
A Portable, 3D-Printing Enabled Multi-Vehicle
Platform for Robotics Research and Education

Jingjin Yu Shuai Han Daniela Rus

Abstract—MICROMVP is an affordable, portable, and open
source micro-scale mobile robot platform designed for robotics
research and education. As a complete and unique multi-vehicle
platform enabled by 3D printing and the maker culture, MI-
CROMVP can be easily reproduced and requires little mainte-
nance: a set of six micro vehicles, each measuring 8 × 5 × 6
cubic centimeters and weighing under 100 grams, and the
accompanying tracking platform can be fully assembled in under
two hours, all from readily available components. In this paper,
we describe MICROMVP’s hardware and software architecture,
and the design thoughts that go into the making of the platform.
The capabilities of MICROMVP APIs are then demonstrated
with several single- and multi-robot path and motion planning
algorithms. MICROMVP supports all common operation systems.

I. INTRODUCTION

In this paper, we introduce an affordable, portable, and
open source multi-vehicle hardware and software platform,
MICROMVP1 (Fig. 1 (a)), for research and education ef-
forts requiring single or multiple mobile robots. MICROMVP
consists of highly compact micro-vehicles, a state tracking
camera system, and a supporting software stack. Each micro-
vehicle (Fig. 1 (b)) has a rigid 3D-printed shell allowing
the precise (snap-on) fitting of the essential components–the
Arduino-based vehicle measures less than 8-cm in length and
can be controlled wirelessly at a frequency of over 100Hz.
The external state-tracking system consists of a single USB
webcam for estimating the configurations of the vehicles (in
SE(2)). The overall system is capable of feedback control of
the entire vehicle fleet at a control update frequency of 30Hz
and above. The components in each vehicle costs less than
90 USD and the tracking platform costs about 80 USD. We
expect the cost of MICROMVP to drop significantly with the
release of future iterations of the platform.

We develop MICROMVP with both research and educa-
tion applications in mind. The relatively high accuracy of
MICROMVP with respect to its state estimation and control
capabilities renders the platform suitable as a testbed for
single- or multi-robot path and motion planning algorithms. As
examples, we demonstrate that MICROMVP can seamlessly in-
tegrate (i) centralized multi-robot path planning algorithms [1]

J. Yu is with the Department of Computer Science, Rutgers University
at New Brunswick. E-mail: jingjin.yu@cs.rutgers.edu. S. Han is with the
Department of Electrical Engineering, Rutgers University at New Brunswick.
E-mail: sh1067@scarletmail.rutgers.edu. D. Rus is with the Computer Science
and Artificial Intelligence Lab, the Massachusetts Institute of Technology. E-
mail: rus@csail.mit.edu.

1For convenience, we denote the overall system as MICROMVP, standing
for micro-scale Multi-Vehicle Platform.

Vehicle ID

Vehicle control

State tracking platform

Micro vehicle swarm

(a)

(b)

Figure 1. (a) An illustrative model of MICROMVP platform architecture.
Control signals are delivered to the vehicles wirelessly. The vehicle control
portion of the system is where users can inject desired control logic. (b) A
single fully assembled vehicle.

and (ii) distributed reciprocal velocity obstacle algorithms [2],
[3]. On the educational side, the affordability and portability of
MICROMVP makes it ideal for the teaching and self-education
of robotics subjects involving mobile robots. Moreover, the
platform requires little time commitment to reproduce and
maintain. The tracking platform requires minimal setup and
each vehicle can be built in under 20 minutes.

Related work and differentiation. Since a large number
of mobile robots have been produced with various capabilities
and we cannot hope to enumerate them all, here, we focus
on recent research- and education-centered ground mobile
robot platforms intended for multi-robot coordination and
collaboration tasks. Due in part to the rapid advances in
MEMS technology in recent years and the related maker

ar
X

iv
:1

60
9.

04
74

5v
1 

 [
cs

.R
O

] 
 1

5 
Se

p 
20

16



movement2, it becomes increasingly feasible for robotics re-
searchers, educators, and hobbyists alike to produce highly
capable mobile robots at lower costs. Representative ones
include the e-pucks educational robots [4], kilobots collective
mobile robots [5], the duckiebot autonomous mobile robots3,
and Robotarium [6]. The e-puck robots [4] are differential
drive robots (DDR) with two independent motor thrust input.
An e-puck robot measures 7cm in diameters and weighs about
200 grams. It hosts an array of sensors including microphone
arrays, proximity sensors, accelerometers, and so on. Kilobots
[5] are smaller coin sized robots that locomote via vibration
(over smooth surfaces), making them ideal for experimenting
with collective behavior that frequently found in nature [7].
The duckiebots present a recent attempt from MIT for teaching
students about autonomous driving with hands on experience.
Robotarium is a recent NSF funded effort at GeorgiaTech that
intended as a remote-accessible, extensive robotics testbed,
which includes a multi-vehicle platform with inch-sized DDR
vehicles.

(a) (b)

(c) (d)

Figure 2. A few popular mobile multi-robot platforms. (a) E-pucks. (b)
Kilobots collective robots. (c) A duckiebot in a duckietown. (d) A DDR self-
recharging robot in the Robotarium project.

Each of the above-mentioned mobile robot platforms has
its particular strengths. However, when it comes to robot
path planning, these platforms also have their limitations.
For example, e-pucks are compact and capable, but they are
expensive to acquire and maintain, costing 1K+ USD each.
kilobots, great for swarm-related studies, are not “garden
variety” mobile robots, making them unsuitable for multi-robot
path planning experiments. Platforms like Duckiebots and
Robotarium’s also have their drawbacks (e.g., larger footprint
and limited accessibility, respectively). To address our own
research and education needs, and seeing the limitations of
existing solutions for the general task of single- and multi-
robot path planning, we developed MICROMVP for filling the
gap as a capable, affordable, portable, readily available, and

2https://en.wikipedia.org/wiki/Maker culture
3http://duckietown.mit.edu/

low maintenance multi-vehicle platform.
Contributions. MICROMVP is a capable, simple, affordable

mobile robot platform with a very small footprint. First and
most importantly, as we will demonstrate, MICROMVP is
highly capable as an experimental platform for both central-
ized and distributed multi-robot planning and coordination
tasks. Secondly, it presents a solution that is fairly portable
and compact, suitable for showcasing multi-robot systems in
action in limited space, making it ideal for both research
and education. Last but not least, MICROMVP’s open source
design, utilizing the latest 3D printing technology, is extremely
simple and robust. Significant care is also taken to ensure that
only readily available components are used, which makes MI-
CROMVP a truly readily reproducible mobile robot platform.

The rest of the paper are organized as follows. In Section II,
we describe the hardware architecture of MICROMVP, fol-
lowed by a summary of thoughts going into the design of the
software stack in Section III. We highlight the applications
and capabilities of MICROMVP in Section IV and conclude
in Section V. We note that this paper describes mainly
MICROMVP’s design philosophy and capabilities. Additional
details of the system, including component acquisition, assem-
bly instructions, API interfaces, examples, can be found at
http://cs.rutgers.edu/∼jy512/mvp/ or http://bit.ly/2cHWZTx.

II. PLATFORM ARCHITECTURE AND DESIGN

The main goal in designing MICROMVP is to optimally
combine portability and availability. Availability further en-
tails affordability, component availability, and low system
assembly and maintenance time. To reach the design target,
we explored a large number of micro controller families
(Arduino, mbed, and Raspberry Pi), wireless technology (wifi,
zigBee, and Bluetooth), motors and motor controllers, overall
vehicle design (3D printing, laser cut machining, and off-the-
shelf kits), and tracking technology (infrared-marker, fiducial
marker). We eventually fixated on the design choice of using
Arduino/zigBee for communication and control, plastic gear
motors for mobility, and fiducial marker for system tracking.

MICROMVP has two main components: (i) a 3D-printing
enabled micro-vehicle fleet and (ii) a fiducial marker tracking
system for vehicle state estimation. Figure 1 illustrates the
platform architecture (with 6 vehicles, additional vehicles
can be readily added without additional infrastructure) and
provides a picture of a single fully assembled vehicle. The
general architecture of MICROMVP is rather straightforward:
the web-cam based sensing system continuously query the
configuration of the vehicles, upon which planning decisions
are made and translated into control signals that are relayed
wirelessly to the vehicles. MICROMVP can run the feedback
control loop at a frequency of up to 100Hz, or as high as
limited by the frames-per-second (fps) rating of the camera’s
capture mode. For webcams, this is normally 30fps or 60fps.
In what follows, we describe the design of the individual
components of MICROMVP in more detail.

https://en.wikipedia.org/wiki/Maker_culture
http://duckietown.mit.edu/
http://cs.rutgers.edu/~jy512/mvp/
http://bit.ly/2cHWZTx


A. 3D-Printing Enabled Micro-Scale Vehicles

We design the vehicle to be small, affordable, reliable, and
easily reproducible. To reach the design goal of reliability
while maintaining simplicity, the vehicle is built around the
proven zigBee Series 1 (Fig. 3(b)) as the wireless communica-
tion module (zigBees are frequently found in research drones).
For actuation, two micro gear motors (Fig. 3(d)) are connected
to Pololu DRV8835 dual motor driver carrier (Fig. 3(c)). Then,
the zigBee module, the motor driver carrier, and a 400mAh
3.7v Li-ion battery are fitted to a Sparkfun fio v3 board
(Fig. 3(a)) which is Arduino compatible. In additional to built-
in zigBee support, the fio v3 board allows direct charging of
the battery, a convenient feature. To put things together, all
components are snapped into a 3D printed plastic shell and
wheels are attached to the motors. The use of 3D printing
is essential in the design phase, allowing both the precise
fitting of the components and a quick screw-less assembly.
Finally, a small caster wheel is attached to reduce the friction
of the vehicle, completing the vehicle hardware (Fig. 1(b)),
which measures less than 8cm× 5cm× 6cm and weighs just
below 100 grams. A fully charged battery allows the vehicle to
operate continuously for about one and half hours. Recharging
on a standard 0.5A USB port takes less than one hour.

(a) (b)

(c) (d)

Figure 3. Key components of the vehicle, minus the 3D printed shell,
the battery and the wheels. (a) Sparkfun fio v3 board with built-in xBee
support (socket on the back). (b) An XBee (Series 1) module with built-in
trace antenna. (c) Pololu DRV8835 motor driver. (d) Pololu 120:1 plastic gear
motor.

The components of the vehicle cost less than 90 USD in
total (please refer to the project website for a list of individual
components and their costs). Excluding the time required for
3D printing of the vehicle shell, it takes less than 20 minutes
to assemble the vehicle. All that is required is to solder a few
wires, glue together a few things, and snap them together. We
tested the vehicles over a variety of flat surfaces commonly
found in classrooms, offices and labs, including wood floors,

thin carpets, vinyl floors, and concrete slabs. We could verify
that the vehicles do not need special surfaces to operate. The
top speed of the vehicles is relatively uniform on different
surfaces with the exception of carpeted surface, where the top
speed is reduced as the thickness of the carpet increases.

B. Camera Platform for Vehicle Tracking

MICROMVP uses a single USB camera (we selected the
Logitech C920, 1920× 1080 max resolution) for tracking the
SE(2) configurations of the vehicles. The camera is mounted
to a microphone stand with a tripod base and adjustable height.
The cost-effective setup, with the camera mounted at a height
about 1m and facing down, establishes an approximately
1.5m × 0.9m rectangular workspace for the vehicles at the
ground level. The camera platform can comfortably accom-
modate 1 to 20 vehicles depending on the application. For
vehicle tracking, after evaluating several open source fiducial
marker based tracking package, we opted for chilitags4 as the
baseline platform for tracking vehicle states. This requires the
fixture of markers on the vehicles, for which we used a marker
size of 3.5cm×3.5cm (without the extra white borders; some
borders must be included for good tracking quality).

C. Computation Hardware

As illustrated in Fig. 1, MICROMVP system requires two
pieces of enabling computation: tracking and control. We note
that, Fig. 1 includes two computers to suggest that the system
is rather modular, i.e., the tracking and the control are easily
separated. The computation, however, can be carried out using
a single multi-core commodity PC.

III. SOFTWARE STACK AND API

Our design on the software side of MICROMVP seeks
to maximize modularity, simplicity, and cross-platform com-
patibility. Modularity enables flexibility in hardware setup
and more importantly, extends the capability of the system.
Simplicity and cross-platform compatibility are essential for
any system aimed at mass adoption, especially for educa-
tional purposes. Below, we briefly describe how MICROMVP
achieves these design goals in its software stack and applica-
tion programming interface (API) implementation. For cross-
platform and rapid development support, we chose Python
as the language for developing the API, which has a state
estimation component and a vehicle control component.

A. Vehicle State Estimation

For state estimation, to extract the configurations of the
vehicles in SE(2) (i.e., R2×S1), we attach a 3.5cm×3.5cm
chilitags fiducial marker on the top of the micro vehicles so
that the front side of the tag is aligned with the front of the
car and the center of tag overlaps the mid point between the
two motor axles (see Fig. 4).

The chilitags library provides open source APIs for ex-
tracting tags locations from images. The reported tag location
(e.g., the (x, y) coordinates of the four corners of a tag

4https://github.com/chili-epfl/chilitags

https://github.com/chili-epfl/chilitags


Figure 4. A vehicle with a chilitags fiducial marker (tag) attached.

within a raster image), combined with known physical size
of the tag and known camera orientation/calibration, allows
the estimation of the SE(3) position and orientation of the
tags. As vehicles in MICROMVP live on the floor, there is no
need to extract the SE(3) configurations of the tags; SE(2) is
sufficient. For continuous image acquisition through the USB
camera, one may use OpenCV (Open Source Computer Vision
Library) [8]. With a calibrated camera and the right parameters
(e.g., exposure, white balance, and so on), we are able to track
50 tags simultaneously at 30 frames per second and rarely miss
any of the tags. It appears that the limiting factor with respect
to the frame rate of the system mainly hinges on the frame
rate of the USB camera.

To allow user of MICROMVP access to the tags’ 2D config-
urations, we adapt a queuing architecture much like “topics” in
the Robotic Operation System (ROS). More specifically, we
use a publisher-subscriber model from ZeroMQ 5 to deliver
vehicle position data over the network. An end user may
asynchronously request in Python, in a thread-safe manner,
the latest vehicle positions in SE(2) either for all vehicles or
for a subset of vehicles.

B. Vehicle Control

Suppose that an end user has made control decisions for
each vehicle in a vehicle swarm, in the form of thrusts for the
wheels. MICROMVP provides a Python interface that allows
the direct delivery of such control input to the desired vehicle.
To realize this, a simple data transfer protocol is developed
to operate over an automated zigBee link between the control
computer and the individual vehicles. The zigBee modules all
operate in the same mode and form a communication graph
that is a complete graph, although the effective communication
graph is a directed star graph because vehicles only receive
data from the control computer and do not send any data. On
the vehicle side, the Arduino-based Fio v3 board continuously
monitor the zigBee serial interface for new input. As it turns
out, the zigBee interface can sometimes become unreliable, a
behavior that must be compensated through software. Through
a careful implementation, we were able to reliably deliver

5http://zeromq.org/

motor thrusts to 14 vehicles at a frequency of 50Hz. We note
that, a feedback loop running at 10Hz is generally sufficient
for controlling these micro vehicles.

We note here that in addition to basic control APIs that
allow sending motor thrusts to the vehicles, MICROMVP
also supplies many high level APIs that relieve the user
from tedious tasks such as synchronous path following (see
Section IV).

C. Additional Features and Extensions

MICROMVP comes with many additional features and ex-
tensions. We mention a few such possibilities here.

Multi-platform support. In the development of MICROMVP,
we made a conscious effort to build a software stack that
is inherently multi-platform friendly. In addition to selecting
Python as the language for development, the libraries that we
use all have cross-platform support.

Vehicle simulation. The vehicle that we developed is in-
herently a differential drive robot, the configuration transition
equation of which may be represented as [9]

ẋ =
r

2
(ul + ur) cos θ

ẏ =
r

2
(ul + ur) sin θ

θ̇ =
r

L
(ur − ul),

(1)

in which r is the wheel radius, ur and ul are the control
input to the right and left wheels, respectively, and L is
the distance between the two wheels’ centers. (x, y, θ) is the
SE(2) configuration of the vehicle.

It is relatively straightforward to simulate other vehicle
motion models with DDR. As an example, looking at Dubin’s
Car [9], e.g.,

ẋ = v0 cos θ
ẏ = v0 sin θ

θ̇ = ω0u, u ∈ [−1, 0, 1],
(2)

in which v0 and ω0 are some constant line and angular
velocity, respectively, we observe that (1) may readily simu-
late (2). Similarly, other vehicle types including Reeds-Shepp
car, simple car, unicycle, can all be simulated using a DDR
vehicle.

Enhanced portability. The entire MICROMVP platform can
be put in a small box minus the camera stand. On the side
of computation, it is possible to run both vehicle tracking
and vehicle control on the same computer, suggesting that the
entire system is highly portable. Alternatively, one may choose
to offload the vehicle tracking computation to a dedicated
system with minimal footprint. As a proof of concept, we
have tested running the system on a Raspberry Pi 2 model B
and could confirm that is has full functionality.

ROS integration. MICROMVP, given that its source is open,
can be readily adapted to work with ROS. In particular, the
ZeroMQ based message queuing can be replaced with ROS
topics. Similarly, vehicle control can also be packaged into a

http://zeromq.org/


topic-based launch module. Due to the relatively large foot-
print of ROS installation and our design goals, MICROMVP
is made independent of ROS.

IV. CAPABILITIES AND APPLICATIONS OF MICROMVP

After describing the hardware and software structures of
MICROMVP, we provide several application scenarios demon-
strating the capability of MICROMVP. We note that some of
these capabilities, for example path following, are also part of
MICROMVP APIs that an end user may readily use. A Python-
based control graphical user interface (GUI) (see Fig. 5 for
a snapshot of the GUI and the the corresponding hardware
experiment in action) tracks and displays the locations of the
vehicles in real-time.

(a)

(b)

Figure 5. A snapshot of the Python GUI (a) and MICROMVP hardware
platform (b) in action with six moving vehicles. Note that significant glare is
present, which MICROMVP can deal with quite well.

We highlight four application scenarios: (i) arbitrary path
following for an “active” vehicle, (ii) synchronized path fol-
lowing, (iii) running distance optimal multi-robot path plan-
ning algorithms over a hexagonal grid, and (iv) distributed path
planning using reciprocal velocity obstacles. GUI snapshots of
these scenarios are provided in Fig. 6. All these scenarios are
included in the accompanying video, also available at https:
//youtu.be/n9DOtgHHyGY. We intentionally shot the video
as a real-time long take with no editing to demonstrate the
reliability and robustness of MICROMVP when transitioning
between different scenarios.

(a)

(b)

(c)

(d)

Figure 6. Snapshots of the GUI for different scenarios. (a) Vehicles following
arbitrary paths hand-drawn by the end user. (b) Vehicles in formation,
synchronously moving along the same circle. (c) Experiment demonstrating
the execution of a distance-optimal multi-robot path planning algorithm. (d)
Vehicles coordinating using speed profiles generated by reciprocal velocity
obstacle (RVO).

A. Path Following

MICROMVP has built-in support for waypoint-based path
tracking and following. At the single vehicle level, we adopt
the pure pursuit [10], [11] algorithm that computes the desired
curvature for a given look-ahead distance (see Fig. 7). The
curvature then translates to desired motor thrusts, allowing the
vehicle to follow the input path (Fig. 6(a)).

In a multi-vehicle setup, several issues must be considered
in MICROMVP: (i) the low-priced motors are inherently
inaccurate in mapping input motor thrusts to output rotational
speeds, (ii) uneven drag on the ground, (iii) camera lens

https://youtu.be/n9DOtgHHyGY
https://youtu.be/n9DOtgHHyGY


`

Figure 7. Illustration of the pure pursuit algorithm for path following. Given
an arbitrary curve defined by waypoints, the pure pursuit algorithm locates the
first way point on the curve that is of some fixed distance ` from the vehicle
location. Then, a circle is computed that goes through the vehicle location
and the fixed waypoint. The circle is also required to be tangential to the
vehicle’s current heading. The vehicle then attempts to follow the curvature
of determined by this circle by adjusting thrusts sent to its wheels.

induced workspace distortion, (iv) path curvature induced
linear speed mismatch, and (v) motor speed variation due
to battery drain variations. In computing motor thrusts for
achieving desired curvature, MICROMVP limits the maximum
thrust for each wheel motor at roughly 70% of the maxi-
mum possible. This design choice leaves flexibility when it
comes to synchronizing the movements of multiple vehicles.
Roughly speaking, using waypoints with attached timestamps,
MICROMVP dynamically adjust the maximum allowed motor
thrusts, speeding up vehicles that fall behind and slowing down
the ones that are ahead. With this mechanism, MICROMVP
allows vehicles to accurately perform synchronized “dance
moves” (Fig. 6(b)).

B. Optimal Multi-Robot Path Planning

To further verify the synchronous path following capabil-
ity of MICROMVP, we integrated the optimal graph-based
multi-robot path planning algorithm [1] into MICROMVP.
Specifically, we tested the algorithm MINMAXDIST that min-
imizes the maximum distance traveled by any vehicle over a
hexagonal grid. The size of the grid is determined using the
vehicle footprint (see [12]). For randomly generated goals for
the fully distinguishable vehicles, we employ MINMAXDIST
to compute the paths, turn them into waypoint-based, time-
synchronized trajectories, and then invoke the pure pursuit
based path following API of MICROMVP to track these
trajectories (Fig. 6(c)).

C. Reciprocal Velocity Obstacles

MICROMVP also supports the distributed reciprocal ve-
locity obstacle (RVO) based path planning algorithms. With
minimal effort, we were able to integrate MICROMVP with
the RVO2 library [2], [3]. Because RVO produces velocity
profiles, we derive current vehicle velocities from vehicle
locations. Then, the desired output velocities are simulated for
a few steps to generate a set of paths with time synchronized
waypoints. We may then invoke path following capability of
MICROMVP to track these paths repeatedly (Fig. 6(d)).

V. CONCLUSION AND FUTURE WORK

In this paper, we summarized the design, implementation,
and capabilities of MICROMVP. MICROMVP is intended to

serve as a testbed for multi-robot planning and coordination al-
gorithms and as an educational tool in the teaching of robotics
subjects including mobile robots and multi-robot systems.
Enabled by 3D-printing and the maker culture, MICROMVP is
highly portable, readily affordable, low maintenance, and yet
highly capable as an open source multi-vehicle platform.

MICROMVP will be continuously improved in its current
and future iterations. On the hardware side, with the rapid
development of IC technologies and improved design, the
vehicles will become smaller, more accurate, and at the same
time more affordable. In particular, we expect the release
of a smaller vehicle costing around 50 USD in in the near
future. We will also add on-board sensing capabilities to the
vehicles while maintaining the platform’s affordability. On
the software side, to improve the accuracy of vehicle state
estimation, we are working on a Extended Kalman Filter
(EKF) to improve the sensing accuracy. Additional vehicle
control APIs, including high level path planning with obstacle
avoidance, will also be added to MICROMVP. Last, with
this open source effort, we hope to solicit designed from all
interested parties to make MICROMVP a community-based
effort that help promote robotics research and education.

REFERENCES

[1] J. Yu and S. M. LaValle, “Optimal multi-robot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, to appear.

[2] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in Proceedings IEEE
International Conference on Robotics & Automation, 2008, pp. 1928–
1935.

[3] J. Snape, S. J. Guy, J. van den Berg, and D. Manocha, “Smooth
coordination and navigation for multiple differential-drive robots,” in
Experimental Robotics. Springer, 2014.

[4] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-puck,
a robot designed for education in engineering,” in Proceedings of the 9th
conference on autonomous robot systems and competitions, vol. 1, no.
LIS-CONF-2009-004. IPCB: Instituto Politécnico de Castelo Branco,
2009, pp. 59–65.

[5] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal, “Kilobot:
A low cost robot with scalable operations designed for collective
behaviors,” Robotics and Autonomous Systems, vol. 62, no. 7, pp. 966–
975, 2014.

[6] D. Pickem, L. Wang, P. Glotfelter, Y. Diaz-Mercado, M. Mote, A. Ames,
E. Feron, and M. Egerstedt, “Safe, remote-access swarm robotics re-
search on the robotarium,” arXiv preprint arXiv:1604.00640, 2016.

[7] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral
model,” Computer Graphics (ACM SIGGRAPH 87 Conf. Proc.), vol. 21,
pp. 25–34, 1987.

[8] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[9] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, also available at http://planning.cs.uiuc.edu/.

[10] R. Wallace, A. Stentz, C. E. Thorpe, H. Maravec, W. Whittaker, and
T. Kanade, “First results in robot road-following.” in IJCAI, 1985, pp.
1089–1095.

[11] R. C. Coulter, “Implementation of the pure pursuit path tracking algo-
rithm,” DTIC Document, Tech. Rep., 1992.

[12] J. Yu and D. Rus, “An effective algorithmic framework for near optimal
multi-robot path planning,” in Proceedings International Symposium on
Robotics Research, 2015.

https://github.com/itseez/opencv
https://github.com/itseez/opencv

	I Introduction
	II Platform Architecture and Design
	II-A 3D-Printing Enabled Micro-Scale Vehicles
	II-B Camera Platform for Vehicle Tracking
	II-C Computation Hardware

	III Software Stack and API
	III-A Vehicle State Estimation
	III-B Vehicle Control
	III-C Additional Features and Extensions

	IV Capabilities and Applications of microMVP
	IV-A Path Following
	IV-B Optimal Multi-Robot Path Planning
	IV-C Reciprocal Velocity Obstacles

	V Conclusion and Future Work
	References

