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Abstract— Given a story from an agent (sensor outputs from
a robot or a tale told by a human) and recordings from a spare
network of heterogeneous sensors, this paper provides efficient
algorithms that validate whether it is possible to reconstruct a
path compatible with the sensor recordings that is also “close”
to the agent’s story. In solving the proposed problems, we
show that effective exploitation of a unique finite automaton
structure yields time complexity linear in both the length of
the story and the length of the sensor observation history.
Besides immediate applicability towards security and forensics
problems, the idea of behavior validation using external sensors
also appears promising in complementing design time model
verification.

I. INTRODUCTION

In [33], we introduced and solved a problem in which
an agent’s account (a story) of its path in an environment is
validated against recordings from a sparse network of sensors
deployed in the same environment. In that work, an agent’s
story is required to be error-free and has start/end time
matching those of the sensor recordings’. Such formulations
are restrictive for two reasons: 1. Even a truthful agent is
likely to introduce errors in recalling a long story, especially
when the agent is a human; 2. Requiring matching start/end
time is hard to guarantee. Moreover, when an agent’s story
is not consistent with an observation history, the algorithms
from [33] do not provide an alternative path for the agent
that is “close” to the agent’s story. In this paper, we provide
highly efficient algorithmic solutions to address and remove
all these limitations1.
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Fig. 1. A workspace with rooms A, B, C, occupancy sensors o1, o2 and
beam detectors b1, b2. The curve connecting the start (circle) and goal
(cross) locations is a possible agent path for the story A, B, A, C, which
triggers the sensor recordings b2, o2, o1, in that order.

Our study complements the verification of robotic system
design. From the perspective of modeling, an agent can be

1Additional scenarios can be found in the extended version available at
http://msl.cs.uiuc.edu/~jyu18/icra11/full.pdf

viewed as a hybrid system: It goes from room to room
to carry out tasks, changing its operation modes along the
way. Since the verification of an autonomous system with
continuous state space and control input is undecidable [2],
it is desirable to have external measures to keep in check
the unverified portion of such systems. Even for hybrid
systems with provably correct designs, such as autonomous
robots or cars [8], [15] based on specifying high level tasks
using General Reactivity(1) formulas [22], a malfunction
could occur due to mechanical errors or deliberate tempering.
Therefore, automatically monitoring hybrid systems with
external sensors can be an effective error correcting and
safeguarding measure.

Sensor network based approaches have been applied to
infer basic properties of moving bodies in its range. Networks
of binary proximity sensors have been employed to track
one or multiple moving bodies using various analytical tools
[3], [14], [25], [26]. The task of counting multiple targets is
also studied under different assumptions [4], [13]. In these
works, the sensors’ aggregate sensing range must cover the
target(s) at all times, which we do not assume. When only
subsets of an environment are guarded, word problems in
groups [9], [12] naturally arise. For the setup in which targets
moving inside a 2D region are monitored with a set of
detection beams, target locations and path reconstruction up
to homotopy were studied in [28]; few efficient algorithms
are available.

In obtaining solutions to more general problems, it be-
comes clear that the story validation problem we raise can
be transformed to the string edit distance problem between a
string and a regular language, with first algorithmic solution
appearing in [30]. Improvements on time and space require-
ments for algorithms solving such problems can be found in
[31], [24], [19], [1]. For an overview of approximate string
matching problems, see [20]. In viewing the resemblance of
our problem to the questions asked in [3], [25], [28], our
solution follows an information space approach [16], which
requires the design of a combinatorial filter, similar to those
in [17], [29], [32]. These combinatorial filters are minimalist
counterparts to widely known Bayesian filters [5], [7], [11],
[18], [21], [27].

The rest of the paper is organized as follows. Section II
provides formulations of the three problems we study in this
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paper. Section III briefly reviews the algorithmic solution
to the base problem and apply it to solve the first of the
three problems. Section IV relates our problem to the string
edit distance problem. We then combine the gained insight
with our special problem structure to provide algorithms for
solving the other two problems with further efficiency gains,
in Section V. We conclude with Section VI.

II. PROBLEM FORMULATION

A. Workspace, Agent Stories, and Observation History
Let the workspace W ⊂ R

2 be a bounded, path connected
open set with a polygonal boundary, ∂W . Let one or more
point agents move around in W , carrying out unknown tasks.
Every agent has a map of W and may move arbitrarily fast
along some continuous path τ : [t0 , tf ] → W . We are
interested in a particular agent x which can be thought of as
a suspect. Agent x provides a story, which is a sequence of
locations it recalls along its path in increasing chronological
order, p = (p1, p2, . . . , pn), pi ⊂ W. The story p can also be
viewed as a string p1 . . . pn which is the notation we use most
of the time. We assume that the unique elements of p are
each a simply connected region with a polygonal boundary
and pairwise disjoint. The set of all unique elements of p is
denoted Cp, which can be thought of as a set of rooms in
W . To limit the number of questions that can be posed, we
require that agent x starts from p1 and ends in pn. Unless
otherwise stated in a particular problem, it is assumed that
agent x recalls in p locations on its path correctly.

Let a subset of the workspace W be guarded by a set
of occupancy sensors and beam detectors. The placement
of sensors in W is unknown to the agents. An occupancy
sensor oi is assumed to detect the presence of an agent in a
fixed, convex subset s ⊂ W . For example, a room may be
monitored by such a sensor (o1, o2 in Fig. 1). A data point
recorded by oi has two parts, an activation, roa = (oi, ta),
and a deactivation, rod = (oi, td). Here ta is the time when
the first agent enters an empty s and td is the time when
the last agent exits s. A beam detector bi, on the other hand,
guards a straight line segment, � ⊂ W , between two edges
of ∂W (b1, b2 in Fig. 1). A data point of such a sensor is
recorded as an agent crosses �, which can be represented
by a 2-tuple, rb = (bi, t). A beam detector is deactivated
right after activation. We further assume that when a beam
detector is triggered by an agent, the agent must pass from
one side of the beam to the other side.

If we gather all sensor recordings (of the types roa, rod, rb)
during a time interval [t0, tf ] and order them by time incre-
mentally, an observation history is obtained. This sequence is
unique since it is reasonable to assume that no two recordings
happen at the exact same time. As we do not assume that an
agent provides the exact time when it visits a location, the
time in the sensor recording is also relative. Therefore, when
we compose the observation history of the sensors, we may
discard the time element of each sensor recording, keeping
only their relative order. A simplified observation history can
be written as (each si corresponds to the region covered by
a sensor): s = (s1, s2, . . . , sm), sj ⊂ W . Similar to p, we
can write s as a string. The unique sensor regions from s are

denoted as Cs. As justified in [33], we assume that any two
elements of Cp ∪ Cs are disjoint (in W ).
B. Validation Problems

Given the above setup, we want to know whether a story
is consistent with a sensor observation history. For example,
if an agent starts from A in the workspace from Fig. 1, it
cannot end up at B without triggering any sensor recordings.
Our earlier work addressed the following validation problem
(as well as a multiple agent extension):
Problem 1 (Exact Story, Matching Time Intervals) Let
there be a single agent in a workspace. The agent provides
a story p for the time interval [t0, tf ]. During the same
time interval, the sensors in the workspace produce an
observation history, s. Validate whether p is consistent with
s. Extract a feasible path if the story is consistent.

The formulation of Problem 1 is quite restrictive in at least
two ways. First, requiring the story and the observation
history to span the exact same time interval [t0, tf ] may not
be always possible. For example, the sensor network may
be inactive at some point due to daily operation schedule
or system maintenance. We capture and generalize this case
with the following problem:

Problem 2 (Exact Story, Mismatching Time Intervals)
Let there be a single agent in a workspace. The agent
provides a story p for the time interval [t0, tf ]. The sensors
in the workspace produce an observation history, s, for a
time interval [t′0, t

′

f ] that overlaps with [t0, tf ]. Validate
whether p is consistent with s. Extract a feasible path if the
story is consistent.

The second restriction is that a truthful agent, be it human
or robot, may inevitably make mistakes in recalling a story.
This scenario translates into the formulation below (For two
strings/sequences p,p′, the expression p ≤ p

′ or p
′ ≥ p

denotes that p is a subsequence of p
′):

Problem 3 (Partial Story, Matching Time Intervals)
Let there be a single agent in a workspace. The agent
provides a story p for the time interval [t0, tf ]. During the
same time interval, the sensors in the workspace produce
an observation history, s. Let p

′ ≥ p be a sequence with
elements from Cp. Validate whether there exists a p

′ that
is consistent with s. If such a story p

′ exists, find one of
shortest length.

Problem 3 motivates a more general case: The agent, even
with best effort, may add locations it has not visited (inser-
tion), miss locations it has visited (deletion), or report some
locations it has visited incorrectly (substitution). Calling each
of the three possibilities to introduce an error as an edit, we
obtain the following problem:
Problem 4 (Error in Story, Matching Time Intervals)
Let there be a single agent in a workspace. The agent
provides a story p for the time interval [t0, tf ]. During the
same time interval, the sensors in the workspace produce an
observation history, s. Let p

′ be a sequence with elements
from Cp. Find a p

′ that is consistent with s such that p can
be obtained from p

′ with the least number of edits.
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III. BASELINE ALGORITHM AND THE CASE OF

MISMATCHING TIME INTERVALS

In this section we review the baseline algorithm for Prob-
lem 1, with the example from Fig. 2. Only the most essential
elements from [33] are reproduced; readers may check that
paper for a thorough explanation. After the recapitulation,
we apply the algorithm to solve Problem 2.
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Fig. 2. A workspace with five beam detectors b1 through b5, three
occupancy sensors o1 through o3, and five labeled rooms A through E.
Thus, Cp = {A, B, C, D, E}, Cs = {b1, b2, b3, b4, b5, o1, o2, o3}. There
are seven connected components R1 through R7 when regions guarded by
sensors and rooms are treated as workspace obstacles.

A. Baseline Algorithm
When regions covered by sensors and rooms are not oc-

cupied, they act as obstacles. In the example, these obstacles
partition the workspace into seven connected components,
R1 through R7. Assuming that the workspace, rooms, and
sensors are given to us as edge lists, we apply a cell
decomposition procedure [6] to extract these connected com-
ponents, which is then transformed into a graph structure
that captures the connectivity of the rooms and sensors. We
call this graph G the connectivity graph, which extracts
all necessary information needed for validating an agent’s
story. The connectivity graph for our example is given in
Fig. 3. Each beam detector has two vertices in the graph
to represent its two sides; these are marked differently from
other vertices.
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Fig. 3. The connectivity graph G for the example given in Fig. 2.

With the construction of the connectivity graph G, Prob-
lem 1 effectively becomes graph search. At any given mo-
ment, only part of G is available, depending on where the
agent is and which sensor is active. For story p = p1 . . . pn

and observation history s = s1 . . . sm, since the search must
march through both strings forward, a position in the two
strings and a location in the graph G define a subproblem
that is just the same as the initial problem. For example,
a subproblem may be validating pi . . . pn against sj . . . sm

starting from room E. There is clearly only a polynomial
number of subproblems; if the time it takes to go from one
subproblem to a smaller one is also polynomial, then the
overall search is efficient in input size.

It turns out that this is indeed the case for Problem 1.
For illustration, suppose that the story is p = ABDEC and
the sensor observation history is s = b1b3o2o2b4. First, we
construct a graph based on G and s that captures all possible
agent paths for a fixed s. Since agent x starts at A and must
first pass b1, before b1 is triggered, the part of G that is
available is G1 (see Fig. 4(a)). Similarly, the next part of
G available, after agent x’s passing of b1 but not b3, is G2

(see Fig. 4(b)). For all such Gj’s, agent x must pass through
them sequentially. Observing this, Gj’s are chained together
to get a composite graph Gs. For example, b11, b12 in Fig.
4(a) are connected to b12, b11 in Fig. 4(b), respectively.
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Fig. 4. a) The available subgraph of the example from Fig. 2 when b1 is
the first sensor recording. b) The available subgraph of the example from
Fig. 2 for the recording b1b3.

Algorithm 1 VALIDATEAGENTSTORY

Input: Wfree, p = (p1, . . . , pn), s = (s1, . . . , sm)
Output: true if p is consistent with s, false otherwise

1: G ← BUILDCONNGRAPH(Wfree)
2: for j = 1 to m + 1
3: Gj ← SUBG(G, j == 1?p1 : sj−1, j = m + 1?nil : sj)
4: Gs ← CHAIN(G1, . . . , Gm+1)
5: initialize Vs, V

′

s as empty sets of two tuples
6: Vs ← {(p1, 1)} // A two tuple is a vertex of Gs

7: for i = 2 to n
8: for j = 1 to m + 1
9: if (pi, j) adjacent to (pi−1, k) ∈ Vs for some k ≤ j

10: if i == n&&j == m + 1
11: return true
12: add (pi, j) to V ′

s

13: Vs ← V ′

s ; empty V ′

s

14: return false

The rest of the algorithm is dynamic programming much
like Dijkstra’s algorithm[10] with a total complexity of
O(nm lg nw), in which nw is the size of input Wfree; the
details can be found in [33]. The pseudocode is summarized
in Algorithm 1. The subroutine BUILDCONNGRAPH(Wfree)
returns the connectivity graph G given an edge list represen-
tation of Wfree. The subroutine SUBG(G, v1, v2) returns the
available part of G starting from v1 and ending at v2. Finally,
CHAIN(. . .) connects all input graphs sequentially. The time
spent on these portion of the algorithm is O(mnw lg nw +
n2

w). If VALIDATEAGENTSTORY returns true, which means
p is consistent with s, a possible path can be retrieved via
backtracking the search process. We now apply Algorithm 1
to Problem 2.
B. Mismatching Time Intervals

Problem 2 has several subcases, depending on how [t0, tf ]
and [t′0, t

′

f ] compare. Assuming that t0, tf , t′0, t
′

f are pairwise
different, the following six cases are possible: 1) t0 < tf <

t′0 < t′f ; 2) t0 < t′0 < tf < t′f ; 3) t′0 < t0 < tf < t′f ;
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4) t0 < t′0 < t′f < tf ; 5) t′0 < t0 < t′f < tf ; and 6)
t′0 < t′f < t0 < tf . For the first and last cases, [t0, tf ]
and [t′0, t

′

f ] are disjoint. In these cases, the sensors cannot
possibly observe the agent during [t0, tf ]; nothing needs
to be done about p (as long as p does not conflict with
itself). We are not yet done, because we still need to check
whether an empty story is consistent with s. This can be
done using VALIDATEAGENTSTORY (The search portion
only takes O(m lg nw) time).

The second case is t0 < t′0 < tf < t′f , which means that
a later portion of agent story overlaps with an earlier portion
of the sensor observation history. This can be handled by
running VALIDATEAGENTSTORY algorithm n times. For the
i-th run, the story is (pi, . . . , pn) and the sensor observation
history is s. If any of the runs returns true, then the story is
valid; otherwise the story is inconsistent. We note that the
search can be arranged more efficiently by working on the
same pi’s of different runs at the same time; thus, the time
complexity for this case remains O(nm lg nw).

For the third case, t′0 < t0 < tf < t′f , the story p may
start in the middle of Gs. VALIDATEAGENTSTORY can be
easily modified to handle this: Instead of starting in G1, we
now allow the search to start at (p1, j) for all applicable j’s.
If pn is ever reached in the search, the modified algorithm
should report that p is consistent with s. The time complexity
again remains the same. Following along the same lines, we
can decide cases four and five.

IV. THE COMPOSITE AUTOMATON STRUCTURE
Although solution to Problem 2 is a relatively straightfor-

ward extension of the VALIDATEAGENTSTORY algorithm,
it is not immediately clear whether the approach applies
to Problem 3, 4, and more general cases. Part of the
difficulty comes from the composite graph Gs: It appears
to have more structure than a standard directed graph with
O(mnw) vertices. On the other hand, we observe that
VALIDATEAGENTSTORY operates much like an automaton
in the sense that it processes p sequentially and either accepts
or rejects. This prompts us to ask: Can we turn Gs into an
automaton and apply results from Automata Theory to tackle
our problem? We answer the first part of this question in this
section and delay the second part to the next.
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Fig. 5. a) The corresponding NFA when b1 is the first sensor crossed. b)
The NFA for consecutive sensor recordings b1b3.

The conversion of a connectivity graph G and a obser-
vation history s into finite automata is relatively straightfor-
ward. For each pair of consecutive sensor recordings s i, si+1

(except when i = 0, m), we isolate the part of G that can
reach vertices of si+1 from vertices of si and convert it to

an automaton. When i = 0, we let the start state of the
automaton transit to all vertices in Cp and when i = m, we
let all vertices in Cp be acceptance states. These automata are
then chained together to give a composite automaton. As an
example, the subgraphs from Fig. 4(a), (b) yield the NFAs
given in Fig. 5(a), (b), respectively.

b12

b31

b11

b12

b11
M1 M2 M3

" "

Fig. 6. Sketch of the composite automaton for the observation history
string b1b3o2o2b4.

For an observation history s of length m, m+1 automata
are obtained. Denote these automata M1 through Mm+1. For
implementation purpuse, we connect all of Mm+1’s states
to a single acceptance state F via an ε transition. It is
straightforward to observe that a story p is consistent with s

if and only if the story string can be partitioned into pieces
P1, . . . , Pm+1 such that Pi is accepted by Mj . Alternatively,
if we connect M1 through Mm+1 together to get a composite
automaton, M (Fig. 6), then p must drive M from start
state to F . With minimal effort, VALIDATEAGENTSTORY

can be modified to work with the composite automaton M ,
which will be able to resolve Problem 1 and 2, keeping the
dynamic programming framework intact. Although it does
not make the algorithm more efficient, the approach provides
an alternative interpretation of these problems: Searching p

through Gs now becomes simulating M over p, making
these problems tests of whether a string belongs to a regular
language.

V. SOLVING GENERAL PROBLEMS

For Problem 1 and 2, only a few stories are checked
against an observation history s. This is no longer the case
for Problem 3 and 4 since an infinite number of possible
stories must be checked in the process of solving these
problems. This is where the automaton structure comes in: If
we simulate a story p over an automaton, we know that on
seeing pi, there are a set of fixed states the automaton can
be in. As long as we maintain these finite number of states,
an infinite number of string patterns can be handled. In fact,
existing results from Automata Theory have completed part
of the job for us: Problem 3 and 4 can be viewed as the string
edit distance problem between a string and an automaton
(with the string being p and the automaton being M ), for
which efficient algorithms exist.

Our job is not done, however. Exisitng algorithms assume
that the string p and the automaton M are the inputs. In
our problem, the automaton M is an intermediate input built
from s and Gs; thus, we may be able to do better. In this
section, we explore how the sequential nature of M allows
us to subdivide Problem 3 more effectively. After solving
Problem 3, we sketch at high level how the same structure
helps solve Problem 4 as well.
A. Partial Story

We continue to work with the example from Fig. 2 and
assume that the story is p = ABDEC and the observation
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history is s = b1b2o2o2b4. Suppose that we obtain automata
Mj’s as well as M from s already. With the analysis from
Section IV, Problem 3 becomes finding a shortest p

′ ≥ p

such that p
′ is accepted by M . The problem may seem a bit

daunting at first glance: An infinite number of p
′ needs to

be examined, as long as p
′ ≥ p.

However, any consistent p
′ must drive the composite

automaton M to an accepting state. If we assume that some
p
′ ≥ p is one shortest such that is accepted by M , then

it must have the format p
′ = ω1Aω2Bω3Dω4Eω5Cω6, in

which ωi’s denote the parts missing from p. Since p1 =
A, we search M and find shortest string from the start
state of M to all copies of A in M (We may denote the
copy of A from Mj as (A, j)); there are up to m + 1
of these. Denoting these strings as σ(1, 0, j). For each j

there may be multiple such strings of the same shortest
length; in this case any of these will do. By the principle
of dynamic programming, |ω1|+1 = |σ(1, 0, j)| for some j.
Moving to p2 = B, for each (B, k) let us denote a shortest
string taking M from some (A, j) to (B, k) as σ(2, j, k).
Among these σ(2, j, k)’s for a fixed k, we need to get one
such so that σ(1, 0, j) + σ(2, j, k) is a shortest. Again, the
principle of dynamic programming tells us that for some j, k,
|ω1| + 1 = |σ(1, 0, j) and |ω2| + 1 = σ(2, j, k)|. Following
this method, if some simulation branches remain after all of
p are exhausted, then a consistent p

′ exists and one can be
extracted via backtracking the search process.

Algorithm 2 VALIDATEPARTIALSTORY

Input: p = (p1, . . . , pn, F ), M, M1, . . . , Mm+1

Output: true if M accepts some p
′ ≥ p , false otherwise

1: initialize 2D array L as array of ∞’s
2: L(0, 1) ← 0
3: for i = 1 to n + 1
4: for j = 1 to m + 1
5: � ← ∞
6: for each start state Sk of Mj

7: t ← {minj′ SHORTESTLEN((pi−1, j
′), Sk)}

8: � ← min{�, t + SHORTESTLEN(Sk, (pi, j))}
9: L(i, j) ← min{�, SHORTESTLEN((pi−1, j), (pi, j))}

10: if L(n + 1, m + 1) �= ∞
11: return true
12: return false

With above analysis, it becomes clear that the in-
sight enabling the reduction of a factor of m in
VALIDATEAGENTSTORY also applies here. That is, in find-
ing the shortest string containing p1 . . . pi and taking M

from the start state to (pi, k), we do not need to look at
(pi−1, j) for all j ≤ k. Instead, we only need to know the
shortest string that takes (pi−1, j), j ≤ k − 1 for some j, to
the start state(s) of Mk; the rest of the search is limited
to Mk. Since searching inside Mk for shortest path can
be done with Dijkstra’s algorithm in O(n2

w), the overall
running time for the search part of validating a partial story
is O(nmn2

w). The pesudocode is described in Algorithm
2. Note that we append to p an element F , which is the
acceptance state of M . Element L(i, j) of the 2D array L

stores the length of the shortest string that drives M to

the state (pi, j) and contains p1 . . . pi as a subsequence.
The subroutine SHORTESTLEN(a, b) returns the length of
the shortest string that takes M from state a to state b.
As discussed, we can obtain SHORTESTLEN((pi−1, j

′), Sk)
incrementally.
B. Story with Errors

We now move to Problem 4. On one hand, to allow
insertion, deletion, and substitution of story string p, we need
to know the shortest edit distance to reach all states of M

for each pi, instead of knowing only the shortest distance to
states (pi, j). Denote this distance D(pi, T ) in which T is a
state of M and let D(pi, S, T ) be the shortest edit distance
from state S (of M ) to T on pi, we obtain the recursion

D(pi, T ) = min
S

{D(pi−1, S) + D(pi, S, T )}.

For a general automaton of Q states, D(pi, S, T ) requires
O(Q3) (O(m3m3

w) for our problem) computation time using
a modified all pairs shortest path algorithm [30]. In our case,
since D(pi, S, T ) is ∞ for S ∈ Mk, T ∈ Mj when j < k, we
may subdivide the calculation of D(pi, T ) further, staged at
each Mj . Suppose T is an internal state of Mj (not start/end
states), {Sj} are the start states of Mj (there are at most two
of these), then the shortest edit distance from S ∈ Mj−1 to
T , passing some {Sj}, can be obtained as
min

S
{D(pi−1, S) + min{min

Sj

{D(pi, S, Sj) + D(ε, Sj , T )},

min
Sj

{D(ε, S, Sj) + D(pi, Sj , T )}}}.

We can regroup the formula as
min
Sj

{min{min
S

{D(pi−1, S) + D(pi, S, Sj)} + D(ε, Sj , T ),

min
S

{D(pi−1, S) + D(ε, S, Sj)} + D(pi, Sj , T )}}.

Hence, instead of O(m3m3
w) time, the sequential structure

of M cuts the processing time per pi to O(mm3
w). On the

other hand, with the introduction of deletion and substitution,
a matching story is always possible for Problem 4, as
long as the sensor recordings are self-consistent (That is,
the language of M is not empty): In the worst case, we
can change p to the shortest string accepted by M via
substitution, followed by insertion if p is too short and
followed by deletion if p is too long. If we denote the
length of the shortest string accepted by M as n ′, then a p

′,
accepted by M and closest to p, cannot have length more
than max{n, n′}. This is also the maximum number of edits
necessary.

At this point, we adapt the transducer construction proce-
dure from [1] to our problem and denote this transducer U .
Our transducer can be viewed as (n + 1)(m + 1) automata
(each is of the form M1 from Fig. 5(a) and is denoted M i

j ,
1 ≤ i ≤ n + 1, 1 ≤ j ≤ m + 1) chained together, with
transitions between the automata only from M i

j to M i+1

j

or M i
j+1. An additional structures in our transducer is that

it is directed in two directions. This means that searching
U can be partitioned into searching individual M i

j ’s and
then move forward on a 2D grid. For Problem 3, finding
p
′ with smallest number of edits is equivalent to finding

accepting string of U with with the smallest cost. This is
then a single source shortest path problem on U . As said,
for each i, we carry out the search from M i

1 to M i
m+1,
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which takes time O(m ·mw ·mw lg mw). Doing this for all i

then takes time O(nmm2
w lg mw). In contrast, preprocessing

along takes O(m3n4
w) in [30] (Recall that m, n are of

comparable lengths). Our result is also slightly better than
the (more general) algorithm presented in [1], which has time
complexity O(nmm2

w lg(mmw)) in this context.
VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the problem of validating an
agent’s story, which may be partial or contain errors, against
the observation history of external sensors. In addition to
deciding the validity of an agent’s story in time linear in
both the length of the story and the length of the observation
history, our algorithms produce a path compatible with the
sensor observations that is also closest to the agent’s story
in terms of string edit distance, whenever such a path exists.

Many intriguing questions remain. Focusing on the
discrete setting, the next natural question appears to be
the validation of multiple agents’ combined story: It is
possible that several agents’ stories are valid when validated
individually but problematic when put together. On the other
hand, if we consider differential constraints for the agents,
two immediate qualitative implications arise. First, since an
agent’s speed is limited, the exact time of sensor recordings,
otherwise neglected, becomes relevant in filtering out long
paths between sensor locations. Second, it becomes possible
to measure how far away an agent’s behavior deviates
from the optimal behavior (In terms of distance traveled,
for example). Besides these immediate extensions, another
interesting direction is to study optimal sensor placements
for the detective task, which was discussed to some extent in
[23], [28]. Finally, we have only studied part of the spatial
and temporal features of a story. With logic, it may become
possible to interpret more challenging agent behavior such
as “how” and “why”.
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