
Time Optimal Multi-agent Path Planning on Graphs∗

Jingjin Yu
Department of Electrical and Computer Engineering

University of Illinois, Urbana, IL 61801
jyu18@uiuc.edu

Steven M. LaValle
Department of Computer Science

University of Illinois, Urbana, IL 61801
lavalle@uiuc.edu

Introduction
Significant progress has been made in the area of multi-
agent path finding/planning in the past decade (Silver 2005;
van den Berg et al. 2009; Standley 2010; Luna and Bekris
2011; Wang and Botea 2011). In this work, we introduce a
multi-agent path planning problem similar to that of (Stan-
dley 2010) and aim at maximizing parallelism among the
agents. That is, we seek a feasible plan that minimizes the
time it takes the last agent to reach its goal. To solve the
problem, we convert it into an equivalent multiflow problem,
from which an integer linear programming (ILP) problem is
readily obtained. Our algorithm is complete.

Problem Formulation
Let G = (V,E) be a connected, undirected, simple graph
with vertex set V = {vi} and edge set E = {(vi, vj)}. Since
the meaning is clear from context, V,E also denote the car-
dinality of these sets, respectively. Let A = {a1, . . . , an} be
a set of n agents, n ≤ V . The agents must reside on dis-
tinct vertices of G at integer time steps beginning at time
zero; each agent may move from a vertex to an adjacent
vertex in one time step. An agent may also remains still
between time steps. When applied to the agent set A, the
term move denotes the location changes of all agents be-
tween two consecutive time steps. A move is legal if no two
agents move along an edge in opposite directions (head-on
collision). Note that the “distinct vertices” assumption pre-
cludes the possibility of two agents moving to the same ver-
tex (meet collision). Viewing A as an index set, the initial
and goal configuration of the agents are defined by the in-
jective maps, xI , xG : A → V , respectively. For a fixed
1 ≤ i ≤ n, a path for agent ai is a map pi : Z

+ → V , in
which Z

+ := N ∪ {0}. Intuitively, view the domain of the
paths as discrete time steps; the path set then directly maps to
agent moves on G. We say that a path set P = {p1, . . . , pn}
is feasible if:

1. For each 1 ≤ i ≤ n, pi(0) = xI(ai) and there exists a
least kmin

i ∈ Z
+ such that pi(k) ≡ xG(ai) for k ≥ kmin

i ;
∗This work was supported in part by NSF grants 0904501 (IIS

Robotics) and 1035345 (Cyberphysical Systems), DARPA SToMP
grant HR0011-05-1-0008, and MURI/ONR grant N00014-09-1-
1052.
Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. The paths map to legal moves of the agent set A on G.

Problem 1 (Multi-agent Path Planning) Given a 4-tuple
(G,A, xI , xG), find a set of paths P = {p1, . . . , pn} that
is feasible.

We note two implied features of our formulation. First, our
formulation allows multiple agents to move at the same time
step as long as no collision occurs. On a graph, this allows
agents on any circle to “rotate”, provided that the agents’
sizes are suitable (for unit distance grids, this requires the
agent has radius no more than

√
2/4). Note that diagonal

moves on grids are not allowed. Second, our formulation
applies to arbitrary graphs including grids of arbitrary di-
mensions. As such, our algorithm does not depend on a L 1

distance heuristic and applies to a more general setting.

Algorithmic Solution Sketch

In (Yu and LaValle 2012), adapting a dynamic network flow
approach, we convert a given graph into a flow network. We
illustrate the process as follows. Given the graph G in Fig.
1(a) and a natural number T , we create 2T + 1 copies of

s 1
+

s 2
+

s 1
-

s 2
- u(t+1)u(t ) 0

v(t+1)v(t ) 0

s 1
+

s 2
+

s 1
-

s 2
-

20 1
0

2
0

1

(a) (b) (c)

Figure 1: a) A simple graph G. b) A gadget for splitting
an undirected edge through time steps. c) Part of the time-
expanded network (T = 2).

vertices from G, with indices 0, 1, 1′, . . ., as shown in Fig.
1(c). For each vertex v ∈ G, we denote these copies v(0) =
v(0)′, v(1), v(1)′, v(2), . . . , v(T )′. For each edge (u, v) ∈
G and time steps t, t + 1, 0 ≤ t < T , we then add the
gadget shown in Fig. 1(b) between u(t) ′, v(t)′ and u(t +
1), v(t+1). This gadget ensures that two agents cannot travel
in opposite directions on an edge in the same time step. To
finish the construction, for each vertex v ∈ G, we add one
edge between every two successive copies (i.e., we add the



edges (v(0), v(1)), (v(1), v(1)′), . . . , (v(T ), v(T )′)). These
correspond to the green and blue edges in Fig. 1(c) 1.

With the network, it is possible to setup an integer mul-
tiflow problem and solve the ILP with generic linear pro-
gramming packages2. Note that we are interested in finding
the minimal T such that a feasible integer solution exists. To
do this, we start with T = 1 and double up until a feasible
solution is found; the optimal T is then obtained by a binary
search. The algorithm is always complete since it is equiva-
lent to a breadth first search for a large T (i.e., if a solution
does not exist, we will eventually know that).

Computational Results
Computing optimal solutions. Somewhat surprisingly
(since ILP is in general NP-complete), our solution approach
obtains time optimal solutions to many input in reasonable
amount of time3. We highlight a few of these results here.
The first example is a variant of the 8-puzzle. Given an arbi-
trary setup (e.g. Fig. 2(a)), the goal state is that of Fig. 2(b).

8 03

7 21

5 46

0 21

3 54

6 87

(a) (b)

Figure 2: A variant of the 8-puzzle.

For this problem, our test runs show that it generally takes no
more than 5 steps to return an arbitrary configuration to the
desired goal configuration. For the given problem instance,
4 steps is enough. The 4 synchronous moves are shown in
Fig. 3. For this problem instance, the total computation time
is 0.1 second. Moving to a larger example with a 4 × 4 grid
and 16 agents, a typical time optimal solution is obtained
in 114.6 seconds. We also evaluated the algorithm on larger

Figure 3: A 4-step solution from our algorithm.

problem instances. One such instance is a 20×15 grid graph
with 20% of the vertices removed. For 20 agents with ran-
domly selected start and goal locations (start and goal of dif-
ferent agents may overlap), it takes about 58 seconds (on av-
erage) to compute the time optimal solution, which takes a
total of about 25 steps. When we bump the number of agents
to 40, the computational time becomes about 9 minutes, and
the optimal solution takes about 30 steps.

As a heuristic for solving larger problems. Since our al-
gorithm works well on instances with limited sizes, we also

1More details and ongoing computational evaluation results can
be found at http://arxiv.org/abs/1204.3830

2We used the Gurobi solver which is free for academic use.
Available at http://www.gurobi.com/.

3The runs were performed on a Quad-core 3.0G machine with
8GB of memory. The program is written in Java.

exploit its use as a generic heuristic for helping solve large
problem instances (32×32 grid with 20% vertices removed,
25-125 agents). By generic, we mean that our algorithm does
not depend on specific graph and agent configuration; we
simply apply it to resolve local conflicts on a neighborhood
of size up to 8 × 8. Each instance is allowed to run a max-
imum of 10 seconds. The results, each as an average over
500 runs, are listed in Table 1, along with other statistics
(we used Java and expect a 2-4x speedup from a C++ imple-
mentation).

Table 1: Evaluation of our algorithm as a generic heuristic.

Number of Agents
25 50 75 100 125

Running time (s) 0.038 0.225 0.732 1.944 4.935
% goals reached 100.00 99.95 99.78 98.84 98.47
Ave. path length 24.61 24.84 25.03 25.52 26.26
Heu. path length 24.60 24.67 24.56 24.60 24.51

Length difference 0.01 0.17 0.47 0.92 1.75

Conclusion and Future Work
In this work, we optimally solve a version of the multi-
agent path planning problem using an ILP formulation
obtained from the time-expanded network of the original
graph. We observe that the algorithm can provide time opti-
mal paths for many reasonable sized, complex problems ef-
ficiently. Viewing its effectiveness on solving small problem
instances, we successfully used the algorithm as a generic
heuristic for quickly solving large problem instances. We
note that many open questions remain, for example: 1. Could
the flow network be built using fewer vertices/edges? 2. Can
we improve the ILP formulation to make optimizers run
faster? 3. What about different optimality criteria? 4. How
hard is our formulation computationally? Is it NP-hard? NP-
complete?

References
Luna, R., and Bekris, K. E. 2011. Push and swap: Fast
cooperative path-finding with completeness guarantees. In
Twenty-Second International Joint Conference on Artificial
Intelligence, 294–300.
Silver, D. 2005. Cooperative pathfinding. In The 1st Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, 23–28.
Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In The Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence (AAAI-10), 173–178.
van den Berg, J.; Snoeyink, J.; Lin, M.; and Manocha, D.
2009. Centralized path planning for multiple robots: Op-
timal decoupling into sequential plans. In Proceedings
Robotics: Science and Systems.
Wang, K.-H. C., and Botea, A. 2011. Mapp: a scalable
multi-agent path planning algorithm with tractability and
completeness guarantees. Journal of Artificial Intelligence
Research 42:55–90.
Yu, J., and LaValle, S. M. 2012. Multi-agent path planning
and network flow. In The Tenth International Workshop on
Algorithmic Foundations of Robotics. to appear.


