contrast, we
focus on minimizing the total distance traveled by all robots
with significantly different assumptions on the communication
and sensing models of the robots. The total distance serves as a
proper proxy to quantities such as the total energy consumption
of all the robots. Note that a distance-optimal solution for
the target assignment problem generally does not imply time
optimality and vice versa [2].

As its name implies, the problem of target assignment in
robotic networks requires solving an assignment (or matching)
problem. The assignment problem is extensively studied in the
area of combinatorial optimization, with polynomial time algo-
rithms available for solving many of its variations [3]–[8]. If we
instead put more emphasis on multi-robot systems, the prob-
lems of robotic task allocation [9]–[12], swarm reconfigura-
tion [13], multi-robot path planning [14]–[16], and multi-agent
consensus [17]–[20] are relevant. For a more comprehensive
review on these topics, see [21].

Our work is also closely related to the study of the connectiv-
ity of wireless networks. An interesting result [22] showed that,
if n robots are uniformly randomly scattered in a unit square,
then each robot needs to communicate with k = Θ(log n) near-
est neighbors for the entire robotic network to be asymptotically
connected as n approaches infinity. In particular, the authors
of [22] showed that k < 0.074 log n leads to an asymptotically
disconnected network whereas k > 5.1774 log n guarantees
asymptotic connectivity. This pair of bounds was subsequently
improved and extended in [23]. These nearest neighbor based
connectivity models were further studied in [24]–[26], to list a
few. In many of these settings, a geometric graph structure is
used [27].

This research effort brings forth three contributions. First, for
robots with limited range-based target-sensing and communi-
cation capabilities (the ranges are captured by radii rsense and
rcomm, respectively), we derive necessary and sufficient con-
ditions for ensuring a distance-optimal solution. In particular,
we provide a probabilistic estimate of the number of robots
(denoted by n) sufficient for all robots to form a connected
network for a fixed communication radius rcomm. In contrast
to the asymptotic connectivity results from [22], [28], we give

1ETSP stands for the Euclidean traveling salesman problem.
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n as an explicit function of rcomm that is also non-asymptotic.
Therefore, our bounds hold without requiring n → ∞. We
further show that the same bounds are asymptotically tight
when a high probability guarantee is required.

Second, allowing the robots to have global target-sensing ca-
pabilities coupled with a region-based communication model,
we show that an infinite family of hierarchical strategies can
lead to decentralized target assignments while ensuring that the
total expected distance traveled by the robots is asymptotically
within a constant multiple of the optimal distance. Our simu-
lation results show that this bound can often be smaller than
two. Moreover, because hierarchical strategies avoid running a
centralized assignment algorithm, significant savings on com-
putation time (in certain cases, a speedup of 1000 times or
more) are achieved.

Third, for robots with global target-sensing capabilities and a
range-based communication model, hierarchical strategies (for
assignment) and rendezvous-based strategies (for compensating
for the lack of global communication) are combined to obtain
decentralized suboptimal algorithms. These hybrid strategies,
under mild assumptions, preserve the constant approximation
ratios on distance optimality achieved by the “pure” hierarchi-
cal strategies. We further show that the global target-sensing
assumption can be removed without affecting asymptotic
optimality.

Portions of this work were presented in [29] and [30] for
the early dissemination of results. Compared with [29] and
[30], this paper provides a more comprehensive view of the
results along with complete proofs for all theorems. Many
of the proofs have been significantly improved to illustrate
more clearly proof techniques that may be of interest on
their own. In addition, the current paper discusses extensively
generalizations of the stochastic target assignment problem
to mismatching number of robots and targets, and to higher
dimensions.

The rest of the paper is organized as follows. In Section II, we
present notations and well-known results from other branches
of research needed for the development of our results. After
stating the problem formally in Section III, we then elaborate
on the three stated contributions in Sections IV–VI. We present
results of simulation studies in Section VII to validate our
theoretical results and conclude in Section VIII.

II. PRELIMINARIES

In this section, we review results on the balls and bins
problem, linear assignment, and random geometric graphs. The
symbols R,R+,N denote the set of real numbers, the set of
positive reals, and the set of positive integers, respectively. For
a positive real number x, log x denotes the natural logarithm
of x; the function �x� (resp., �x�) denotes the smallest (resp.,
largest) integer that is larger (resp., smaller) than or equal to x.
| · | denotes the cardinality for a set and the absolute value for
a real number. We use ‖v‖2 to denote the Euclidean 2-norm of
a vector v. The unit square [0, 1]2 ⊂ R

2 is denoted as Q. The
expectation of a random variable X is denoted as E[X]. We use
E(·) to represent a probabilistic event and the probability with
which an event e occurs is denoted as P(e).

Given two functions f, g : R+ → R
+, f(x) = O(g(x)) if

and only if there exist MO, xO ∈ R
+ such that

∀x > xO, |f(x)| ≤ MO |g(x)| .

Similarly, f(x)=Ω(g(x)) if and only if there existMΩ, xΩ ∈
R

+ such that

∀x > xΩ, |f(x)| ≥ MΩ |g(x)| .

If f(x)=O(g(x)) and f(x) = Ω(g(x)), then we say f(x) =
Θ(g(x)). Finally, f(x) = o(g(x)) (resp., f(x) = ω(g(x))) if
and only if f(x)=O(g(x)) (resp., f(x)=Ω(g(x))) and f(x)=
Θ(g(x)) does not hold.

A. Balls and Bins

The well-studied problem in probability theory known as the
urns-problem, or the problem of balls and bins, considers the
distribution generated as a number of balls are randomly tossed
into a set of bins. The following classical result on the ball and
bins problem is due to Erdős and Rényi.

Theorem 1 (Balls and Bins [31]): Suppose that a number
of balls are tossed uniformly randomly into m bins, one ball
per time step. Let Tk denote the first time such that k balls are
collected in every bin. Then for any real number c

lim
m→∞

P (Tk < m logm+ (k − 1)m log logm+ cm)

= e−e
− c

(k−1)!
. (1)

It is worth noting that the proof of Theorem 1 is fairly
short and elegant, employing only basic tools from analysis and
combinatorics. A useful corollary for k = 1 follows readily.

Corollary 2: For an arbitrary real number c, suppose that
no fewer than (m logm+ cm) balls are tossed uniformly ran-
domly into m bins. As m → ∞, every bin contains at least one
ball with probability e−e−c

.
Proof: In (1), letting k = 1 yields

lim
m→∞

P(T1 < m logm+ cm) = e−e−c

. (2)

The corollary directly follows (2) (recall that T1 is the number
of tosses needed so that every bin has at least one ball). �

Corollary 2 says that T1 = m logm is a sharp threshold.
Letting c = 5 in (2) yields that the probability of every bin
being occupied by at least one ball is greater than 0.99 when
at least m logm+ 5m balls are tossed. On the other hand, the
same probability is no more than 0.001 when no more than
m logm− 2m balls are tossed.

B. Linear Assignment Problem

The (linear) assignment problem, as a fundamental combina-
torial optimization problem, can be defined as follows.

Problem 1 (Linear Assignment): Given two finite sets X and
Y with |X| = |Y |, together with a weight function C : X ×
Y → R, find a bijection f : X → Y that minimizes the cost∑

x∈X
C (x, f(x)) . (3)
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Problem 1 is also called the perfect weighted bipartite match-
ing problem. Here, the mapping C is essentially a square matrix
that can be used to represent a variety of weights, such as the
Euclidean distance when X and Y represent physical locations.
The Hungarian method for the assignment problem, proposed
by Kuhn [7], has an O(n4) running time, which was subse-
quently improved to O(n3) by Edmonds and Karp [6]. Many
other algorithms for the assignment problem exist, including
other primal-dual (linear programming) methods [5], auction
based methods [3], and parallel algorithms [4], [8]. Neverthe-
less, the strongly polynomial2 O(n3) Hungarian method re-
mains as the fastest exact (sequential) algorithm, which we use
in our simulations.

When X and Y are restricted to points on the plane with
the weight function C being the Euclidean distances between
the points, the special linear assignment problem is known
as the Euclidean bipartite matching problem, which can be
solved exactly using an O(n2.5 log n) primal-dual algorithm
[32]. Alternatively, near linear time approximation algorithms
can yield near optimal solutions with high probability [33].3

C. Random Geometric Graphs

Let X = {x1, . . . , xn} be a set of n points in the unit square
Q. For a fixed communication radius rcomm, the geometric
graph G over this set of points is formed by taking each point
as a vertex and connecting any two vertices whose underlying
points x1 and x2 satisfy ‖x1 − x2‖2 ≤ rcomm. When X is
selected randomly following some distribution, the resulting
graph is called a random geometric graph.

Properties of random geometric graphs have been studied
extensively; see [27] for a thorough coverage. One such prop-
erty is the connectivity of these graphs, which is of particular
interest to wireless communication and robotic networks.

Theorem 3 (Random Geometric Graphs [28]): Let G be
a random geometric graph obtained following the uniform
distribution over the unit square for some n and rcomm. Then
for any real number c, as n → ∞

P(G is connected | πnr2comm − log n ≤ c) = e−e−c

. (4)

From (4), it is possible to estimate the number of robots
required to guarantee a connected geometric graph G.

III. TARGET ASSIGNMENT IN ROBOTIC NETWORKS

In this section, we formally define the problem of target
assignment in robotic networks and the optimality objective.

A. Problem Statement

Let X0 = {x0
1, . . . , x

0
n} and Y 0 = {y01 , . . . , y0n} be two sets

of points (the superscript emphasizes that these points are

2A polynomial time algorithm runs in strongly polynomial time only if its
running time does not depend on the size of the input parameters. Note that n
is the number of input parameters in this case.

3Although algorithms from [33], [32] have theoretically faster running times
than the Hungarian method and apply to the problem that we study, they are more
difficult to implement and slower in practice unless |X| is very large because
they are not strongly polynomial time algorithms like the Hungarian method.

Fig. 1. (a) The communication graph (solid blue nodes and edges) for a set of
robots under Communication Model 1 with a communication radius of rcomm.
Robots (blue dots) in the same connected component of a communication graph
can freely communicate with each other. (b) The communication graph for a set
of robots under Communication Model 2 with m = b2 = 9.

obtained at the start time t = 0) in the unit square Q,4 selected
uniformly randomly. Place n = |X0| = |Y 0| point robots on
the points in X0, with robot ai occupying x0

i . Each robot has a
unique integer label (e.g., i). In general, we denote robot ai’s
location (coordinates) at time t ≥ 0 as xi(t). The basic task
(to be formally defined) is to move the robots so that at some
final time tf ≥ 0, every y ∈ Y 0 is occupied by a robot. We may
assume that there is a final time tfi for each robot ai, such that
xi(t) ≡ xi(t

f
i ) for t ≥ tfi . For convenience, we also refer to

X0 and Y 0 as the set of initial locations and the set of target
locations, respectively.

Motion Model: The robots are single integrators, i.e.,
ẋi(t) = ui(t) with ui(t) being piece-wise smooth and
‖ui(t)‖2 ∈ {0, 1}. We assume the size of the robots is negligi-
ble with respect to the distance they travel and ignore collisions
between robots.

Communication Model 1: We study two communication
models in this paper. In the first communication model, a robot
ai may communicate with other robots within a disc of radius
rcomm centered at xi(t). At any given time t ≥ 0, we define the
(undirected) communication graph G(t), which is a geometric
graph that changes over time, as follows. G(t) has n vertices
v1, . . . , vn, corresponding to robots a1, . . . , an, respectively.
There is an edge between two vertices vi and vj if the corre-
sponding robot locations xi(t) and xj(t), respectively, satisfy
‖xi(t)− xj(t)‖2 ≤ rcomm. Fig. 1(a) provides an example of a
(disconnected) communication graph.

Given our focus on distance optimality, we make the sim-
plifying assumption that all robots corresponding to vertices
in a connected component of the communication graph may
exchange information instantaneously. In other words, robots
in a connected component of G(t) can be treated as a single
robot insofar as decision making is concerned.

Communication Model 2: The unit square Q is divided
into m = b2 equal-sized smaller squares (regions).5 Robots
within each region can communicate with one another but

4Our results are scale-invariant because all the theorems hold for squares
of any size with proper scaling. Hence, a unit square environment is used
throughout the paper.

5In this paper, m is frequently used to denote the number of small squares in a
division of the unit square Q and b =

√
m is the number of resulting partitions

on an edge of the unit square. The value of m and b may vary.
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robots from different regions cannot exchange information [see,
e.g., Fig. 1(b)]. This model mimics the natural (geometrical)
resource allocation process in which supplies and demands are
first matched locally; the surpluses and deficits within each
region then get balanced out at larger regions, giving rise to
a hierarchical strategy.

Target-Sensing Model: We assume that a robot is aware of a
point y∈Y 0 if ‖y−xi(t)‖2≤rsense, the target-sensing radius.

The problem we consider in this paper is defined as follows.
Problem 2 (Target Assignment in Robotic Networks): Given

X0, Y 0, rsense, and Communication Model 1 with rcomm

or Communication Model 2, find a control strategy u(t) =

[u1(t), . . . , un(t)], such that for some 0 ≤ tfi < ∞ and some
permutation σ of the numbers 1, . . . , n, xi(t

f
i ) = y0σ(i) for all

1 ≤ i ≤ n.
Over all feasible solutions to an instance of Problem 2, we

are interested in minimizing the total distance traveled by all
robots, which can be expressed as

Dn :=
n∑

i=1

tf
i∫

0

‖ẋi(t)‖2 dt. (5)

As an accurate proxy to the energy consumption of the entire
system, the cost defined in (5) is an appropriate objective in
practice. Unless otherwise specified, distance optimality refers
to minimizing Dn. Over all permutations σ of the numbers
1, . . . , n, and for fixed X0 and Y 0, the minimum total distance
for robots moving along continuous paths is

D∗
n := min

σ

n∑
i=1

∥∥∥x0
i − y0σ(i)

∥∥∥
2

(6)

which may or may not be achievable depending on the capa-
bilities of the robots (e.g, if the robots cannot follow straight-
line paths, then Dn > D∗

n). Let U denote the set of all possible
control strategies that solve Problem 2 given a fixed set of
capabilities for the robots, we say that distance optimality is
achieved if minU Dn = D∗

n. Besides distance optimality, we
also briefly discuss the total task completion time (i.e., the sum
of the individual task completion times as targets are occupied),
denoted by Tn. If all robots start moving toward targets and do
not stop in the middle, then Tn = Dn. In particular, we define
T ∗
n := D∗

n.

IV. GUARANTEEING DISTANCE OPTIMALITY FOR

ARBITRARY rcomm AND rsense

In this section, we use Communication Model 1. In general,
when rsense <

√
2 or rcomm <

√
2, it is impossible to guaran-

tee distance optimality, since global assignment is no longer
possible in general. For example, as rsense → 0, the robots must
search for the targets before assignments can be made; it is very
unlikely that the paths taken by the robots toward the targets
will be straight lines, which is required to obtain D∗

n. This raises
the following question: Given a pair of rcomm and rsense, under
what conditions can we ensure distance optimality? Theorem 4
answers this question.

Fig. 2. General setup in which the two robots cannot communicate with each
other at t = 0 and therefore cannot always decide an optimal assignment at
t = 0.

Theorem 4: In a unit square, under sensing and communica-
tion constraints (i.e., rcomm, rsense <

√
2), distance optimality

can be achieved with probability one if and only if at t = 0:

i) the communication graph is connected;
ii) every target is within a distance of rsense to some robot.

Proof: We first prove that the conditions are necessary
with two claims: 1) an optimal assignment that minimizes Dn is
possible in general only if G(0) is connected, and 2) an optimal
assignment that minimizes Dn is possible only if for all y ∈ Y 0,
y is within a distance of rsense to some x ∈ X0.

To see that the first claim is true, we note that distance-
optimal assignments forbid robots from moving unnecessarily,
requiring at t = 0 a pairing between elements of X0 and Y 0

that minimizes Dn. We now show that this is not possible in
general when rcomm <

√
2. For n = 2, assume that the two

targets are located at y1 and y2 as given in Fig. 2 (solid red dots).
Assume the first robot a1 is located at x1 (the blue solid dot at
the lower left of Fig. 2) and a1 is of equal distance to y1 and y2.
Let the second robot a2 take two possible locations x2 and x′

2

as shown, which are symmetric along a diagonal of Q. If a2 is
at x2 (resp. x′

2), then a2 should go to y2 (resp. y1), forcing a1
to go to y1 (resp. y2). Not knowing a2’s location because a1 is
out of a2’s communication radius, a1 has at most 50% chance of
picking the distance minimizing choice at t = 0. We can readily
extend the locations of the robots and targets to include neigh-
borhoods around them (the dotted circles in Fig. 2) to show
that there is a non-zero probability that an optimal assignment
cannot be made at t = 0. This proves that that G(0) cannot have
more than one connected component and must be connected.
The example can be extended to work for arbitrary n by adding
additional robots and targets to close vicinities of x1 and y1,
respectively.

For the second claim, suppose that at t = 0, some y ∈ Y 0

is not within a distance of rsense to any x ∈ X0. A robot must
move to search for that y. This will cause the robot to follow
a path that is not a straight line with probability one, implying
that Dn = D∗

n with probability zero.
It is not hard to see that the necessary conditions from the

two claims are also sufficient: when G(0) is connected and each
target is observable by some robot ai, the robots can decide at
t = 0 a global assignment that minimizes Dn. �
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Theorem 4 suggests a simple way for ensuring distance opti-
mality by either increasing the number of robots or increasing
one or both of rcomm and rsense. This essentially leads to a
centralized communication and control strategy (Strategy 1).
Note that given the assignment permutation σ, each robot ai
can easily compute its straight-line path between x0

i and y0σ(i).
Since every robot can carry out the computation in Strategy 1,
to resolve conflicting decisions and avoid unnecessary compu-
tation, we may let the highest labeled robot (e.g., an) handle the
entire assignment process.

The rest of this section establishes how the conditions from
Theorem 4 can be met. We point out that similar conclusions
can also be reached by exploring Theorem 3, which yields
an asymptotic relationship between the required number of
robots for G(0) to be connected and rcomm. We take a different
approach and produce the required number of robots as an
explicit function of rcomm without the asymptotic assumption.

A. Guaranteeing a Connected G(0)

Since the robots can be anywhere in the unit square Q, given
a communication radius of rcomm <

√
2, intuitively, at least

Θ(1/r2comm) robots are needed for a connected G(0), which
requires the robots to take a lattice-like formation such as a
grid. It turns out that when the robots are uniformly randomly
distributed, only a logarithmic factor more robots are needed to
ensure a connected G(0).

Lemma 5: Suppose that n robots are uniformly randomly
distributed in the unit square. For fixed rcomm <

√
2 and 0 <

ε < 1, at t = 0, the communication graph is connected with
probability at least 1− ε if

n ≥
⌈ √

5

rcomm

⌉2
log

⎛
⎝1

ε

⌈ √
5

rcomm

⌉2⎞⎠ . (7)

Proof: We divide the unit square Q into m = b2 equal-
sized small squares with b = �

√
5/rcomm�. Label these small

squares {q1, . . . , qm}. Under this division scheme, a robot
residing in a small square qi can communicate with any other
robot in the four squares sharing a side with qi (see Fig. 3).
Therefore, G(0) is connected if each qi contains a robot. Let ni

denote the number of robots in qi. Then

P(ni = 0) =

(
1− 1

m

)n

< e−
n
m .

Fig. 3. If the small squares have a side length of �
√
5/rcomm� or smaller,

then a robot in such a square (e.g., the gray square) can communicate with
any robot in the four neighboring small squares sharing a side with the gray
square.

The inequality holds because (1−x)n<e−nx for 0<x<1.
To see this, let f(x) = log(1− x)/x. The Taylor expan-
sion of f(x) at x = 0 is −1− x/2− x2/3 + o(x3) < −1 for
0 < x < 1. This shows that log(1− x) < −x for 0 < x <
1 ⇒ n log(1− x) < −nx ⇒ (1− x)n < e−nx. By Boole’s in-
equality (i.e., the union bound), the probability that at least one
of q1, . . . , qm is empty can be upper bounded as

P

(
m⋃
i=1

E(ni = 0)

)
≤

m∑
i=1

P(ni = 0) < me−
n
m .

Setting me−n/m = ε and replacing m = �
√
5/rcomm�2

yields

⌈ √
5

rcomm

⌉2
exp

⎛
⎜⎝−n

1⌈ √
5

rcomm

⌉2
⎞
⎟⎠ = ε

⇒ n =

⎛
⎝⌈ √

5

rcomm

⌉2⎞⎠ log

⎛
⎝1

ε

⌈ √
5

rcomm

⌉2⎞⎠
which guarantees that each small square contains at least one
robot with probability 1− ε. �

The bound in Lemma 5 can be further tightened; Corollary 6
(below) illustrates one way to achieve this. It produces n
smaller than that given by (7) when rcomm <

√
5/2.

Corollary 6: Suppose that n robots are uniformly randomly
distributed in the unit square. For fixed rcomm <

√
2 and 0 <

ε < 1, at t = 0, the communication graph is connected with
probability at least 1− ε if

n ≥
⌈ √

5

rcomm

⌉2
log

⎡
⎣1
ε

⎛
⎝1
2

⌈ √
5

rcomm

⌉2
+

⌈ √
5

rcomm

⌉⎞⎠
⎤
⎦. (8)

Proof: If each of the shaded small squares in Fig. 4 has at
least one robot, then G(0) must be connected: any robot falling
in a small white square must be connected to some robot in a
shaded small square. This shows that (8) is sufficient. �

Remark: In comparison to Theorem 3, Lemma 5 provides
n as an explicit function of rcomm. Moreover, our sufficient
condition on n given in (7) [and (8)], unlike (4), is not an
asymptotic bound. Therefore, our bound applies to an arbitrary
rcomm. On the other hand, if we let rcomm → 0, then an
asymptotic statement can also be made.
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Fig. 4. As long as each of the shaded small squares contains an robot, G(0)
must be connected. Therefore, only b2/2 + b small squares need to have robots
in them.

Lemma 7: Suppose that n robots, each with a communica-
tion radius of rcomm, are uniformly randomly distributed in
the unit square. At t = 0, the communication graph is asymp-
totically connected with arbitrarily high probability e−e−c

(for some c > 0) if

n ≥
(
2 log

⌈ √
5

rcomm

⌉
+ c

)⌈ √
5

rcomm

⌉2
. (9)

Proof: Given the division scheme used in the proof of
Lemma 5, distributing robots into the unit square Q is equiva-
lent to tossing the robots (balls) into the m small squares (bins)
uniformly randomly. By Corollary 2, as m → ∞, having n ≥
m logm+ cm =(2 log�

√
5/rcomm�+ c)�

√
5/rcomm�2 robots

guarantees that all m small squares must have at least one robot
each with probability e−e−c

. �
Since f(x) = cx grows slower than g(x) = x log x as x →

∞, Lemma 7 says that n = Θ((1/rcomm)
2 log(1/rcomm))

robots can ensure that G(0) is connected with probability
arbitrarily close to one asymptotically. Next, we show that
these many robots are also necessary for the high probability
guarantee.

Let Pn,m(E) denote the probability of an event E happening
after tossing n balls into m bins. We work with two events: E0,
the event that “at least one bin is empty”, and E1, the event that
“at least one bin contains exactly one ball”. We want to show
that Pn,m(E1) is not too small for n up to m logm, which is
proven in the next two lemmas.

Lemma 8: Suppose that 1 ≤ n ≤ m balls are tossed uni-
formly randomly into m bins. Then

Pn,m(E1) ≥
(
1− 1

m

)m−1

> e−1.

Proof: First we prove a useful inequality: for m ∈ N

(
1− 1

m

)m−1

> e−1. (10)

To see this, note that the function log(1− x)(1/x)−1 has a
Taylor expansion of −1 + x/2 + o(x2) > −1 for small x >
0, yielding that (1− x)(1/x)−1 > e−1 for small x > 0. Since
the derivative of (1− x)(1/x)−1 is positive for x ∈ (0, 1),

(10) holds for all m > 0 (we use the definition 00 = 1
here).

To prove Lemma 8, because all bins are initially empty, after
tossing the first ball, some bin contains exactly one ball. That
is, P1,m(E1) = 1. Let the bin occupied by the first ball be
bin 1. As k − 1 additional balls are tossed into the m bins,
the probability that none of these k − 1 balls occupy bin 1 is
(1− 1/m)k−1. Therefore, for 1 ≤ k ≤ m, we have

Pk,m(E1) ≥P1,m(E1)

(
1− 1

m

)k−1

≥P1,m(E1)

(
1− 1

m

)m−1

=

(
1− 1

m

)m−1

> e−1.

�
Lemma 9: Suppose that m < n < m logm balls are tossed

uniformly randomly into m bins. As m → ∞

Pn,m(E1) ≥ (1− e−e)

(
1− 1

m

)m−1

> (1− e−e)e−1.

Proof: Suppose that after an experiment of n′ tosses into
m bins, E0 holds; i.e., at least one bin is empty. Without loss
of generality, we assume the empty bin is bin 1. Now consider
tossing an additional k balls into the m bins. The probability of
exactly one of these k balls falling in bin 1 is

Pk,m(exactly one ball falls in bin 1)

=

(
k

1

)
1

m

(
1− 1

m

)k−1

=
k

m

(
1− 1

m

)k−1

.

Therefore

Pn′+k,m(E1)

≥ Pn′,m(E0)Pk,m(exactly one ball falls in bin 1)

=
k

m

(
1− 1

m

)k−1

Pn′,m(E0). (11)

Letting c = −1 in Corollary 2, we have

lim
m→∞

P(T1 ≥ m logm−m) = 1− e−e. (12)

That is, as m→∞, for 0<n′<m logm−m, Pn′,m(E0) ≥
1− e−e. Plugging this into (11) and letting k = m, we have that
for m < n < m logm, as m → ∞

Pn,m(E1) ≥ (1− e−e)
m

m

(
1− 1

m

)m−1

> (1− e−e)e−1

in which the last inequality is by (10). �
Under the assumptions of Lemmas 8 and 9, we always have

that as m→∞,Pn,m(E1)>min{e−1, (1−e−e)e−1} > 0.34.
We now show that n = Θ((1/rcomm)

2 log(1/rcomm)) is a tight
bound on the number of robots for guaranteeing the connectiv-
ity of G(0) with high probability.
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Fig. 5. A 3 × 3 block as defined in the proof Theorem 10.

Theorem 10: For n uniformly randomly distributed robots in
a unit square with a communication radius rcomm

n = Θ

(
1

r2comm

log
1

rcomm

)
(13)

is necessary and sufficient to ensure that at t = 0, the commu-
nication graph is asymptotically connected with arbitrarily high
probability.

Proof: Lemma 7 covers sufficiency; we are to show that
there is some non-trivial probability that G(0) is disconnected
if the number of robots satisfies

n = o

(
1

r2comm

log
1

rcomm

)
.

To prove the claim, we partition the unit square Q into
m = b2 equal-sized small squares in which b = �1.1/rcomm�.
The factor of 1.1 in the expression makes the side of the small
square larger than rcomm. Assuming that m is divisible by 3
(it is always possible to truncate some small squares to satisfy
this), we may group the small squares into m/9 groups of 3 ×
3 blocks (see, e.g., Fig. 5).

If there is a single robot in a 3 × 3 block, the robot cannot
communicate with the rest of the robots if it falls inside the
small square in the center of the block (e.g., the solid gray
square in Fig. 5). By Lemmas 8 and 9, for less than (m/9)×
log(m/9)=2�1.1/rcomm�2 log(�1.1/rcomm�/3)/9 robots, the
probability of having at least one of these 3 × 3 blocks
containing exactly one robot is at least 0.34 as m → ∞ (i.e.,
rcomm → 0). If a 3 × 3 block has exactly one robot in it,
with probability of 1/9, the robot is in the middle square.
Therefore, with probability at least 0.34/9 ≈ 0.04, G(0) is
disconnected. �

B. Ensuring Target Observability

With a connected communication graph G(0) guaranteed
by Lemma 5, we can solve a single assignment problem if
for each y∈Y 0, ‖y−x‖2≤rsense for some x∈X0. Similar
techniques used in the proof of Lemma 5 lead to a similar lower
bound on n.

Lemma 11: Suppose that n robots and n targets are uni-
formly randomly distributed in the unit square. For fixed rsense

and 0 < ε < 1, every target is observable by some robot at
t = 0 with probability at least 1− ε if

n ≥
⌈ √

2

rsense

⌉2
log

⎛
⎝1

ε

⌈ √
2

rsense

⌉2⎞⎠ . (14)

Proof: If we partition the unit square Q into �
√
2/rsense�2

equal-sized small squares and there is at least one robot in each
small square, then any point of Q is within rsense distance to
some robot. Following the same argument used in the proof of
Lemma 5, the inequality from (14) ensures that this happens
with probability at least 1− ε. �

Putting together Lemmas 5 and 11, we obtain a lower bound
on n that makes a distance-optimal assignment possible.

Theorem 12: Suppose that n robots and n targets are uni-
formly randomly distributed in the unit square. Fixing 0<ε<1,
at t=0, the communication graph is connected and every target
is observable by some robot with probability at least 1−ε if

n ≥
⌈√

10

θ

⌉2
log

⎛
⎝1

ε

⌈√
10

θ

⌉2⎞⎠ (15)

in which θ := min{
√
5rsense,

√
2rcomm}.

Proof: When θ=
√
5rsense, (15) becomes (14), which im-

plies (9). Therefore, G(0) is connected with probability 1−ε.
When θ =

√
2rcomm, i.e., rsense ≥

√
10rcomm/5, by

Lemma 5, (9) implies that G(0) is connected with probability
1− ε. Moreover, there is at least one robot in each of the small
squares with a side length of at most rcomm/

√
5 (as specified

in the proof of Lemma 5). Having rsense ≥
√
10rcomm/5

guarantees that robots in a small square observes all targes
within the same small square. Therefore, every y ∈ Y 0 is
within a distance of rsense to some x ∈ X0. �

Remark: Theorem 12 is not an asymptotic result and applies
to all rcomm and rsense. If a high probability asymptotic result is
desirable, Lemma 11 can be readily turned into a version similar
to Theorem 10, by following the same proof techniques. In view
of this fact, the bounds from Theorem 12 are asymptotically
tight.

V. HIERARCHICAL STRATEGIES FOR rsense ≥
√
2:

OPTIMAL DISTANCE AND PERFORMANCE GUARANTEES

In this section, we work with the (region-based) Commu-
nication Model 2 and assume that rsense ≥

√
2 (that is, every

robot is aware of the entire Y 0). The study of Communication
Model 2, besides leading to interesting conclusions on hierar-
chical strategies, also facilitates the analysis in Section VI as
we revisit Communication Model 1.

A region-based communication model naturally leads to a
hierarchical strategy for solving Problem 2 under the optimality
criterion of minimizing the cost defined by (5). Let h ≥ 1 be
the number of hierarchies and mi, 1 ≤ i ≤ h, be the number
of equal-sized regions at hierarchy i. We make the following
assumptions that are mainly used in Theorem 16: i) m1 ≡ 1,
ii) mi+1 ≥ mi, and iii) a region at a higher numbered hierarchy
is contained in a single region at a lower numbered hierarchy.
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For example, dividing Q into 4i−1 squares at hierarchy i satis-
fies these requirements.

We call the associated strategy under these assumptions
the hierarchical divide-and-conquer strategy, the details of
which are described in Strategy 2. Note that for each region
in Strategy 2, the robots can again let the highest labeled robot
within the region carry out the strategy locally.

It is clear that Strategy 2 is correct by construction because
|X0| = |Y 0|. The rest of this section is devoted to analyzing
the strategy. We begin with a single hierarchy (h = 1). Since
rsense ≥

√
2 implies that all robots are aware of the entire set

Y 0, the robots may form a consensus of which robot should
go to which target at t = 0 by finding an optimal assignment
σ that yields D∗

n as defined by (6). This assignment problem
can be solved using a bipartite matching algorithm such as
the Hungarian method. Ajtai, Komlós, and Tusnády proved the
following about D∗

n.
Theorem 13 (Optimal Matching [34]): Assuming that n

points are i.i.d. following the uniform distribution over a unit
square, then, with probability 1− o(1)

C1

√
n log n ≤ D∗

n ≤ C2

√
n log n (16)

in which C1 and C2 are positive constants.
Remark: The second inequality in (16) remains true in ex-

pectation and also for arbitrary probability measures on [0, 1]2,
albeit with a different universal constant than C2, by a result of
Talagrand [35]. Therefore, D∗

n = Θ(
√
n log n) in expectation.

Although no formulas for C1 and C2 from (16) were given
in [34], a simulation study suggests that C1 < C2 < 1 and
C2/C1 → 1 as n → ∞. As an example, for 200 ≤ n ≤ 10000,
0.4

√
n log n ≤ D∗

n ≤ 0.5
√
n log n on average (see Fig. 6).

Next, we look at the general case with h > 1 hierarchies. To
bound Dn, at each hierarchy i, we need to know the number of
robots that cannot be matched locally. We derive this number in

Fig. 6. The ratio of D∗
n/
√

n logn. Each data point is an average of 25 runs.

Lemma 14. Note that Lemma 14 does not depend on m and n
being large.

Lemma 14: Suppose that n robots and n targets are uni-
formly randomly distributed in the unit square Q, and Q is
divided into m equal-sized regions. Within each of these m
regions, the robots are matched one-to-one with the targets
until no more matchings can be made. The total number of
robots that are left unmatched is no more than

√
n(m− 1)/2

in expectation.
Proof: Restricting to one of the m equal-sized regions, say

qi, we know for x0
j ∈ X0 and y0j ∈ Y 0

P
(
x0
j ∈ qi

)
= P
(
y0j ∈ qi

)
=

1

m

and

P
(
x0
j ∈ qi, y

0
j �∈ qi

)
= P
(
x0
j �∈ qi, y

0
j ∈ qi

)
=

m− 1

m2

in which the event (x0
j ∈ qi, y

0
j �∈ qi) represents a surplus of one

robot in qi and the event (x0
j �∈ qi, y

0
j ∈ qi) a deficit in qi. Thus,

we may view the experiment of picking x0
j and y0j as a one step

walk on the real line starting at the origin, with (m− 1)/m2

probability of moving ±1. The entire process of picking X0

and Y 0 can then be treated as a random walk of n such steps.
Under this random walk analogy, we may use a random vari-

able Zj ∈{0,±1} to represent the outcome of picking (x0
j , y

0
j ).

We immediately have that E[Z2
j ]=2(m−1)/m2. Letting Sn=

Z1 + · · ·+ Zn, we can compute the variance of Sn as

E
[
S2
n

]
=E
[
(Z1 + · · ·+ Zn)

2
]
= E
[
Z2
1 + · · ·+ Z2

n

]
=nE

[
Z2
j

]
=

2n(m− 1)

m2
.

Applying Jensen’s inequality to the concave function
√
x

with x = |Sn|2 = S2
n, we have

E [|Sn|] =E
[√

S2
n

]
≤
√

E [S2
n]

⇒E [|Sn|] ≤
√

2n(m− 1)

m2
.

Because, in expectation, an equal number of the m regions
have surpluses (more robots than targets) and deficits (fewer
robots than targets), and some of the m regions may have
neither, no more than half of the m regions should have a
surplus of robots on average. The total number of unmatched
robots in expectation is then no more than (m/2) ∗E[|Sn|] ≤√
n(m− 1)/2. �
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The distance traveled by the matched robots at the bottom
hierarchy with m regions can be bounded easily. For simplicity,
we now assume that these regions are equal-sized squares.

Lemma 15: Suppose that n robots and n targets are uni-
formly randomly distributed in the unit square Q, and Q is
divided into m equal-sized small squares. Within each of these
m small squares, the robots are matched one-to-one with the
targets until no more matchings can be made. The minimum
total distance of matchings made between the robots and the
targets within the small squares is no more than C

√
n log n in

expectation, for some positive constant C.
Proof: Since Q is divided into m squares, these squares all

have a side length of 1/
√
m. Let one such square be qi with ni

robots (note that
∑m

i=1 ni=n). Since a uniform distribution re-
stricted to qi is again uniform, we can apply Theorem 13 to qi. If
we let these ni robots match only with targets inside qi, then the
total distance incurred locally will not exceed C

√
ni log ni/m

in expectation. Here C is some positive constant.
Note that it is not necessarily the case that all ni robots will

be matched locally in qi. This does not affect the current proof.
For some 1 ≤ i ≤ m, it may be the case that no local matchings
can be made because either ni = 0 or there is no target in qi.
Let m′ ≤ m denote the number of these m squares in which
local matchings can be made. The total distance incurred by
local matchings is then upper bounded by (note that ni is now
indexed with respect to these m′ squares)

m′∑
i=1

C

√
ni log ni

m
= C

m′
√
m

m′∑
i=1

1

m′

√
ni log ni.

Here we assume that m′ > 0, otherwise the local matchings
would have a distance cost of zero. Since the function ϕ(x) =√
x log x is concave, by Jensen’s inequality, E[

√
x log x] ≤√

E[x] log(E[x]). Letting x = ni and the expectation be car-
ried out over the discrete uniform distribution with 1/m′ prob-
ability each, we have

C
m′
√
m

m′∑
i=1

1

m′

√
ni log ni

≤ C
m′
√
m

√√√√( m′∑
i=1

ni

m′

)
log

(
m′∑
i=1

ni

m′

)

= C

√
m′

m

√√√√( m′∑
i=1

ni

)(
log

(
m′∑
i=1

ni

)
− log(m′)

)

≤ C
√
n log n.

�
Remark: With minor modifications, Lemma 15 can be ap-

plied to regions with shapes other than squares. Defining the
diameter of a two-dimensional region as the diameter of the
region’s smallest enclosing circle, the main requirement for the
modification to work is that the maximum diameter of these
regions is O(1/

√
m).

We now give an upper bound on Dn, in expectation, for
general hierarchical strategies.

Theorem 16: Suppose that n robots and n targets are uni-
formly randomly distributed in the unit square Q, and Q is
divided into mi equal-sized small squares at hierarchy i with
a total of h ≥ 2 hierarchies. For all applicable i ≥ 1, assume
that mi+1 ≥ mi and any small square at hierarchy i+ 1 falls
within a single square at hierarchy i. Then Strategy 2 yields

E[Dn] ≤ C
√
n log n+

h−1∑
i=1

√
nmi+1

mi
. (17)

Proof: The C
√
n log n term on the RHS of (17) is due to

Lemma 15. Then at each hierarchy i with 1 ≤ i < h, each of the
mi squares contains mi+1/mi smaller squares from hierarchy
i+ 1. Here we use the assumption that a region at a higher
numbered hierarchy falls completely within a single region at
a lower numbered hierarchy. This means that a robot that gets
matched at hierarchy i needs to travel at most a distance of√
2/mi. Since there are no more than

√
n(mi+1 − 1)/2 <√

mi+1n/2 unmatched robots at hierarchy i in expectation by
Lemma 14, the distance incurred at hierarchy i is no more than√

nmi+1/mi for 1 ≤ i < h. Summing up all the distances then
gives us the inequality (17). �

Theorem 16 allows us to upper bound the performances of
different hierarchical strategies depending on the choices of
h and {mi}. We observe that for fixed h and {mi} inde-
pendent of n, the first term C

√
n log n dominates the other

terms in (17) as n → ∞. This implies that Strategy 2 yields
assignments whose total distance is at most a constant multiple
of the optimal distance. This observation is summarized in
Corollary 17. Recall that D∗

n is the minimum possible distance
defined by (6).

Corollary 17: For fixed h and m1, . . . ,mh that do not
depend on n, as n → ∞, Strategy 2 yields target assignments
with Dn/D

∗
n = O(1) in expectation.

For example, with h ≥ 2 and mi = 4i−1 at hierarchy i,
we have

E[Dn] ≤C
√

n log n+

h−1∑
i=1

√
4n

=C
√

n log n+ 2(h− 1)
√
n. (18)

For any fixed h, as n → ∞, Dn/D
∗
n ≤ C/C1 + o(1) =

O(1). A constant approximation ratio can also be achieved
when h and {mi} depend on n. For example, letting h = 3,
m2 = log n, and m3 = log2 n, we have

E[Dn] ≤ C
√
n log n+

2∑
i=1

√
n log n = (C + 2)

√
n log n.

(19)

Since hierarchical strategies need not run centralized assign-
ment algorithms for all robots, the computational part of these
strategies can be significantly faster. We will come back to this
point in the next section.

Remark: Before concluding this section, it is worth men-
tioning that the results of this section continue to hold in only
slightly weaker forms when the point sets X0, Y 0 are drawn
i.i.d. from the same arbitrary distribution over [0, 1]2 (based
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on Talagrand [35]). Since the topic of arbitrary probability
measures diverges from the main focus of this paper, we only
briefly discuss extending the results of this section to deal with
arbitrary probability measures on [0, 1]2.

To adapt Lemma 14 for arbitrary probability measures, as-
sume that each region qi (see the proof of Lemma 14) has an
overall probability of pi of receiving a robot or target. Note that∑m

i=1 pi = 1. This changes the upper bound of E[|Sn|] for the
region qi to

√
2npi(1− pi). Then, over all m regions, the total

number of unmatched robots is bounded by

m∑
i=1

√
2npi(1− pi) =m

√
2n

m∑
i=1

1

m

√
pi(1− pi)

≤m
√
2n

√√√√ m∑
i=1

pi
m

(
1−

m∑
i=1

pi
m

)

=m
√
2n

√
1

m

(
1− 1

m

)
=
√

2n(m− 1)

in which the inequality is obtained by applying Jensen’s in-
equality to the concave function

√
x(1− x).

Besides updating the uniform distribution of X0 and Y 0

to an arbitrary probability measure, the statement and proof
of Lemma 15 remain largely unchanged. This is because the
second inequality in (16) does not change asymptotically as
the underlying robot and target distribution changes. Then, the
inequality (17) from Theorem 16 merely adds a multiplicative
constant of 2 to its second term on the RHS. Because the
first inequality in (16) is not known to hold for arbitrary
probability measures, we do not have a parallel of Corollary 17
for arbitrary probability measures. Nevertheless, these bounds
for arbitrary probability measures suggest that the uniform dis-
tribution is among the worst distributions for Problem 2 under
the optimality constraint of minimizing (5). This is because the
uniform distribution leads to an optimal assignment distance of
Ω(

√
n log n), and an arbitrary distribution leads to an optimal

assignment distance of O(
√
n log n). Note that these updates

also apply to the results in the next section with appropriate
modifications.

VI. NEAR OPTIMAL STRATEGIES

After exploring hierarchical strategies for the region-based
Communication Model 2, we now return to the range-based
Communication Model 1. If rcomm is arbitrary and the condi-
tions specified in Theorem 4 are not known to hold, the best
we can do is obtain near distance-optimal strategies. In this
section, we show that constant ratio approximation of distant
optimality is possible for arbitrary rsense and rcomm. The basic
idea behind our strategies is to move the robots to pass around
information about the locations of other robots. The assumption
rsense ≥

√
2 is made temporarily. At the end of this section,

we show how to remove this assumption without affecting
asymptotic optimality.

A. Near Distance-Optimal Rendezvous Strategy

Our first suboptimal strategy uses moving robots for infor-
mation aggregation until some robot is aware of the locations
of all robots (i.e., the set X0), at which point a centralized
optimal assignment can be made. Although some robots will
move and change their locations during this process, the moved
robots nevertheless are aware of their initial locations in X0.
To carry out the strategy, the unit square Q is divided into m =
b2 disjoint, equal-sized small squares, with b = �

√
2/rcomm�.

These small squares are labeled as qi,j’s, in which i and j are
the row number and column number of the square, respectively
(see Fig. 7).

Based on its initial location, each robot can identify the small
square qi,j it lies in. At t = 0, the robots in the squares on
row 1 and row b start moving in the direction as indicated in
Fig. 7. We want to use these robot to pass the information of
where all robots are. At most one robot per square is required
to move since all robots in a small square can communicate
with each other by the assumption b = �

√
2/rcomm�.

Assuming that a robot in a square qi,j is moving downwards,
it keeps moving until it is within the communication radius of
a robot in a square with label qi+k,j , k ≥ 1, at which point
it passes over the information it has and stops. The robot in
qi+k,j then does the same. The procedure continues until a
robot reaches the middle of Q (row �b/2�). Then, the robots in
the squares on row �b/2� repeat the same process horizontally
until a robot in the center of Q knows the locations of all other
robots. At this point, the robot in the center of Q that knows
the location of all other robots makes a global assignment so
that each robot is matched with a target. The moved robots
then reverse their travel directions to deliver the assignment
information to all robots. The outline of the strategy is given in
Strategy 3.
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Fig. 7. Directions for robots to move in the rendezvous strategy.

The correctness of Strategy 3 as an algorithm is proven by
construction. Besides the distance cost from the assignment, the
robots in each column travel at most a total distance of two.
The middle row incurs an extra distance of at most two. Thus,
in expectation, Dn < D∗

n + 2b+ 2. Since D∗
n = Θ(

√
n log n),

D∗
n dominates 2b+ 2 when b = o(

√
n log n). In particular, n =

Θ(1/r2comm) satisfies this requirement. Therefore, Strategy 3
can yield near distance-optimal solution without requiring an n
as large as (13) with respect to 1/rcomm.

A drawback of Strategy 3 is that no robot can move to the
targets until the assignment phase is complete. This yields a
total task completion time of Tn ≈ 2n+ T ∗

n in expectation,
which is undesirable since T ∗

n = O(
√
n log n) asymptotically.

Furthermore, Strategy 3 requires running a centralized assign-
ment algorithm for all robots. This might be impractical for
large n. We address these issues with decentralized hierarchical
strategies.

B. Decentralized Hierarchical Strategies

We first look at a decentralized hierarchical strategy that
combines Strategies 2 and 3. Instead of waiting for a centralized
assignment to be made, in each of the small square qi,j as
specified in Strategy 3, we let the robots in qi,j be assigned to
targets that belong to the same square (we refer to these as local
assignments). The robots that are not matched to targets then
carry out Strategy 3. We denote this hierarchical rendezvous
strategy as Strategy 4 and omit the pseudo code.

Corollary 18: For Strategy 4 (2-level Hierarchical Ren-
dezvous), as n → ∞

E[Dn] ≤ C
√
n log n+

√
mn+ 2

√
m+ 2 (20)

and

E[Tn] = Θ(
√
n log n+

√
mn). (21)

Proof: The bound on E[Dn], given by (20), is straight-
forward to compute using Theorem 16, in which the first two
terms on the right side of (20) correspond to the first and second
terms of the right side of (17), respectively, and the last two
terms are due to communication overhead. For total completion
time, all but Θ(

√
mn) robots can start moving to their targets

at t = 0. For the Θ(
√
mn) robots, they need to wait no more

than two units of time each before moving to their targets. This
gives us (21). �

Fig. 8. Illustration of robot movements in a potential hierarchical strategy.

Remark: Similar to Strategy 3, for any fixed m, in expec-
tation, Dn/D

∗
n = O(1) as n → ∞. Moreover, in contrast to

Strategy 3, for any fixed m, Tn/T
∗
n = O(1) in expectation.

Suppose that a centralized algorithm requires t(n) running
time. Using the same centralized algorithm, Strategy 4 has a
running time of O(mt(n/m) + t(

√
mn)). If t(n) = O(n3) as

given by the Hungarian method, then Strategy 4 has a running
time of O(n3/m2 + (mn)3/2). Taking n = 10000, m = 10,
for example, we get a 1000-time speedup.

By introducing additional hierarchies, Strategy 4 can be
easily extended to a multi-hierarchy decentralized strategy.
Depending on how the subdivisions are made, many such
strategies are possible. For example, using h ≥ 2 hierarchies
with each hierarchy i having 4i−1 small squares, we get a
“quad-merging” strategy as illustrated in Fig. 8, in which up
to four representatives in four adjacent squares meet to decide
a local assignment of the robots in these squares at a given
hierarchy level.

Although these suboptimal strategies vary in detail, they can
be easily analyzed with Theorem 16. For example, we look at
an extension to Strategy 4 with three hierarchies; let us call
this strategy, Strategy 5. After partitioning the bottom (or third)
hierarchy to m squares, the middle (or second) hierarchy is
partitioned into k =

√
m small squares. At either the third or

the second hierarchy, local assignments are made, followed by
applying the rendezvous strategy as given in Strategy 3. It is
again straightforward to derive the following.

Corollary 19: For Strategy 5 (3-level Hierarchical Ren-
dezvous), as n → ∞

E[Dn] ≤ C
√

n log n+ 2

√
n
√
m+ 4

√
m+ 2. (22)

Remark: Again, Dn/D
∗
n = O(1) as n → ∞ for a fixed m.

Introducing more hierarchy levels extends the total completion
time Tn, which is increased by approximately 2

√
m. Thus,

the total completion time of Strategy 5 is also given by (21).
Following similar analysis, the overall running time required by
Strategy 5 is O(mt(n/m) +

√
mt(

√
n) + t(

√
n
√
m)) given a

centralized assignment algorithm that runs in t(n) time.

C. Handling Arbitrary rsense

Because there can be targets anywhere in Q, to carry out the
algorithms stated in this section, each robot must be aware of all
target locations. For this to happen for arbitrary rsense, Q must
be swept through in a worst scenario. To do this, we partition Q
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Fig. 9. Effects of n on the connectivity of G(0) for different values of rcomm.

into �1/(2rsense)�2 small squares and let a robot in the top-left
small square “zig-zag” through Q (i.e., following a Boustrophe-
don path [36]) until it covers the bottom side of Q. If there is
no robot in the top-left small square, then a robot in a square
along the Boustrophedon path is used; implicit timing can be
used to determine this. Once the end of the path is reached,
the robot then reverses its course until it gets back to the top-
left small square. At this point, this robot is aware of all target
locations. It can then repeat a similar path to communicate that
information to all other robots. This procedure ensures that all
robots are aware of all target locations. The total distance cost of
the procedure is about 2�1/(2rsense)�+ �1/(2rcomm)�. Taking
this penalty, which does not depend on n and therefore has no
impact on the asymptotic optimality, we can then effectively
assume rsense ≥

√
2.

VII. SIMULATION STUDIES

A. Number of Required Robots for a Connected G(0)

In this subsection, we show a result of simulation to verify
our theoretical findings in Section IV. Since the bounds over
rcomm and rsense are similar, we focus on rcomm and verify the
requirement for the connectivity of G(0) for several rcomm’s
ranging from 0.01 to 0.2. For each fixed rcomm, various num-
bers of robots are used starting from n = − log rcomm/r

2
comm

(the number of robots goes as high as 3× 105 for the case of
rcomm = 0.01). 1000 trials were run for each fixed combination
of rcomm and n. The percentage of the runs with a connected
G(0) is reported in Fig. 9. The simulation suggests that the
bounds on n from Theorem 10 are fairly tight.

To compare to (4), which also allows for estimation of n in
terms of rcomm with a specified probability for obtaining a con-
nected G(0), we computed n based on (4) and (7) for a range of
rcomm-probability pairs. We then use these n’s to estimate the
actual probability of having a connected G(0). We list the result
in Table I. Each main entry of the table has two probability
numbers separated by a comma, obtained using (4) and (7),
respectively. As we can see, (4) gives underestimates (due to its
asymptotic nature) and cannot be used to provide probabilistic
guarantees. On the other hand, (7) provides overestimates that
guarantee the desired probability.

B. Performance of Near Optimal Strategies

Next, we simulate Strategies 2–5 and evaluate Dn, Tn,
and running time for these strategies over various values of

TABLE I
COMPARISON BETWEEN (4) AND (7)

Fig. 10. Distance optimality of Strategy 3 over varying n and rcomm.

Fig. 11. Distance optimality of Strategy 4 over varying n and rcomm.

n and rcomm, assuming rsense ≥
√
2. Due to our choice of

k =
√
m in Strategy 5, we pick specific rcomm’s so that m =

�
√
2/rcomm� is always a perfect square. These values are

rcomm = 0.16, 0.09, 0.057, and 0.04, which correspond to m =
81, 256, 625, and 1296, respectively. The number of robots used
in each simulation ranges from 100 to 10000. For each n, 10
assignment problem instances are randomly generated. These
problem instances are then used to test all strategies. We test
Strategy 2 using the same (two-hierarchy and three-hierarchy)
partitions that are used with Strategies 4 and 5.

Distance Optimality: The ratios Dn/D
∗
n for Strategy 3 over

different n and rcomm are plotted in Fig. 10. We observe that
the overhead for establishing global communication among the
robots becomes insignificant as n increases, driving Dn/D

∗
n to

close to one.
For Strategy 4, the ratios were plotted similarly in Fig. 11

but with (small) error bars. The error bars display the standard
deviation over the 10 runs (we omitted these from a figure, such
as Fig. 10, when they are too small to see). They can be better
seen in Fig. 12, which is a zoomed-in version of the rcomm =
0.16 line from Fig. 11. The similarities between Fig. 10 and
Fig. 11 for small n are not surprising since both strategies
spend most of their effort (distance traveled) in establishing
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Fig. 12. The effect of varying n on the distance optimality of Strategy 4 with
rcomm = 0.16 (m = 81).

Fig. 13. Distance optimality of Strategy 5 over varying n and rcomm.

Fig. 14. Assignment cost of a two-level “pure” hierarchical strategy.

communication. As this extra communication cost diminishes
as n grows, the actual assignment cost dominates. Strategy 3,
with assignment being done in a centralized manner, becomes
better than the decentralized Strategy 4.

As expected, for a fixed rcomm, Dn/D
∗
n decreases as n

increases. For n = 10000, the approximation ratios for our
choices of rcomm are around 1.4 (due to the slow growing
nature of D∗

n ∼
√
n log n; fixing any rcomm, this ratio should

be close to one for large n). On the other hand, for a fixed
n, as the partition of the unit square Q gets finer, Dn/D

∗
n

increases, implying that decreasing the communication radius
has a negative effect on distance optimality. We observe similar
results on the distance optimality of Strategy 5 (see Fig. 13).

If we remove the rendezvous part from Strategies 4 and 5,
they become similar to Strategy 2. The distance optimality

Fig. 15. The assignment cost of a three-level “pure” hierarchical strategy.

TABLE II
RUNNING TIME FOR STRATEGIES 3–5

performance of these two particular versions of Strategy 2 is
shown in Figs. 14 and 15, respectively. For all partitions made
(m = 81, 256, 625, 1296), Dn/D

∗
n ratios of less than two are

achieved and can go as low as 1.06, showing that hierarchical
strategies can provide very good optimality guarantees.

Computational Performance: We list the running time, in
seconds, for Strategies 3–5 in Table II. The standard O(n3)
Hungarian method is used as the baseline assignment algo-
rithm. Each main entry of the table lists three numbers cor-
responding to the running time of Strategies 3, 4, and 5, re-
spectively, for the given combination of rcomm and n. Note that
any version of Strategy 2 has the same amount of computation
as a corresponding rendezvous-based strategy. As expected, a
hierarchical assignment greatly reduces the computation time,
often by a factor over 103. The computation was performed
on a Intel Core-i7 3970K PC under a 8 GB Java virtual
machine.

Time Optimality: Since Strategies 3–5 sacrifice distance
(and therefore, time) to compensate for limited communication,
we do not expect the total completion time Tn of these strategies
to match T ∗

n closely. For example, in (21), although Tn → T ∗
n as

n → ∞ for fixed m = �
√
2/rcomm�2, it requires a very large n

for
√
log n to dominate

√
m. Thus, we only compare Tn among
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Fig. 16. Ratio of total completion time between Strategies 3 and 4.

Fig. 17. Ratio of total completion time between Strategies 3 and 5.

Strategies 3–5. Using Tn(i) to denote the Tn for Strategy i,
Tn(4)/Tn(3) and Tn(5)/Tn(3) are plotted in Figs. 16 and 17.
As n increases, Strategies 4 and 5 both take much less total
completion time on average.

VIII. CONCLUSION

Focusing on the distance optimality for the target assignment
problem in a robotic network setting, we have characterized a
necessary and sufficient condition under which optimality can
be achieved. We also provided a direct formula for computing
the number of robots sufficient for probabilistically guarantee-
ing such an optimal solution. Then, we took a different angle;
we looked at suboptimal strategies and their asymptotic perfor-
mance as the number of robots goes to infinity. We showed that
these strategies yield a constant approximation ratio when com-
pared with the true distance optimal solution. Many of these
decentralized strategies also provide computational advantages
over a centralized one.

We conclude the paper by discussing our choice on certain
elements that can be generalized in a future work.

Equal Number of Initial and Target Locations: In the prob-
lem statement we assume that |X0| = |Y 0|. If |X0| > |Y 0|,
some robots do not need to move and if |X0| < |Y 0|, some
robots may need to reach multiple targets, assuming that the
main goal is to serve the targets. Our result readily generalizes
to the case in which |X0|/|Y 0| is close to 1. When |X0| �
|Y 0|, it is likely that for a yi ∈ Y 0, there is a unique xi ∈ X0

that is closest to yi [1]. Moreover, for two different yi, yj ,
xi �= xj . The spatial assignment problem then degenerates to

finding the nearest robot for each y ∈ Y 0. When |X0| � |Y 0|,
the problem becomes a multiple salesmen version of the travel-
ing salesman problem (we have a standard traveling salesman
problem when |X0| = 1), which is an NP-hard problem. It
remains an interesting open question to investigate the middle
ground, i.e., |X0| = C|Y 0| for some constant C (for example
C ∈ [0.1, 10]).

Distribution of Initial and Target Locations: Although it
is beyond the scope of this paper, it would be interesting to
establish a lower bound on the optimal assignment distance for
arbitrary probability measures. Also, it would be interesting to
investigate the case in which the robots and the targets assume
different distributions. Another important aspect not covered in
this paper is the issue of targets distributed somewhat randomly
over time.

Minimizing Over Other Powers of the 2-Norm: On the side
of optimality measures, we note that Theorem 13 generalizes to
arbitrary powers of the Euclidean 2-norm [34]. That is, for

D∗
n,p := min

σ

n∑
i=1

∥∥∥x0
i − y0σ(i)

∥∥∥p
2

(23)

it holds true that

D∗
n,p ∼ n(log n/n)

p
2 . (24)

Theorem 13 corresponds to the special case of p = 1. As p →
∞, (23) minimizes the longest distance traveled by any robot.
This is true because for fixed X0, Y 0, and a sufficiently large p,
the largest ‖x0

i − y0σ(i)‖
p

2
becomes the dominating term in the

sum
∑n

i=1 ‖x0
i − y0σ(i)‖

p

2
. Although we restrict our attention to

p = 1 in this paper, our results readily extend to other values of
p (i.e., other optimality criteria) with (24). Note that this means
the Dn definition given by (5) needs to be updated accordingly
to an appropriately defined Dn,p.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers and
S. Har-Peled and A. Nayyeri for their constructive comments.

REFERENCES

[1] S. L. Smith and F. Bullo, “Monotonic target assignment for robotic
networks,” IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2042–2057,
Sep. 2009.

[2] J. Yu and S. M. LaValle, “Distance optimal formation control on graphs
with a tight convergence time guarantee,” in Proc. IEEE Conf. Decision
Control, 2012, pp. 4023–4028.

[3] D. P. Bertsekas, “The auction algorithm: A distributed relaxation method
for the assignment problem,” Annals Oper. Res., vol. 14, pp. 105–123,
1988.

[4] D. P. Bertsekas and D. A. Castañon, “Parallel synchronous and asyn-
chronous implementations of the auction algorithm,” Parallel Comp.,
vol. 17, pp. 707–732, 1991.

[5] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia, PA: SIAM, 2012.

[6] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” J. ACM, vol. 19, no. 2, pp. 248–
264, 1972.

[7] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Res. Logistics Quart., vol. 2, pp. 83–97, 1955.



YU et al.: TARGET ASSIGNMENT IN ROBOTIC NETWORKS 341

[8] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction
algorithm for the assignment problem,” in Proc. IEEE Conf. Decision
Control, 2008, pp. 1212–1217.

[9] M. Ji, S. Azuma, and M. Egerstedt, “Role-assignment in multi-agent
coordination,” Int. J. Assitive Robot. Mechatron., vol. 7, no. 1, pp. 32–
40, Aug. 2006.

[10] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 863–
868, 2007.

[11] K. Treleaven, M. Pavone, and E. Frazzoli, “Asymptotically optimal al-
gorithms for one-to-one pickup and delivery problems with applications
to transportation systems,” IEEE Trans. Autom. Control, vol. 59, no. 9,
pp. 2261–2276, 2013.

[12] M. M. Zavlanos and G. J. Pappas, “Dynamic assignment in distributed
motion planning with local coordination,” IEEE Trans. Robotics, vol. 24,
no. 1, pp. 232–242, 2008.

[13] S.-J. Chung, S. Bandyopadhyay, I. Chang, and F. Y. Hadaegh, “Phase
synchronization control of complex networks of Lagrangian systems on
adaptive digraphs,” Automatica, vol. 49, no. 5, pp. 1148–1161, 2013.

[14] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Trans. Robotics, vol. 22, no. 4, pp. 650–
665, 2006.

[15] V. Sharma, M. A. Savchenko, E. Frazzoli, and P. G. Voulgaris, “Transfer
time complexity of conflict-free vehicle routing with no communica-
tions,” Int. J. Robot. Res., vol. 26, no. 3, pp. 255–271, 2007.

[16] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment and
trajectory planning for large teams of aerial robots,” in Proc. Robotics:
Sci. Syst., 2013.

[17] J. Cortés, S. Martínez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,” IEEE
Trans. Autom. Control, vol. 51, no. 8, pp. 1289–1298, Aug. 2006.

[18] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, 2003.

[19] J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agent rendezvous
problem. Part 1: The synchronous case,” SIAM J. Control Optim., vol. 46,
no. 6, pp. 2096–2119, Nov. 2007.

[20] J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agent rendezvous
problem. Part 2: The asynchronous case,” SIAM J. Control Optim., vol. 46,
no. 6, pp. 2120–2147, Nov. 2007.

[21] F. Bullo, J. Cortés, and S. Martínez, Distributed Control of Robotic Net-
works. Princeton, NJ: Princeton Univ. Press, ser. Applied Mathematics
Series, 2009. [Online]. Available: http://coordinationbook.info

[22] F. Xue and P. R. Kumar, “The number of neighbors needed for connectiv-
ity of wireless networks,” Wireless Networks, vol. 10, no. 2, pp. 169–181,
Mar. 2004.

[23] P. Balister, B. Bollobás, A. Sarkar, and M. Walters, “Connectivity of
random k-nearest-neighbour graphs,” Adv. Appl. Prob., vol. 37, pp. 1–24,
2005.

[24] N. M. Freris, H. Kowshik, and P. R. Kumar, “Fundamentals of large sensor
networks: Connectivity, capacity, clocks and computation,” Proc. IEEE,
vol. 98, no. 11, pp. 1828–1846, Nov. 2010.

[25] A. Ganesh and F. Xue, “On the connectivity and diameter of small-world
networks,” Adv. Appl. Prob., vol. 39, pp. 853–863, 2007.

[26] G. Mao and B. D. O. Anderson, “Connectivity of large wireless networks
under a general connection model,” IEEE Trans. Inform. Theory, vol. 59,
no. 3, pp. 1761–1772, 2013.

[27] M. Penrose, Random Geometric Graphs. London, U.K.: Oxford Univ.
Press, 2003, ser. Oxford Studies in Probability.

[28] M. Penrose, “The longest edge of the random minimal spanning tree,”
Annals Appl. Prob., vol. 7, pp. 340–361, 1997.

[29] J. Yu, S.-J. Chung, and P. G. Voulgaris, “Distance optimal target assign-
ment in robotic networks under communication and sensing constraints,”
in Proc. IEEE Int. Conf. Robot. Autom., 2014, pp. 1098–1105.

[30] J. Yu, S.-J. Chung, and P. G. Voulgaris, “Traveled distance minimization
and hierarchical strategies for robotic networks,” in Proc. Int. Symp.
Commun., Control, Signal Processing, Special Session Modeling Control
Complex Netw., May 2014, pp. 491–496.
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