
IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015 521

Persistent Monitoring of Events With Stochastic
Arrivals at Multiple Stations

Jingjin Yu, Member, IEEE, Sertac Karaman, Member, IEEE, and Daniela Rus, Fellow, IEEE

Abstract—This paper introduces a new mobile sensor scheduling
problem involving a single robot tasked to monitor several events of
interest that are occurring at different locations (stations). Of par-
ticular interest is the monitoring of transient events of a stochastic
nature, with applications ranging from natural phenomena (e.g.,
monitoring abnormal seismic activity around a volcano using a
ground robot) to urban activities (e.g., monitoring early formations
of traffic congestion using an aerial robot). Motivated by examples
like these, this paper focuses on problems in which the precise oc-
currence times of the events are unknown a priori, but statistics for
their interarrival times are available. In monitoring such events,
the robot seeks to: 1) maximize the number of events observed
and 2) minimize the delay between two consecutive observations
of events occurring at the same location. This paper considers the
case when a robot is tasked with optimizing the event observations
in a balanced manner, following a cyclic patrolling route. To tackle
this problem, first, assuming that the cyclic ordering of stations
is known, we prove the existence and uniqueness of the optimal
solution and show that the solution has desirable convergence rate
and robustness. Our constructive proof also yields an efficient algo-
rithm for computing the unique optimal solution with O(n) time
complexity, in which n is the number of stations, with O(log n)
time complexity for incrementally adding or removing stations. Ex-
cept for the algorithm, our analysis remains valid when the cyclic
order is unknown. We then provide a polynomial-time approxi-
mation scheme that computes for any ε > 0 a (1 + ε)-optimal
solution for this more general, NP-hard problem.

Index Terms—Optimization, persistent monitoring, Poisson
process, surveillance, stochastic events.

I. INTRODUCTION

AN avid documentary maker would like to observe several
species of birds. Each species can be seen only at a par-

ticular location. Unfortunately, it is impossible to predict when
exactly a bird will be seen at a sighting location. Hence, the
documentary maker must wait in a hiding spot for the birds to
appear. To the advantage of our documentary maker, past ex-
perience has furnished her with statistics of sighting times for

Manuscript received September 4, 2014; accepted February 28, 2015. Date
of publication March 26, 2015; date of current version June 3, 2015. This
paper was recommended for publication by Associate Editor V. Isler and Editor
D. Fox upon evaluation of the reviewers’ comments. This work was supported
by ONR projects N00014-12-1-1000 and N00014-09-1-1051, the Singapore–
MIT Alliance on Research and Technology (SMART) Future of Urban Mobility
project, and the AFOSR Dynamic Data-Driven Application Systems Program
under Grant FA9550-14-1-0399.

J. Yu and D. Rus are with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: jingjin@csail.mit.edu; rus@csail.mit.edu).

S. Karaman is with the Department of Aeronautics and Astronau-
tics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: sertac@mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2015.2409453

Fig. 1. (a) One of many potential applications of our persistent monitoring
formulation, in which an UAV (robot) is given the task of continuously observing
randomly occurring events at a set of fixed locations (the surface areas under
the cones). The sizes of the discs represent the relative arrival rates of stochastic
events at the locations. (b) Illustration of the underlying geometric problem
setting. At each point of interest, say location (station) i, events arrive following
a Poisson process with intensity λi . It takes a robot τi,j time to move from
station i to station j , during which no observation can be made. The associated
plots roughly capture the (exponential) distributions of event arrivals associated
with the stations.

each location. Given this information, the documentary maker
would like to split her time between the locations, waiting
to capture photos of bird sightings. While splitting her time,
the documentary maker has two objectives. First, she would
like to maximize the number of sightings. Second, she would
like to minimize the delay between two consecutive sightings
of the same species. Most importantly, our documentary maker
is committed to striking a balance among the species. In other
words, she would like to maximize the number of sightings and
minimize the delay between two consecutive sightings, for all
species all at the same time.

The bird documentary maker example captures the essential
elements of the problem studied in this paper. More formally,
consider a single robotic vehicle tasked with monitoring stochas-
tic and transient events that occur at multiple locations (see,
e.g., Fig. 1). Unable to predict exactly when an event happens,
the robot must travel to a particular location and wait for the
event to occur. Limited by a single robot, its schedule1 must be

1In this paper, schedule and policy are used interchangeably.

1552-3098 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

522 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

optimized to ensure that all locations are observed equally well
as best as possible, i.e., in a balanced manner, according to the
following objectives: 1) ensure that a large number of events are
observed at each location; and 2) ensure that the delay between
two observations of events at any given location is minimized.
Optimizing these objectives in a balanced manner gives rise to a
multiobjective mobile sensor scheduling problem. This paper is
concerned with the mathematical analyses and algorithmic ap-
proaches for this complex multiobjective optimization problem.

The problem we study is applicable to a broad set of practical
scenarios, including surveillance and reconnaissance, and scien-
tific monitoring. The events of interest include natural phenom-
ena (e.g., volcanic eruptions and early formations of blizzards,
hailstorms, and tsunamis), biological disasters (e.g., early for-
mations of epidemic diseases on animal or plant populations),
military operations (e.g., terrorist attacks), among others. The
key common characteristic of these events is that their pre-
cise time of occurrence cannot be easily forecast, although the
statistics regarding how often they occur may be available, for
example, from past experience. Hence, the data-collecting robot
must wait at the location of interest to capture the event once
it occurs. Then, the fundamental scheduling problem is to de-
cide how much time the robot should spend at each location to
achieve various objectives, such as those described above. Our
main theoretical result is that this complex multiobjective mo-
bile sensor scheduling problem can be reduced to a quasi-convex
optimization problem, which implies efficient algorithms for
computing optimal solutions. In particular, globally optimal or
near-optimal solutions can be computed in time polynomial in
the number of locations.

Related work: Broadly speaking, persistent monitoring prob-
lems appear naturally whenever only limited resources are avail-
able for serving a set of spatially dispersed tasks. Motivated by a
variety of potential applications, such as aerial [1] and underwa-
ter [2] data collection, many researchers have studied persistent
monitoring problems [3]–[11]. In [3], the authors consider a
weighted latency measure as a robot continuously traverses a
graph, in which the vertices represent the regions of interest and
the edges between the vertices are labeled with the travel time.
They present an O(log n)-approximation algorithm for the pro-
posed problem. In [4], a memoryless control policy is designed
to guide robots modeled as controllable Markov chains to max-
imize their monitoring area while avoiding hazardous areas. In
[5], the authors consider a persistent monitoring problem for a
group of agents in a 1-D mission space. They show that this
problem can be solved by parametrically optimizing a sequence
of switching locations for the agents.

The coordination and surveillance problem for multiple un-
manned aerial vehicles is addressed in [6] and [9]. Coordination
among aerial and ground vehicles is further explored in [7]. A
random sampling method that generates optimal cyclic trajec-
tories for monitoring Gaussian random field is presented in [8].
The problem of generating speed profiles for robots along pre-
determined closed paths for keeping bounded a varying field is
addressed in [10]. The authors characterized policies for both
single and multiple robots. In [11], decentralized adaptive con-

trollers were designed to morph the initial closed paths of robots
to focus on regions of high importance.

In contrast with the references cited above, the problem stud-
ied in this paper focuses on transient events at discrete locations,
emphasizing unknown arrival times (but known statistics). Since
an event is only observable at discrete locations, the event arrival
times being unknown forces the robot to wait at each station to
observe the events of interest. Waiting at a station then intro-
duces delay at other stations. This stochastic event model links
our work to stochastic vehicle routing problems such as the
dynamic traveling repairman problem studied in [12] and [13],
among others. Whereas the problem we consider can be viewed
as a vehicle routing problem, our main focus is not on capturing
all events, but rather collecting a reasonable amount of events
across the locations in a balanced manner, penalizing large gaps
between observations at the same location.

Persistent surveillance problems are intimately connected to
coverage problems. Coverage of a 2-D region has been exten-
sively studied in robotics [14]–[16], as well as in purely geo-
metric settings. For example, in [17], the proposed algorithms
compute the shortest closed routes for continuous coverage of
polygonal interiors under an infinite visibility sensing model.
Coverage with limited sensing range was also addressed [18],
[19]. If the environment to be monitored has a 1-D structure,
discrete optimization problems, such as the traveling salesmen
problem (TSP), often arise [3]. In most coverage problems, in-
cluding those cited above, the objective is to place sensors in
order to maximize, for example, the area that is within their
sensing region. The persistent surveillance problem we study in
this paper is a special case, in which limited number of sensors
do not allow extensive coverage; hence, we resort to mobility in
order to optimize the aforementioned performance metrics.

Persistent monitoring problems are also related to (static) sen-
sor scheduling problems (see, e.g., [20]–[22]), which are usually
concerned with scheduling the activation times of sensors in or-
der to maximize the information collected over a time-varying
process. The problem considered in this paper involves a mobile
sensor that can travel to each of the locations, in which the ad-
ditional time required to travel between stations is nonzero. The
mobile sensor scheduling literature is also rich. For instance, in
[23], the authors study the control of a robotic vehicle in order to
maximize data rate, while collecting data stochastically arriving
at two locations. The problem studied in this paper is a novel
mobile sensor scheduling problem involving several locations
and a multiobjective performance metric that includes both the
data rate and the delay between consecutive observations.

Contributions: The contributions of this paper can be sum-
marized as follows. First, we propose a novel persistent moni-
toring and data collection problem, with the unique feature that
the precise arrival times of events are unknown a priori, but
their statistics are available. Combined with the assumption that
the events are generated at distributed discrete locations, the
stochastic event model allows our formulation to encompass
many practical applications in which the precise occurrence
times of the events of interest cannot be forecast easily. Second,
we prove that this fairly complex multiobjective mobile sensor

YU et al.: PERSISTENT MONITORING OF EVENTS WITH STOCHASTIC ARRIVALS AT MULTIPLE STATIONS 523

TABLE I
LIST OF FREQUENTLY USED SYMBOLS AND THEIR INTERPRETATIONS

λi Arrival rate of the Poisson process at station i

τi , j Travel time from station i to station j

π Cyclic policy of the form ((k1 , t1), . . . , (kn , tn)), in which
ti is the time spent by the robot at station ki , 1 ≤ ki ≤ n , in
one policy cycle, or of the form (t1 , . . . , tn) when ki = i

Ji (π) An objective function to be optimized
T Total time incurred by a policy cycle
T t r Total travel time per policy cycle
To b s T − T t r , total observation time per policy cycle
σ 1/(

∑ n
i = 1 (1/λi)), the harmonic sum of λi ’s

γi σ/λi = 1/(λi

∑ n
j = 1 (1/λj))

Ni (π) The number of events collected at station i in one period of the
policy π

Ti (π) The time between two consecutive event observations at station
i containing travel to other stations, for the policy π

P r(e) Probability of an event e

E[X] Expected value of a random variable X

αi (π) E[Ni (π)]/
∑ n

j = 1 E[Nj (π)]
Π arg maxπ min i αi (π)

scheduling problem admits a unique globally optimal solution
in all but rare degenerate cases. The optimal solution is also
shown to have desirable convergence property and robustness.
Moreover, the unique policy can be computed extremely effi-
ciently when the station visiting order is predetermined. The
policy can also efficiently computed to be (1 + ε)-optimal, for
arbitrarily small ε > 0, when the visiting order is not given
a priori. At the core of our analysis is a key intermediate re-
sult that reduces the mobile sensor scheduling problem to a
quasi-convex optimization problem in one variable, which is of
independent interest.

This paper builds on [24] and significantly generalizes it in the
following aspects: 1) In addition to existence, solution unique-
ness is now established; 2) convergence and robustness results
are introduced and thoroughly discussed to render the study
more complete; 3) a polynomial-time approximation algorithm
is provided that solves the more general problem when the cyclic
ordering of stations is unknown a priori; and 4) extensive com-
putational experiments are added to confirm our theoretical de-
velopment as well as to provide insights into the structure of the
proposed optimization problem.

The rest of this paper is organized as follows. In Section II,
we provide a precise definition of the multiobjective persistent
monitoring problem that we study. Starting with the assump-
tion that the stations’ cyclic order is known, we prove existence
and uniqueness of optimal solutions to this slightly restricted
problem in Section III. We further explore the convergence and
robustness properties of optimal solutions in Section IV. In Sec-
tion V, we deliver algorithmic solutions for the multiobjective
optimization problem with and without a predetermined station
visiting order and characterize their computational complexity.
We present and discuss computational experiments in Section
VI and conclude the paper in Section VII. Frequently used sym-
bols are listed in Table I.

II. PROBLEM STATEMENT

Consider a network of n stations or sites that are spatially
distributed inR2 . At each station, interesting but transient events

may occur at unpredictable time instances. The arrival times of
events at a station i, 1 ≤ i ≤ n, are assumed to follow a Poisson
process with a known (mean) arrival rate or intensity λi , with
a unit of number of events per hour. The event arrival processes
are assumed to be independent between two different stations.
Let there be a mobile robot that travels from station to station.
The robot is equipped with on-board sensors, such as cameras,
that allow the robot to record data containing the stochastic
events occurring at the stations. Let τi,j denote the time it takes
the robot to travel from station i to station j. We assume that
τi,j is proportional to the Euclidean distances between stations
i and j.

We want to design cyclic policies to enable optimal data col-
lection, according to the objectives described in the introduction.
A precise definition of these objectives will follow shortly. In a
cyclic policy, the robot visits the stations in a fixed (but unknown
a priori) cyclic order and waits at each station for a fixed amount
of time to collect data. The solution scheduling policy then takes
the form π = ((k1 , t1), . . . , (kn , tn)) in which ki’s specify the
visiting order of the robot and ti describes the waiting time of
the robot at station ki .

Remark. Having fixed waiting time suggests that the policy
is an open-loop (i.e., no feedback) policy. We note that such
policies are of practical importance. For example, it may be the
case that an aerial mobile robot only has limited energy or com-
puting power to process the data (e.g., a large number of video
streams) it collects. Similarly, an underwater robot gathering
plankton samples may not have on-board equipment to analyze
the collected samples. As another example, the transportation of
the data collection equipment can be a nontrivial task, which re-
quires that the travel schedule to be prearranged. In yet another
example, in certain scenarios, it may even be desirable not to al-
low the robot to have immediate semantic understanding of the
collected data due to security reasons such as hacking preven-
tion. �

Given a policy π, we define its period as

T :=
n−1∑

i=1

τki ,ki + 1 + τkn ,k1 +
n∑

i=1

ti .

For convenience, let Ttr :=
∑n−1

i=1 τki ,ki + 1 + τkn ,k1 be the total
travel time per policy cycle and Tobs :=

∑n
i=1 ti = T − Ttr be

the total observation time per policy cycle. Let Ni(π) denote
the number of events observed at station ki in one cycle. For the
first objective, seeking to ensure maximal and equal priorities
are allocated to all stations, we maximize the fraction of events
observed at each station in a balanced manner, i.e.,

J1(π) = min
i

αi(π) = min
i

E[Ni(π)]
∑n

j=1 E[Nj (π)]
(1)

subject to the additional constraint

π ∈ argmin
π ′

max
i,j

|E[Ni(π′)] − E[Nj (π′)]| (2)

which further balances event observation efforts by penalizing
large observation discrepancies between different stations. Al-
ternatively, one may view (2) as a higher order effort aimed at
balancing event observation than simply maximizing J1 .

524 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

Fig. 2. Illustration of an instance or a sample of a delay. The policy has a
period of T and the robot is waiting at station ki during the intervals with length
ti . The two dotted lines correspond to times when events occur at station ki . If
no other events happen at station ki in between these two times when the robot
is present at station ki , then the time between these two event occurrences is an
instance of the delay at station ki .

The second objective seeks to minimize large delays between
event observations at the same station. We formalize the notion
of delay, a random variable, as follows. As the robot executes a
policy, it arrives at station ki periodically and waits for ti time at
station ki each time it gets there. Suppose that during one such
waiting time ti , one or more events occur at station ki . Let the
last event within this particular ti be tstart . An instance of a delay
is a period of time that begins at tstart and ends when another
event occurs at station ki , while the robot is waiting at station ki

(see, e.g., Fig. 2). More precisely, we define the delay at station
ki for a given policy π, denoted Ti(π), as a random variable
that maps these instances of delays to probability densities. Our
second objective aims at minimizing the maximum delay across
all stations, i.e.,

J2(π) = max
i

E[Ti(π)]. (3)

Often, both objectives are equally important. One would like
to spend as much time as possible at all stations for maximizing
the data collection effort and at the same time minimize delays
between observations at any given station, which becomes large
if the robot lingers at any station for too long. Interestingly,
the set of policies that optimizes the first objective function is
not unique; in fact, there are infinitely many such policies. We
compute the optimal policy for the second objective function
among those policies that optimize the first objective function.
That is, we compute the policy π∗ = arg minπ∈Π J2(π), with
Π := arg maxπ ′ J1(π′), subject to (2). We then further show
that π∗ is the unique Pareto optimal solution for optimizing
both J1 and J2 .

With the setup so far, we now formally state the persistent
monitoring problem studied in this paper.

Problem 1. Given n, {λi}, and {τi,j}, find an optimal so-
lution π∗ = ((k∗

1 , t
∗
1), . . . , (k

∗
n , t∗n)) that optimizes J1 and J2

subject to the constraint equation (2).
To facilitate our analysis, we begin with a special case in

which the visiting order of stations is fixed a priori. That is, we
assume without loss of generality that ki = i.

Problem 2. Given n, {λi}, and {τi,j}, and assume that the
robot visits the n stations in the cyclic order of 1, 2, . . . , n, find
an optimal solution π∗ = (t∗1 , . . . , t

∗
n) that optimizes J1 and J2

subject to the constraint equation (2).
It is straightforward to observe that the travel times only

matter as a whole, i.e., the policy’s dependence on the robot’s
path in a cyclic policy only hinges on Ttr . The immediate gain
from proposing Problem 2 is that it removes the need to compute
a TSP tour, allowing us to focus our study on the optimality
structure induced by J1 and J2 , which is fairly rich. We dedicate

Sections III and IV to Problem 2 and revisit Problem 1 when we
discuss algorithmic solutions in Section V.

III. EXISTENCE AND UNIQUENESS OF OPTIMAL POLICY

In this section, we establish the existence and uniqueness
of solutions for Problem 2. We also simply refer to a policy
π as π = (t1 , . . . , tn) here and in Section IV. We note that
the results from this section go beyond simply showing the
existence and uniqueness of an optimal cyclic policy for the
robot; an effective means for computing such a policy is also
implied. The discussion of the implied algorithmic solution is
deferred to Section V.

A. Existence of Optimal Solution

We now establish the existence of optimal solutions to Prob-
lem 2. Showing the existence of solution to a multiobjective
optimization problem requires showing that the Pareto front is
not empty. We achieve this goal through Theorem 1, which
works with the two objectives sequentially. Theorem 1 does
more than simply showing the Pareto front is nonempty; it ac-
tually describes an optimization program that finds a point on
the Pareto front.

Theorem 1 (Existence of Optimal Solution). There exists a
continuum of policies that maximize J1 under the constraint
(2), given by

Π := argmax
π

min
i

E[Ni(π)]
∑n

j=1 E[Nj (π)]
.

Among all policies in Π, there is a unique policy π∗ that mini-
mizes J2 . Moreover, this unique policy π∗ = (t∗1 , t

∗
2 , . . . , t

∗
n) is

determined by

t∗i =
σ

λi
T ∗

obs

in which

T ∗
obs :=

argmin
To b s

(
2

λmax
+

(Tobs + Ttr)λmax − σTobs(1 + e−σTo b s)
(1 − e−σTo b s)λmax

)

with λmax = maxi λi being the maximum arrival rate and
σ =

(∑n
i=1 λ−1

i

)−1
the harmonic sum of λi’s.2 The optimiza-

tion problem that gives T ∗
obs is a quasi-convex program in one

variable, the unique optimal solution for which can be computed
efficiently, for example, by using the Newton–Raphson method
to compute the root of the derivative of its objective function.

To prove Theorem 1, we need several intermediate results,
which are stated and proved through Lemmas 2–5. Our con-
structive proof of Theorem 1 begins by characterizing policies
that maximize the first objective.

Lemma 2. Among all cyclic policies, a cyclic policy π max-
imizes J1(π) under the constraint (2), for any Tobs > 0, if and

2 Harmonic mean is usually defined as λhm =
(
(1/n)

∑n

i=1 λ−1
i

)−1
. Ac-

cordingly, we define the harmonic sum as σ = n λhm .

YU et al.: PERSISTENT MONITORING OF EVENTS WITH STOCHASTIC ARRIVALS AT MULTIPLE STATIONS 525

only if

ti =
σTobs

λi
=

Tobs

λi

∑n
j=1

1
λj

. (4)

Moreover, such a cyclic policy π satisfies

E[N1(π)] = E[N2(π)] = · · · = E[Nn (π)]. (5)

Proof: By linearity of expectation, the value of J1 , as defined
in (1), remains the same if we only look at a single policy
cycle. We show that for an arbitrary Tobs > 0, choosing ti’s
according to (4) yields the same optimal value for J1 . Fixing a
policy π, after spending ti time at station i, the robot collects
E[Ni(π)] = λi ti data points in expectation. This yields

αi(π) =
E[Ni(π)]

∑n
j=1 E[Nj (π)]

=
λi ti∑n

j=1 λj tj
.

By the pigeonhole principle, mini αi(π) is maximized if and
only if (5) is satisfied, yielding J1 = 1/n. When (5) holds, the
constraint (2) is satisfied since it has a value of zero. Solving the
set of equations

⎧
⎪⎨

⎪⎩

λ1t1 = . . . = λn tn
n∑

i=1

ti = Tobs

then yields (4). �
Remark: Lemma 2 implies that any cyclic policy that equal-

izesE[Ni(π)] across the stations optimizes the first objective J1 .
This provides us with an infinite set of optimal policies for the
first objective. Any policy satisfying (4) is optimal, independent
of the value of the policy period T . �

Next, we show that, among the set of policies Π provided
by Lemma 2, there exists a unique policy π∗ that optimizes the
second objective J2 . To achieve this, a method for evaluating
E[Ti(π)] is required. It turns out that an analytical formula can
be derived for computing E[Ti(π)].

Lemma 3. Let π = (t1 , . . . , tn) be a cyclic policy and let
T = Ttr +

∑n
i=1 ti be the period of the cyclic policy. Then

E[Ti(π)] =
2
λi

+
T − ti − tie

−λi ti

1 − e−λi ti
. (6)

Proof: To compute E[Ti(π)], without loss of generality, fix an
observation window at station i and call it observation window
0, or o0 . We may further assume without loss of generality that
o0 contains the arrival of at least one event at station i. We look
at all observation gaps on the right of o0 . The left side of o0 may
be safely ignored due to the memoryless property of Poisson
processes. Any observation gap gj contains the following parts,
from left to right: 1) tleft

j , the overlap of gj with the observation
window on gj ’s left end; 2) T − ti , the first observation break
(an observation break for station i is the time window between
two consecutive visits to station i); 3) 0 ≤ m < ∞ additional
policy cycles (of length T each); and 4) tright

j , the overlap of gj

with the observation window on gj ’s right end. As an example,
in Fig. 3, the start and end of the observation gap gj are marked
with the two dotted lines. The parts tleft

j , the first observation

Fig. 3. Illustration of the components of an observation gap.

break T − ti , and tright
j are also marked. The gap gj further

contains two additional policy cycles, i.e., m = 2.
The computation of E[Ti(π)] may be carried out using a

two-step process: 1) compute the probability pm of a gap gj

containing m additional policy cycles; and 2) compute E[Ti(π)]
as

E[Ti(π)] =
∞∑

m=0

pmEm (7)

in which Em is the expected length of the gap gj containing m
additional policy cycles. Note that (7) holds as long as the expec-
tations E[Ti(π)] and Em have the same underlying distribution.
We compute Em with

Em = E[tleft
j] + E[tright

j] + T − ti + mT

= 2E[tleft
j] + T − ti + mT.

(8)

A time reversed Poisson process is again a Poisson process
with the same arrival rate. Due to this symmetry along the time,
the second equality in (8) holds because E[tleft

j] = E[tright
j]. To

compute pm , note that we never need to consider the left side of
a gap gj . This is true because as we look at an infinite sequence
of consecutive gaps g1 , . . . , gj , The left most observation
window (which is o0) overlapping with g1 is fixed by assump-
tion. Once the right most observation window overlapping with
g1 is set (with certain probability), this explicitly fixes the left
most observation window overlapping with g2 and recursively,
the left most observation window overlapping gj . Therefore, the
probability of gj spanning m additional policy cycles is

pm = e−mλi ti (1 − e−λi ti). (9)

The first term of (9), e−mλi ti , is the probability that gj contains
0, 1, . . . ,m − 1 full policy cycles. The probability of no event
happening in each additional cycle in the sequence is e−λi ti .
They can be combined because the exponential distribution is
memoryless. The term (1 − e−λi ti) is the probability that at
least one event happens in the right most observation window
overlapping gj . Noting that the terms 2E[tleft

j] + T − ti appear
in all Em ’s, we can rewrite E[Ti(π)] as

2E[tleft
j] + T − ti +

∞∑

m=1

mTe−mλi ti (1 − e−λi ti) (10)

in which
∞∑

m=0

mTe−mλi ti (1 − e−λi ti)

= T (1 − e−λi ti)
∞∑

m=1

∞∑

k=m

e−kλi ti

= T (1 − e−λi ti)
∞∑

m=1

e−mλi ti

1 − e−λi ti
=

Te−λi ti

1 − e−λi ti
.

(11)

526 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

The computation of E[tleft
j] is carried out as follows. By

assumption, at least one event happens during the given obser-
vation window of length ti . Let the number of events within
this ti time be Ne . The probability of having k events is
Pr(Ne = k) = (λi ti)k e−λi ti /k!. Let τ1,k be the arrival time of
the first event among k events. For each k ≥ 1, the distribution
of the k events is uniform over [0, ti]. We have for 0 ≤ t ≤ ti ,

Pr(τ1,k > t) =
(

ti − t

ti

)k

from which we can obtain the probability density function for
τ1,k and subsequently E[τ1,k] = ti/(k + 1). Then

E[tleft
j] =

∞∑

k=1

E[τ1,k]Pr(Ne = k)

1 − Pr(Ne = 0)

=

∞∑

k=1

ti
k + 1

(λi ti)k e−λi ti /k!

1 − e−λi ti

=
1

1 − e−λi ti

∞∑

k=1

ti(λi ti)k e−λi ti

(k + 1)!

=
1

λi(1 − e−λi ti)
(1 − e−λi ti − λi tie

−λi ti)

=
1
λi

− tie
−λi ti

1 − e−λi ti
.

(12)

Finally, plugging (11) and (12) into (10) yields (6). �
Remark: The technique from Lemma 3 is generic and can

be used to compute expectations of other types of delays. For
example, the current E[Ti(π)] treats delays with different values
of m with equal importance. It may be the case that we want to
further penalize for not observing any events over longer periods
of time. One simple way to enable this is to give weights to
delays with larger m values. This can be incorporated easily by
updating Em to

Em = E[tleft
j] + E[tright

j] + T − ti + m2T.

The remaining steps for computing this alternative expected
delay stay unchanged. �

Even with E[Ti(π)] for each of the 1 ≤ i ≤ n stations, find-
ing the optimal policy among Π that minimizes J2 remains a
nontrivial task. To obtain minπ maxi E[Ti(π)], we have to build
the upper envelope over n such expected delays and then locate
the minimum on that envelope. Fortunately, E[Ti(π)] has some
additional properties that make this task more manageable. One
such property is that E[Ti(π)] is quasi-convex in T , meaning
that all sublevel sets of E[Ti(π)] are convex.

Lemma 4. The expected delay at a station E[Ti(π)], given
by (6), is quasi-convex in T for fixed {λi} and Ttr .

Proof: See Appendix A for the mostly technical proof.
Another important property of E[Ti(π)] is its monotonic de-

pendence over λi , holding other parameters fixed.
Lemma 5. For fixed σ, policy period T , and policy π given

by (4), E[Ti(π)] increases monotonically as λi increases.
Proof: Plugging Tobs := T − Ttr and σ := 1/(

∑n
i=1(1/λi))

into (6) and treating E[Ti(π)] as a function of λi (denote the

function as fN (λi)) with T, Ttr , and σ all fixed, we get

fN (λi) =
2
λi

+
T − σTo b s

λi
(1 + e−σTo b s)

1 − e−σTo b s
(13)

the derivative of which is

f ′
N (λi) =

σTobse
−σTo b s + σTobs + 2e−σTo b s − 2

λ2
i (1 − e−σTo b s)

(14)

which is strictly positive for all positive σTobs and arbitrary
positive λi , implying that fN (λi) increases monotonically with
respect to λi . �

Proof of Theorem 1: Lemmas 2 and 3 show that the optimal
policy period is given by

T ∗ := arg min
T >T t r

maxi E[Ti(π)]

= arg min
T >T t r

maxi

[2
λi

+
T − ti − tie

−λi ti

1 − e−λi ti

]
.

By monotonicity of E[Ti(π)] with respect to λi (see Lemma
5), maxi E[Ti(π)] is simply E[Ti(π)] for the station i with
the largest λi . This reduces computing T ∗ to finding the mini-
mum on a single function, which is a quasi-convex function by
Lemma 4. �

B. Uniqueness of Optimal Solution

For a multiobjective optimization problem, results like The-
orem 1 generally only give one optimal solution on the Pareto
front with a potentially continuum of optimal solutions. How-
ever, the policy given by Theorem 1 is in fact the unique optimal
solution, due to Theorem 6.

Theorem 6 (Uniqueness of Optimal Solution). The optimal
policy π∗ provided by Theorem 1 is the unique policy that
solves Problem 2.

Proof: We assume that we work with a fixed problem instance
and assume the optimal policy computed by Algorithm 1 has a
period of T ∗. Theorem 1 shows that J1 ≤ 1/n and can always
reach 1/n. To show that no other policy other than π∗ lies on the
Pareto front, we need to show that no policy with fixed J1 < 1/n
yields better value on J2 .

Assume instead that there is another Pareto optimal solu-
tion π′ = (t′1 , . . . , t

′
n) 	= π∗ for the same problem instance with

J1(π′) = c < 1/n. Let the period of π′ be T ′ and let T ′
obs =

T ′ − Ttr . Let π′′ be the cyclic policy also with cycle period T ′

such that J1(π′′) = 1/n. Note that π′′ is unique and π′′ = π∗

if T ′ = T ∗. For π′ to be on the Pareto front, because J1(π′) =
c < 1/n = J1(π∗), one must have J2(π′) < J2(π∗); we show
that on the contrary we always have J2(π′) > J2(π′′) ≥ J2(π∗),
in which the last inequality is clear. We are left to show
J2(π′) > J2(π′′).

Since J1(π′) = mini αi(π′), we may assume J1(π′) =
α1(π′) = c. This implies that λ1t

′
1 ≤ λi t

′
i for all 2 ≤ i ≤ n. To

satisfy constraint (2), which translates to mini≥2(λi t
′
i − λ1t

′
1),

we must have α2(π′) = · · · = αn (π′) > 1/n because having
more αi(π′) < 1/n, i ≥ 2 will only increase mini≥2(λi t

′
i −

λ1t
′
1) (note that T ′

obs is fixed). We then compute αi(π′) =

YU et al.: PERSISTENT MONITORING OF EVENTS WITH STOCHASTIC ARRIVALS AT MULTIPLE STATIONS 527

(1 − c)/(n − 1) for i ≥ 2 and

λi t
′
i

λ1t′1
=

αi(π′)
α1(π′)

=
1 − c

c(n − 1)
. (15)

In addition, we have λ2t
′
2 = · · · = λn t′n for i ≥ 2. Solving

this with the constraint
∑n

i=2 t′i = T ′
obs − t′1 gives us for i ≥ 2,

λi t
′
i =

T ′
obs − t′1∑n

j=2
1
λj

=
T ′

obs∑n
j=2

1
λj

− 1
λ1

∑n
j=2

1
λj

λ1t
′
1 . (16)

Putting (15) and (16) together, we get

λ1t
′
1 =

c(n − 1)T ′
obs

(1 − c)
∑n

i=2
1
λi

+ c(n − 1) 1
λ1

. (17)

For convenience, let Δij (π) := |E[Ni(π)] − E[Nj (π)]|.
From (15)

Δ1i(π′) = λi t
′
i − λ1t

′
1 =

1 − cn

c(n − 1)
λ1t

′
1 . (18)

Plugging (17) into (18) gives us that for some constant C,

(Δ1i(π′))−1 =C

(

(1 − c)
(

1
λ2

+ · · · + 1
λn

)

+ c(n − 1)
1
λ1

)

.

Because (1 − c) > (n − 1)/n > c(n − 1), to minimize
Δ1i(π′) or maximize its inverse, λ1 must equal λmax . This
implies that t′1 < t′′1 (i.e., the time spent per cycle at a station
with λmax is less in π′ than in π′′). Therefore, because (6)
monotonically decreases as ti > 0 increases when the policy
period T is fixed, J2(π′) > J2(π′′). �

IV. CONVERGENCE AND ROBUSTNESS PROPERTIES OF THE

OPTIMAL SCHEDULING POLICY

In this section, we prove two important “goodness” properties
of the unique optimal cyclic policy for Problem 2, namely, the
convergence rate of the policy toward its desired steady-state
behavior and the robustness of the policy with respect to small
perturbations of the input parameters.

A. Convergence Rate Toward Steady-State Behavior

Given an optimal policy π∗ for Problem 2, we have proved
that the total number of events observed at a station i, divided
by the number of all observed events, converges to αi(π∗) in
expectation (i.e., given infinite amount of time). In practice, the
execution of a monitoring policy must start at some point of
time (instead of at −∞) and only last a finite amount of time.
Therefore, it is generally desirable that the sample averages
converge quickly to their respective expected values. Here, we
characterize the convergence rate of the fraction of observations
with respect to the number of executed policy cycles. We do so
by looking at the variance of these ratios around their expected
values.

Theorem 7 (Convergence of the Fraction of Observations).
Suppose the optimal policy for Problem 2 is executed for m
cycles, that is, for mT ∗ amount of time in which T ∗ is the
optimal policy’s period. Then, the standard deviation of the
fraction of total observations up until time mT ∗ acquired at

any particular station is

1
√

mσ T ∗
obs

in which σ is the harmonic sum of the arrival rates.3

Proof: For convenience, assume that t is an integer multiple
of cycle time T ∗, i.e., t = mT ∗, m = 1, 2, For a fixed m, the
Poisson process at station i is equivalent to a Poisson distribution
with arrival rate

λ = kλi ti =
m(T ∗ − Ttr)

∑
j

1
λj

which means that the variance of the number of data points
observed is simply λ. The standard deviation of this Poisson
distribution is then

√
λ, yielding a ratio of

√
λ

λ
=

√
1
λ

=

√ ∑
i

1
λi

m(T ∗ − Ttr)
=

√
1

mσT ∗
obs

. (19)

�
We note that the standard deviation given by (19) is station-

independent. That is, the optimal schedule is such that the con-
vergence occurs at the same rate across all stations. The theorem
states that this standard deviation is inversely proportional to the
square root of the number of cycles the schedule is executed,
which is fairly reasonable.

B. Robustness of Optimal Policy

Another important issue related to solution soundness is its
robustness. Under the particular context of this paper, it is de-
sirable to ensure that the computed policy is robust with respect
to small perturbations in the input parameters. Here, input pa-
rameters to our problem are τi,j , {λi}, and an ordering of the
stations. Since the ordering is a combinatorial object, it does
not directly subject to perturbations. Therefore, we focus on the
other two sets of parameters, which are continuous variables
and can be readily perturbed.

1) Robustness with respect to perturbations in {λi}: We
show that, when the optimal policy is deployed, the change
in the expected delay E[Ti(π)] at a station i is bounded with
respect to small changes in λmax . Furthermore, the rate of the
change is fairly limited at nearly all stations.

Theorem 8 (Robustness w.r.t Arrival Rate). Let us denote
the delay at station i under the optimal schedule as a func-
tion of λi by letting fN (λi) := E[Ti(π)]. Holding σ fixed and
letting x := σTobs , then
(

Δ(fN (λi))
fN (λi)

)
/

(
Δλi

λi

)

< − 2 − 2e−x − x(1 + e−x)
2 − 2e−x − x(1 + e−x) + λi

σ x

the RHS of which is always upper bounded, and takes values in
(0, 1) for all x ∈ (0,∞) and λi ≥ λmin := minj λj .

Proof: Quantitatively, we want to show that fN (λi) [see (13)]
does not change fast as λi varies. More formally, we seek

3 In computing this measure, we look at the fraction of the total number of
observations in one station versus the total number of observations acquired up
until time m T ∗.

528 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

to prove that Δ(fN (λi))/fN (λi) is small for small Δλi/λi .
Through Taylor expansion

Δ(fN (λi))
fN (λi)

≈ f ′
N (λi)Δλi

fN (λi)
=

λif
′
N (λi)

fN (λi)
Δλi

λi
.

By (13) and (14)

λif
′
N (λi)

fN (λi)
= − 2 − 2e−σTo b s − σTobs(1 + e−σTo b s)

2 − 2e−σTo b s − σTobs(1 + e−σTo b s) + λiT
x:=σTo b s= − 2 − 2e−x − x(1 + e−x)

2 − 2e−x − x(1 + e−x) + xλi

σ + λiTtr

in which x > 0 and Ttr > 0. Because λi/σ > 1,
λif

′
N (λi)/fN (λi) can be shown to be upper bounded by

1/(λi/σ − 1). In particular, for all λi > λmin , λi/σ > 2 holds,
yielding

λif
′
N (λi)

fN (λi)
< − 2 − 2e−x − x(1 + e−x)

2 − 2e−x − x(1 + e−x) + 2x

which takes value in (0, 1) for all x ∈ (0,∞). If λmax =
λ1 = . . . = λn = λmin , then we can similarly show that
λif

′
N (λi)/fN (λi) < 1. �

Since small relative changes to λmax only induce relative
changes of smaller or equal magnitude to the corresponding
expected delay by Theorem 8, the optimal policy is robust with
respect to perturbations to event arrival rates.

2) Robustness with respect to perturbations in {τi,j}: Now
suppose instead that elements of {τi,j} are perturbed. The only
relevant change induced by these perturbations is a perturbation
to Ttr , the total travel time in a policy period. Perturbing Ttr
causes a change in T ∗

obs , which is determined by the largest
arrival rate λmax . We characterize the relative magnitude of this
effect in the theorem below.

Theorem 9 (Robustness w.r.t. Travel Time). Let us denote
the delay at the station with the maximum arrival rate as a
function of Ttr by letting

fTo b s (Ttr) :=

2
λmax

+
(Tobs + Ttr)λmax − σTobs(1 + e−σ To b s)

(1 − e−σTo b s)λmax
. (20)

Holding {λi} and Tobs fixed, then
(

Δ(fTo b s (Ttr))
fTo b s (Ttr)

)
/

(
ΔTtr

Ttr

)

∈ (0, 1).

PROOF. Following the proof of Theorem 8 and letting x :=
σTobs , we compute

(
Δ(fTo b s (Ttr))

fTo b s (Ttr)

)
/

(
ΔTtr

Ttr

)

≈
Ttrf

′
To b s

(Ttr)
fTo b s (Ttr)

=
λmaxTtr(1 − e−x)

2(1 − e−x) − x(1 + e−x) + λmaxTobs + λmaxTtr

<
λmaxTtr(1 − e−x)

2(1 − e−x) − x(1 + e−x) + x + λmaxTtr

=
λmaxTtr(1 − e−x)

2 − 2e−x − xe−x + λmaxTtr
.

The inequality is due to λmax > σ. Because 2 − 2e−x − xe−x >
0 for all x = σTobs > 0 and 0 < 1 − e−x < 1, we conclude that
Ttrf

′
To b s

(Ttr)/fTo b s (Ttr) ∈ (0, 1). �
With Theorem 9, we conclude that the optimal policy is robust

with respect to perturbing the travel times, {τi,j}.
Remark: We note that the results from Sections III and IV

continue to hold when the visiting order of the stations is not
predetermined, due to the fact that travel times only matter as
a whole (i.e., through Ttr). The only nonessential difference is
that there may be multiple optimal policies yielding the same
J1 and J2 values, because there may be multiple TSP tours for
a given problem instance. Such degenerate cases are, however,
very rare.4 Our analysis also implies that Problem 1 is NP-hard
because it contains TSP as a subproblem. �

V. COMPUTING THE OPTIMAL SCHEDULING POLICY:
ALGORITHM AND COMPLEXITY ANALYSIS

In this section, we first provide an algorithm for solving Prob-
lem 2 and characterize its performance. Then, building on this
algorithm and robustness results from Section IV, we provide
a polynomial-time approximation scheme (PTAS) for solving
Problem 1.

A. Algorithm for Computing Cyclic Policy With
Predetermined Station Visiting Order

The pseudocode for computing the unique cyclic policy π∗

solving Problem 2 is given in Algorithm 1, as a direct con-
sequence of Theorems 1 and 6. First, in Lines 1 and 2, the
algorithm computes two useful statistics, namely, the maximum
arrival rate (denoted by λmax) and σ. Then, in Line 3, the al-
gorithm proceeds by solving an optimization problem in one
variable, Tobs . At this step, the algorithm computes the optimal
total observation time denoted by T ∗

obs . Finally, the algorithm
computes the optimal total cycle period T ∗ = T ∗

obs + Ttr in Line
4 and the optimal observation time for the individual stations in
Lines 5 and 6.

We emphasize that the optimization problem in Line 3 of
Algorithm 1 is a quasi-convex optimization problem in one
variable by Theorem 1, which can be solved efficiently in mul-
tiple ways. For example, because the value of the function to
be minimized can be computed analytically, we may apply the
bisection method or the Newton–Raphson method to compute
π∗ very efficiently.

On the side of computational complexities of Algorithm 1, the
following theorem is immediate. We measure the computational
complexity of the algorithm by the number of steps executed by
the algorithm. A single step is either a comparison, an addition,
or a multiplication operation.

Theorem 10 (Complexity of Computing Optimal Schedule).
The number of steps performed by Algorithm 1 is O(n), in
which n is the number of stations. Moreover, if λmax = maxi λi

and the harmonic sum σ = 1/
∑n

i=1(1/λi) are known, the
optimal cycle time can be computed in constant time.

4It is possible to show that such cases have zero measure with mild assumption
on the station distribution.

YU et al.: PERSISTENT MONITORING OF EVENTS WITH STOCHASTIC ARRIVALS AT MULTIPLE STATIONS 529

Now, we consider online problem instances, in which new
stations are added or other existing ones are removed, on the fly,
from the list of stations to be serviced. The task is to construct the
optimal schedule and maintain it as the list of stations changes.

First consider the problem with addition only. In that case,
the online algorithm can be described as follows. At any given
time, the algorithm maintains the maximum rate λmax and the
harmonic sum σ = (

∑n
i=1 λ−1

i)−1 . Let λnew denote the event
arrival rate for the new station. Then, the new statistics, denoted
by λ′

max and σ′, are computed as

λ′
max ← max{λmax , λnew}

σ′ ←
(
σ−1 + 1/λnew

)−1
.

Then, solve the quasi-convex optimization problem in Line 3
of Algorithm 1 to compute the optimal cycle time. Notice that
these computations (the update and the solution of the quasi-
convex optimization problem) can be executed in constant time.
The running time of the algorithm that updates the optimal
schedule time is independent of the number of stations. Second,
consider the case when a new station may be added or an ex-
isting one can be removed. In this case, clearly the statistic σ
can still be updated in constant time. However, maintaining the
statistic λmax is harder in the case of removals, since removing
the station with rate λmax requires looking through the remain-
ing stations to find the station with the largest event arrival rate.
This cannot be done in constant time. Yet, an ordered list of
the stations can be maintained in logarithmic time. More pre-
cisely, the robot maintains an ordered list of stations such that
the ordering is with respect to the event arrival rates λi . Adding
a new station or removing a station from this can be performed
in log(n) time, in which n is the number of stations. Once ad-
dition or removal is performed, the maximum event arrival rate,
λmax , can be updated immediately. Hence, the overall update

algorithm requires logarithmic time in the number of stations.
We summarize this as a corollary of our previous results.

Corollary 11 (Online Complexity). Consider the case in
which new stations are added to the list of stations to be served,
on the fly. When a new station is added to a list of stations to
be observed, the optimal scheduling policy can be updated in
constant time, independent of the number of existing stations.
Consider the case when the stations are both added to and re-
moved from a list of n stations to be served. Then, when a new
station is added or removed, the optimal scheduling policy can
be updated in O(log(n)) time.

Remark: First, the space complexity, i.e., the amount of mem-
ory required to maintain the optimal cycle time, is constant when
there are only additions. The space complexity is linear when
there are removals as well. Second, clearly, solely updating the
cycle time is not enough for implementing the optimal schedule;
one must also update the time spent in each station. However,
from a practical point of view, the time spent in each station
can be updated as the robot travels to these destinations. This
strategy should work well as long as the robot has computational
power to evaluate Line 6 of Algorithm 1 (which requires two
multiplications and one addition) during the time it spends at
station i − 1 and the time it travels to station i. In other words,
the robot can compute the optimal cycle time T ∗ and start its
monitoring of the stations. Right after T ∗ is computed, the robot
can start the implementation of the plan. It computes t∗1 on the
way to station 1 and when waiting at station 1, and so on. �

B. Computing Optimal Cyclic Policies Without a
Predetermined Station Visiting Order

Fixing an arbitrary ε > 0, our algorithm for computing a
(1 + ε)-optimal solution for Problem 1, outlined in Algorithm
2, is a simple routine calling sequentially a TSP subroutine and
then Algorithm 1. The flow of Algorithm 2 is straightforward
to understand. The challenge is to show that a (1 + ε)-optimal
TSP solution is all we need for computing a (1 + ε)-optimal
solution to Problem 1. We now prove the correctness and the
stated time complexity of Algorithm 2.

Theorem 12 (PTAS for Unordered Stations). Fixing a real
number ε > 0, a (1 + ε)-optimal policy can be computed for
Problem 1 in time polynomial in n, the number of stations.

530 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

Proof. Suppose that the optimal total travel time is T ∗
tr and

Line 1 of Algorithm 2 computes a solution with total travel time
T ′

tr = (1 + ε)T ∗
tr . The optimal policies computed using T ∗

tr and
T ′

tr (and the associated visiting order), computed by Algorithm
1, have the same optimal J1 value. Let the optimal values of J2
for these two polices be J∗

2 and J ′
2 , respectively. We further let

the optimal total observation times per cycle corresponding to
T ∗

tr and T ′
tr be T ∗

obs and T ′
obs , respectively. For convenience, we

reuse the definition of fTo b s (Ttr) given by (20), which gives us

fT ∗
o b s

(Ttr) =

2
λmax

+
(T ∗

obs + Ttr)λmax − σT ∗
obs(1 + e−σ T ∗

o b s)
(1 − e−σT ∗

o b s)λmax
.

We also know that J∗
2 = fT ∗

o b s
(T ∗

tr) by definition. By Theorem
9, in particular that Ttrf

′
To b s

(Ttr)/fTo b s (Ttr) ∈ (0, 1), we have

fT ∗
o b s

(T ′
tr) = fT ∗

o b s
((1 + ε)T ∗

tr) ≈ fT ∗
o b s

(T ∗
tr) + εT ∗f ′

T ∗
o b s

(T ∗
tr)

< fT ∗
o b s

(T ∗
tr) + εfT ∗

o b s
(T ∗

tr) = (1 + ε)fT ∗
o b s

(T ∗
tr).

On the other hand, it is straightforward to see that fTo b s (Ttr)
is monotonically increasing in Ttr since

f ′
To b s

(Ttr) =
1

1 − e−σTo b s
> 0.

Therefore, for all Tobs > 0, we have

fTo b s (T
′
tr) ≥ fTo b s (T

∗
tr) ≥ fT ∗

o b s
(T ∗

tr) = J∗
2

and

J ′
2 = min

T >T ′
t r

fTo b s (T
′
tr) ≤ fT ∗

o b s
(T ′

tr) < (1 + ε)fT ∗
o b s

(T ∗
tr)

= (1 + ε)J∗
2 .

We conclude that J∗
2 ≤ J ′

2 ≤ (1 + ε)J∗
2 . That is, Algorithm

2 produces a (1 + ε)-optimal solution to Problem 1. To achieve
the desired polynomial-time complexity, because Algorithm 1
takes linear time, we only need a PTAS for computing a (1 + ε)-
optimal solution to the embedded TSP problem. Such a PTAS
is provided in [25]. �

Remark: It may be the case that a PTAS does not yield
practical polynomial-time algorithm. Fortunately, this does not
present an issue for us as many fast TSP solvers already exist.
For example, Lin–Kernighan Heuristics [26] can compute near
optimal solutions for very larger TSP instances very quickly,
even for more difficult TSP instances than Euclidean TSP, such
as the asymmetric TSP. Typical instances with thousands of lo-
cations can be solved in a few minutes to an accuracy of 1%
within the true optimal distance on a laptop. �

VI. COMPUTATIONAL EXPERIMENTS

Recall the UAV monitoring application illustrated in Fig. 1.
The UAV is tasked with persistently monitoring six locations of
interest and hovering over each location for certain periods of
time to capture events occurring at these locations. The input
consists of the arrival rates for events at each station (denoted
by λi) and the time needed for traveling between the stations
(denoted by τi,j). Table II lists these parameters. The time unit is
hours. Fig. 4 illustrates the stochastic nature of the event arrival

TABLE II
GROUND TRUTH (EVENT ARRIVAL RATES AND TRAVEL TIMES)

USED IN OUR SIMULATIONS

Station

1 2 3 4 5 6
λi (1/hr) 0.5 1.3 2.5 1.2 1.6 0.9
τi , i + 1 m o d 6 (hrs) 0.15 0.25 0.1 0.3 0.2 0.2

Fig. 4. (a) Histogram over the event arrival times since the last event arrival
for the Poisson processes in our experiment over a time horizon of 10 000 days.
The bucket size (on the x-axis) is 0.1 h. (b) Histogram over the number of events
arriving in an 24-h window for the different Poisson processes over 10 000 runs.

times. Note that, in addition to the large range of average arrival
rates at different stations (e.g., events arrive at station 3 five times
more frequently than they do at station 1), the stochastic arrival
times can vary greatly within the same station. The UAV must
balance the amount of data collected at all stations despite the
different arrival rates while not incurring large delays in event
observations between consecutive visits to the same location.

The objective of the computational experiments is to confirm
our theoretical findings given in Sections III and IV and offer
insights into the structure induced by the optimization problem.
Note that we do not lose generality by focusing on the case with
known station cyclic order, which we do here. First, we verify the
optimality of the computed schedule (see Theorem 1). We show
that the schedule returned by the algorithm indeed minimizes the
delay across all stations in a balanced way in a practical example
scenario. Second, we focus on the convergence properties (see
Theorem 7). We show that, in the same scenario, the fraction
of observations at each station converges to zero at the rate
given in Theorem 7 as the execution time increases. Third, we
look at the robustness of the optimal policy (see Theorem 8).
We show that, in a variety of selected scenarios, the optimal
policy is also robust with respect to the changes in event arrival
statistics. We omit the simulation study on Theorem 9, which
yields robustness results very similar to that of Theorem 8.

We mention that the source code for our simulation software
was developed using the Java programming language, and the
simulation software itself was executed on a computer with a
1.3-GHz Intel Core i5 CPU and 4-GB memory. Mathematica
9 was used for computing the optimal policy using the gradi-
ent descent optimization procedure. As suggested by Theorem
10, on this computational hardware, the computation of the
optimal policy is almost instantaneous, on the order of a few
milliseconds.

YU et al.: PERSISTENT MONITORING OF EVENTS WITH STOCHASTIC ARRIVALS AT MULTIPLE STATIONS 531

Fig. 5. Simulated versus computed values for E[Ti (π)]. We observe that the
mean of the simulated runs agrees with the value computed directly from (6)
for all choices of T ’s, whereas the variance grows larger as T → Ttr .

A. Computing the Optimal policy

In this section, we focus on the optimality of the proposed
schedule. First, we show in simulations that our analysis cor-
rectly predicts the expected delay. Second, we compare the op-
timal schedule with an intuitive, but suboptimal policy.

Below, we empirically check the correctness of Theo-
rem 1 through simulations. Our first computational exper-
iment validates (6) by performing both simulation and di-
rect computation side by side and comparing the results, for
the aforementioned case. In simulation, for each fixed T ∈
{1.3, 1.4, 1.7, 2.2, 3.2, 6.2, 11.2, 21.2, 51.2, 101.2}, we simu-
lated the Poisson process for enough number of periods (roughly
2 × 105 in the worst case) to gather at least 2000 delays by sim-
ulating the policy. This gave us 2000 samples of the random
variable Ti(π) from which we computed the mean and standard
deviation. Direct computation based on (6) were also carried
out. To avoid cluttering the presentation, only λ = 0.5 was used
(plots for other arrival rates are similar).

The result from this simulation study is presented in Fig. 5,
in comparison with the optimal policy that is directly computed
using the gradient descent procedure. Notice that the expected
delay in the simulation matches exactly that of the computed
policy for all choices of T ’s. We also observe from the simulation
study that the delay variance increases as T approaches Ttr . This
should be intuitively clear, since, as T − Ttr → 0+ , the length
of each observation window decreases when compared with Ttr ;
in fact, the ratio of the two approaches zero, causing unbounded
increase in the variance.

After empirically verifying that (6) is accurate, we shift our
attention to the quasi-convexity of the delay E[Ti(π)] and its
monotonicity in λi . We compute E[Ti(π)] for all six λi’s and
plot the result at two different scales in Figs. 6 and 7. Fig. 6
shows that E[Ti(π)] is quasi-convex (in this case, convex) for
all λi’s. Fig. 7, a zoomed-in version of Fig. 6, further reveals that
E[Ti(π)] depends on λi monotonically for fixed policy period
T , confirming the claim of Lemma 5.

To compute the optimal cyclic patrolling policy’s parameters,
by Lemma 5, we only need to look at E[Ti(π)] for λi = 2.5.
The period T that minimizes (6) for λi = 2.5 can be easily
computed using standard gradient descent methods. Our com-
putation yields T ∗ = 4.59. The corresponding policy is then
defined by π = (1.18, 0.45, 0.24, 0.49, 0.37, 0.67).

Fig. 6. Computed E[Ti (π)] for λ1 , . . . , λ6 and T ∈ [1.3, 101.2].

Fig. 7. Computed E[Ti (π)] for λ1 , . . . , λ6 and T ∈ [6.2, 10.2] with ΔT =
0.025 increments.

TABLE III
EXPECTED DELAY FOR THREE POLICIES FOR THE SAME ENVIRONMENTS IN THE

POLICIES THAT OPTIMIZE J1

No. T π E[T1 (π)]

1 1.2502 (1, 0.25) 1.814
2 2.5002 (2, 0.5) 2.265
3 3.7502 (3, 0.75) 2.632

Remark: We note that E[Ti(π)] is not always convex, con-
trary to what may be suggested by computational experi-
ments (e.g., Fig. 6). To see that E[Ti(π)] is quasi-convex,
pick n = 2 as the number of stations with λ1 = 1, λ2 = 4, and
t12 = t21 = 0.0001. For T = 1.2502, 2.5002, and 3.7502, the
optimal policies balancing the observed data and the correspond-
ing E[T1(π)] are given in Table III, form which one can easily
verify that the point (2.5002, 2.265) lies above the line connect-
ing points (1.2502, 1.814) and (3.7502, 2.632), implying that
E[T1(π)] is nonconvex on the interval [1.2502, 3.7502]. �

B. Performance on Non-Poisson Distributed Data

As it is often the case that stochastic event arrivals diverge
from Poisson process, we are curious how our computed policy
would perform on more realistic data. Because a large number
of data points are needed to compute entities like average delay,
instead of using real world data, we generated data to simulate

532 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

Fig. 8. Simulated average delay using data generated over a variation of the
uniform distribution.

Fig. 9. Simulated average delay using data generated over a variation of the
uniform distribution with bursts of arrivals.

processes like bus arrivals in the following manner. Using {λi}
from our main example, for each station i, we partition the time
line into segments of length 1/λi . In each segment, a uniformly
random point is selected as the arrival time of an event at station
i. Clearly, over this dataset, the value of J1 remains the same.
When we use the policies that maximize J1 to simulateE[Ti(π)]
over this dataset, we obtain results that are subsequently plotted
in Fig. 8.

We observe that the average delay is actually shorter in this
case, implying a better optimal value for J2 . We also note that
the general structure of E[Ti(π)] appears to remain the same,
i.e., largely convex. Then, to add burst behavior that often occurs
in practice, in simulating events at station i, with 5% probability,
we pick a random integer k between 1 and 9. Otherwise, for the
other 95%, we set k = 1. We skip k − 1 segments of length 1/λi

each and pack k events in the next segment of length 1/λi . Note
that in terms of buses, this data-generating process means that
more than 20% of buses come in short bursts. The computed
average delay is given in Fig. 9, which yields a larger optimal
J2 that remains smaller than that over Poisson processes.

C. Convergence of the Optimal Schedule

We have shown that the variance of the fraction of observa-
tions at each station converges to zero at a particular rate as the
number of cycles increases (see Theorem 7). As noted there,
the optimal policy is such that the same convergence rate was
observed at each station. In other words, the optimal policy not

Fig. 10. Relative deviations of the data-collecting process at the six stations
with different λi ’s over 2000 policy cycles. The two black lines are computed
with Theorem 7.

Fig. 11. Simulated delays (E[Ti (π)]) when running the optimal policy π in
environments with uncertainties in λi ’s.

only balances the fraction of observations at each station, but
also balances the convergence rates.

Fig. 10 depicts this phenomenon for a single execution of the
optimal schedule for 2000 cycles. It is seen that the standard
deviation converges to zero roughly with the rate computed in
Theorem 7. Moreover, the standard deviations are roughly the
same across all stations.

D. Robustness of Optimal Policies

With Theorem 8, one can expect the optimal policy to be
robust in the sense that small estimation errors in the arrival rates
should not greatly affect the performance of an optimal policy.
We now use simulation to illustrate the robustness of an optimal
policy. In our simulation based on the same λi’s (note that in this
case, λi/σ > 2 holds for all i’s), we assume that the actual event
arrival rate may vary up to 25% (assuming randomly distributed
errors in λi’s). For each error threshold from 5% to 25%, 100
simulations were performed using environments based on these
random (fixed) λi’s, over which the same optimal policy was
run for 10 000 policy cycles. The results were plotted in Figs. 11
and 12.

Fig. 11 shows that using the same policy, one can expect
relatively stable performance despite fairly large error in the
estimated λi’s. For example, with up to 25% maximum er-
ror, E[Ti(π)] only varies about 10% across all stations at one
standard deviation (i.e., it is not very sensitive to the magnitude

YU et al.: PERSISTENT MONITORING OF EVENTS WITH STOCHASTIC ARRIVALS AT MULTIPLE STATIONS 533

Fig. 12. Simulated αi (π) when running the optimal policy π in environments
with uncertainties in λi ’s.

Fig. 13. Simulated E[Ti (π)] and αi (π) when running the optimal policy π
in environments with uncertainties in λi ’s. Here, the policy is generated based
on λ1 = 1 and λ2 = 100. The two graphs correspond to Figs. 11 and 12,
respectively. We omitted axes labels and legends that have identical meanings
with those in Figs. 11 and 12.

of λi’s). Similar behavior can be observed for αi(π): Up to 25%
error in λi’s yields a standard deviation of about 25% in αi(π)
across all stations.

Although not directly implied by Theorem 8, an optimal pol-
icy also appears to be stable with respect to widely varying
stochastic arrival rates. Taking an extreme example having two
stations with λ1 = 1, λ2 = 100 (here, λ2/σ = 1.01 < 2), and
τ12 = τ21 = 0.1, we performed the same experiments on stabil-
ity, the results of which are captured in Fig. 13. The deviations
are similar to what we observed in Figs. 11 and 12. The optimal
policy here is π = (0.5702, 0.0057).

VII. CONCLUSION

We have introduced a novel persistent monitoring and data
collection problem in which transient events at multiple stations
arrive following stochastic processes. We studied the perfor-
mance of cyclic policies on two objectives: 1) maximizing the
minimum fraction of expected events to be collected at each sta-
tion so that no station receives insufficient or excessive monitor-
ing effort; and 2) minimizing the maximum delay in observing
two consecutive events generated by the same process between
policy cycles. We focused on an important case in which the
locations to be visited form a closed chain. We showed that
such a problem admits a (often unique) cyclic policy that op-
timizes both objectives. We also showed that the second, more
complex objective function is quasi-convex, allowing efficient
computation of the optimal policy with standard gradient de-
scent methods when the cyclic ordering of the stations is fixed.

Fig. 14. Simulated average delay with feedback such that the robot will leave
a station once the expected number of events per cycle is collected. The corre-
sponding expected delays without feedback are plotted in Fig. 7.

Moreover, our study on important properties of the optimal solu-
tion, including the convergence rate and the solution robustness,
further offered insights that lead to an polynomial-time approxi-
mation algorithm for the more general problem in which a cyclic
order is unknown a priori.

Our study also raises many interesting and well-formulated
open problems; we discuss two here. First, in our formulation,
the robot is not required to process the data it collects while
waiting at the stations. Whereas this assumption applies to many
scenarios, it is perhaps equally natural to assume the opposite
and let the robot know when it observes an event. This then gives
rise to feedback or adaptive policies. For example, one way to
design such a policy is to let the robot move away from a station
once it knows enough number of events have been collected at
the station. Intuitively, such feedback policies should do better
due to the memoryless property of Poisson process. Preliminary
simulation result confirms our hypothesis (see Fig. 14). Inter-
estingly, such feedback policies seem to induce discrete jumps
in the average delay, which we look forward to understanding
in future research. Another interesting and related angle is to
allow sensors to have nontrivial footprint. That is, the mobile
sensor is able to cover multiple stations simultaneously.

Second, we had initially conjectured that TSP-based cyclic
policies might be the best policies for the proposed multiob-
jective optimization problem without requiring the cyclic pol-
icy assumption. This turns out not to be the case; Appendix B
provides a counterexample. In the counterexample, a periodic
policy5 is proven to be better than the TSP-based cyclic policy.
This observation prompts at least two intriguing questions: 1)
How we may find the optimal periodic policy for the proposed
multiobjective optimization problem? 2) Are periodic policies
the best policies without feedback?

APPENDIX A
TECHNICAL PROOFS

Proof of Lemma 4: For notational convenience, define γi :=
σ/λi . Note that we implicitly use the fact that all functions used
in the proof are continuous. Substituting Tobs = T − Ttr and

5In contrast with a cyclic policy, which allows a single visit to each station
during a policy period, a periodic policy allows multiple visits to the same
station during a single policy period.

534 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

ti = γiTobs into the RHS of (6) yields

E[Ti(π)] =
2
λi

+
T − ti − (T − ti)e−λi ti + (T − 2ti)e−λi ti

1 − e−λi ti

=
2
λi

+
T − ti − tie

−λi ti

1 − e−λi ti

=
2
λi

+
Tobs + Ttr − γiTobs − γiTobse

−λi γi To b s

1 − e−λi γi To b s
.

By scaling the unit of time, we may assume that λi = 1. Using
this and letting x := γiTobs give us

E[Ti(π)] = 2 +
Ttr + (1

γi
− 1)x − xe−x

1 − e−x

= 2 +
Ttr + (1

γi
− 2)x

1 − e−x
+ x

in which Ttr > 0 and γi ∈ (0, 1). For convenience, we let α :=
Ttr and β := 1/γi − 2. Showing that E[Ti(π)] is quasi-convex
is equivalent to showing that

f(x) :=
α + βx

1 − e−x
+ x

is quasi-convex for x > 0,6 α > 0, and β > −1, the second
derivative of which is

f ′′(x) =
ex(α(ex + 1) + β(ex(x − 2) + x + 2))

(−1 + ex)3 .

Since ex(x − 2) + x + 2 is strictly positive,7 f ′′(x) > 0 for
β ≥ 0. Therefore, f(x) is convex for β ≥ 0. We are left to show
that f(x) is quasi-convex for β ∈ (−1, 0). We proceed by first
establishing some properties of the function

g(x) = α(ex + 1) + β(ex(x − 2) + x + 2)

for α > 0, and β ∈ (−1, 0). We have g(x) ∈ C∞ for x ≥ 0,
g(0) = 2α > 0, limx→∞ g(x) = −∞,

g′(x) = (α + βx − β)ex + β

and

g′′(x) = (α + βx)ex.

Because (α + βx) is linear, monotonically decreasing and
crosses zero at most once, and ex is positive and strictly in-
creasing, g′′(x) has at most a single local extrema (a maxima)
before it crosses zero. Therefore, g′(x) has at most two zeros and
must first increase monotonically and then decrease monotoni-
cally, implying that g(x) has at most three zeros. Since g(0) > 0
and limx→∞ g(x) = −∞ < 0, g(x) has either one or three (but
not two) zeros. For g(x) to have three zeros, g′(x) must have
two zeros. Since limx→∞ g′(x) = −∞ (because βxex eventu-
ally dominates and β < 0), we must have g′(0) < 0. This is
not possible because g′(0) = α > 0. Therefore, g′(x) can cross

6In the rest of the proof, unless explicitly stated otherwise, the domain of x
is assumed to be (0,∞).

7To see this, let h(x) = ex (x − 2) + x + 2; then h(0) = 0, h′(0) = 0, and
h′′(x) = xex > 0 for all x > 0. Therefore, h′(x) > 0 and h(x) > 0 for all
x > 0.

zero and change sign at most once,8 implying that g(x) has a
single zero. That is, g(x) is positive for small x and then remains
negative after crossing zero. Because

f ′′(x) =
exg(x)

(−1 + ex)3

and ex/(−1 + ex)3 is strictly positive, f ′′(x) behaves similarly
as g(x) (i.e., f ′′(0) > 0, crosses zero only once as x increases,
and stays negative after that). This implies that for every fixed
α > 0 and β ∈ (−1, 0), there exists x0 > 0 such that f(x) is
convex on x ∈ (0, x0) and concave on x ∈ (x0 ,∞). Now be-
cause f(x) → ∞ for both x → 0+ and x → ∞, and f(1) < ∞,
f(x) must have a single local minima (and therefore, a single
global minima on R+). To see that this is the case, as f(x) turns
from convex to concave at x = x0 , we must have f ′(x0) ≥ 0
because otherwise f ′(x) < 0 for x > x0 due to f(x)’s concav-
ity. We then have limx→∞ f(x) < ∞, a contradiction. Thus,
f(x) has a single minimum on x ∈ (0, x0). Finally, to see that
f(x) is quasi-convex, we note that limx→∞ f ′(x) = 1 + β > 0,
implying that f ′(x) > 0 on all x ∈ (x0 ,∞). We then have that
f(x) is monotonically increasing on x ∈ (x0 ,∞). From here,
the quasi-convexity of f(x) can be easily shown following def-
initions. �

APPENDIX B
NONOPTIMAL TSP CYCLIC POLICIES

In this appendix, we provide an example problem for which
the optimal TSP cyclic policy is not the optimal policy for
maximizing J1 and minimizing J2 . We build the problem in
two steps. Our initial problem, which is to be updated in a little
while, has three stations with input parameters

λ1 = λ3 = 1, λ2 = 2, τ1,2 = τ2,3 = 0.1, τ3,1 = 0.2.

Using Algorithm 1, we compute the optimal cyclic policy as
π1 = (t1 = 0.53, t2 = 0.27, t3 = 0.53), which contains a TSP
tour of the stations. We may further compute E[T1(π1)] =
E[T3(π1)] = 4.15 and E[T2(π1)] = 4.17, which implies that
J2(π1) = 4.17. Then, we modify π1 to get another policy π2 ,
which is a periodic policy, by changing the visiting order of
the stations to 1, 2, 3, 2, 1, . . ., i.e., station 2 is visited twice
as frequently, and letting the robot stay at station 2 for t2/2
time for each visit. Employing the proof technique of Lemma
3, we compute that E[T2(π2)] = 3.26, whereas E[Ti(π2)] =
E[Ti(π1)] = 4.15 for i ∈ {1, 3}. Thus J2(π2) = 4.15. Because
J1(π1) = J1(π2) = 1/3, π2 is a better periodic policy than π1 .

We now construct the final example problem with three sta-
tions and update the parameters to

λ1 = λ3 = 1, λ2 = 2, τ1,2 = τ2,3 = 0.1 + ε, τ3,1 = 0.2

in which ε > 0 is a small perturbation. That is, we make the two
paths between stations i and i + 1, i ∈ {1, 2}, a little longer. As
long as ε > 0, we have that a robot executing π2 will travel a

8Alternatively, solving g ′(x) = 0 in Mathematica yields at most a single zero

in (0,∞) at x =
βW (−e

α
β
−1) − α + β

β
, in which W (·) is the (principal)

Lambert W-function.

YU et al.: PERSISTENT MONITORING OF EVENTS WITH STOCHASTIC ARRIVALS AT MULTIPLE STATIONS 535

strictly longer distance during each policy period than a robot
executing π1 , the TSP-based cyclic policy. However, by conti-
nuity, for a small enough ε, π2 will remain a better policy than
π1 for optimizing J1 and J2 .

REFERENCES

[1] N. Michael, E. Stump, and K. Mohta, “Persistent surveillance with a team
of MAVs,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2011, pp.
2708–2714.

[2] R. N. Smith, M. Schwager, S. L. Smith, B. H. Jones, D. Rus, and G. S.
Sukhatme, “Persistent ocean monitoring with underwater gliders: Adapt-
ing sampling resolution,” J. Field Robot., vol. 28, no. 5, pp. 714–741,
Sep./Oct. 2011.

[3] S. Alamdari, E. Fata, and S. L. Smith, “Persistent monitoring in discrete
environments: Minimizing the maximum weighted latency between ob-
servations,” Int. J. Robot. Res., vol. 33, no. 1, pp. 138–154, 2014.

[4] E. Arvelo, E. Kim, and N. C. Martins. (2012, Sep.). Memoryless control
design for persistent surveillance under safety constraints. ArXiv. [Online].
Available: http://arxiv.org/abs/1209.5805

[5] C. G. Cassandras, X. Lin, and X. Ding, “An optimal control approach
to the multi-agent persistent monitoring problem,” IEEE Trans. Autom.
Control, vol. 58, no. 4, pp. 947–961, Apr. 2013.

[6] A. Girard, A. Howell, and J. Hedrick, “Border patrol and surveillance
missions using multiple unmanned air vehicles,” in Proc. 43rd IEEE Conf.
Decision Control, 2004, pp. 620–625.

[7] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “Cooperative air and
ground surveillance,” IEEE Robot. Autom. Mag., vol. 13, no. 3, pp. 16–25,
Sep. 2006.

[8] X. Lan and M. Schwager, “Planning periodic persistent monitoring tra-
jectories for sensing robots in Gaussian random fields,” in Proc. IEEE Int.
Conf. Robot. Autom., May 2013, pp. 2407–2412.

[9] N. Nigam and I. Kroo, “Persistent surveillance using multiple unmanned
air vehicles,” in Proc. IEEE Aerospace Conf., 2008, pp. 1–14.

[10] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Moni-
toring and sweeping in changing environments,” IEEE Trans. Robot., vol.
28, no. 2, pp. 410–426, Apr. 2012.

[11] D. E. Soltero, M. Schwager, and D. Rus, “Generating informative paths
for persistent sensing in unknown environments,” in Proc. Int. Conf. Intell.
Robots Syst., Oct. 2012, pp. 2172–2179.

[12] D. J. Bertsimas and G. J. van Ryzin, “Stochastic and dynamic vehicle
routing with general interarrival and service time distributions,” Adv. Appl.
Probability, vol. 25, pp. 947–978, 1993.

[13] M. Pavone, E. Frazzoli, and F. Bullo, “Adaptive and distributed algorithms
for vehicle routing in a stochastic and dynamic environment,” IEEE Trans.
Automat. Control, vol. 56, no. 6, pp. 1259–1274, Jun. 2011.

[14] H. Choset, “Coverage of known spaces: The boustrophedon cellular de-
composition,” Auton. Robots, vol. 9, pp. 247–253, 2000.

[15] H. Choset, “Coverage for robotics—A survey of recent results,” Ann.
Math. Artif. Intell., vol. 31, pp. 113–126, 2001.

[16] Y. Gabriely and E. Rimon, “Competitive on-line coverage of grid environ-
ments by a mobile robot,” Comput. Geometry, vol. 24, no. 3, pp. 197–224,
2003.

[17] W.-P. Chin and S. Ntafos, “Optimum watchman routes,” Inf. Process. Lett.,
vol. 28, pp. 39–44, 1988.

[18] P. Hokayem, D. Stipanovic, and M. Spong, “On persistent coverage con-
trol,” in Proc. 46th IEEE Conf. Decision Control, 2008, pp. 6130–6135.

[19] S. Ntafos, “Watchman routes under limited visibility,” Comput. Geometry,
vol. 1, pp. 149–170, 1991.

[20] J. A. Fuemmeler and V. V. Veeravalli, “Smart sleeping policies for energy-
efficient tracking in sensor networks,” Netw. Sensing Inform. Control,
2008.

[21] Y. He and E. K. P. Chong, “Sensor scheduling for target tracking in sensor
networks,” in Proc. 43rd IEEE Conf. Decision Control, 2004, pp. 743–748.

[22] A. O. H. III, C. M. Kreucher, and D. Blatt, “Information theoretic ap-
proaches to sensor management,” in, Foundations and Applications of
Sensor Management. New York, NY, USA: Springer, 2008.

[23] J. L. Ny, M. A. Dahleh, E. Feron, and E. Frazzoli, “Continuous path
planning for a data harvesting mobile server,” in Proc. 47th IEEE Conf.
Decision Control, 2008, pp. 1489–1494.

[24] J. Yu, S. Karaman, and D. Rus, “Persistent monitoring of events with
stochastic arrivals at multiple stations,” in Proc. IEEE Int. Conf. Robot.
Autom., 2014, pp. 5758–5765.

[25] S. Arora, “Polynomial-time approximation schemes for Euclidean TSP
and other geometric problems,” J. ACM, vol. 45, no. 5, pp. 753–782,
1998.

[26] K. Helsgaun, “An effective implementation of the Lin-Kernighan traveling
salesman heuristic,” Eur. J. Oper. Res., vol. 126, no. 1, pp. 106–130, 2000.

Jingjin Yu (S’11–M’13) received the B.S. degree
in materials science from University of Science and
Technology of China, Hefei, China, in 1998; the M.S.
degrees in chemistry from University of Chicago,
Chicago, IL, USA, in 2000, in mathematics from
University of Illinois at Chicago, Chicago, in 2001,
and in computer science from University of Illinois
at Urbana-Champaign, Champaign, IL, in 2010; and
the Ph.D. degree in electrical engineering from Uni-
versity of Illinois at Urbana-Champaign in 2013.

He is with the Computer Science and Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, USA.

Sertac Karaman (M’14) received the B.S. degrees in
mechanical engineering and in computer engineering
from Istanbul Technical University, Istanbul, Turkey,
in 2007; the S.M. degree in mechanical engineering
from Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 2009; and the Ph.D. degree
in electrical engineering and computer science also
from MIT in 2012.

He has been the Charles Stark Draper Assistant
Professor of aeronautics and astronautics with MIT
since Fall 2012. His research interests include the

broad areas of robotics and control theory. In particular, he studies the appli-
cations of probability theory, stochastic processes, stochastic geometry, formal
methods, and optimization for the design and analysis of high-performance
cyber–physical systems.

Daniela Rus (F’15) received the Ph.D. degree in
computer science from Cornell University, Ithaca,
NY, USA.

She is the Andrew (1956) and Erna Viterbi Pro-
fessor of electrical engineering and computer science
and Director of the Computer Science and Artifi-
cial Intelligence Laboratory, Massachusetts Institute
of Technology (MIT), Cambridge, MA, USA. Prior
to joining MIT, she was a Professor with the Com-
puter Science Department, Dartmouth College. Her
research interests include robotics, mobile comput-

ing, and big data.
Dr. Rus is a Class of 2002 MacArthur Fellow, a Fellow of ACM and AAAI,

and a Member of the NAE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

