
Multi-agent Path Planning and Network Flow

Jingjin Yu and Steven M. LaValle

Abstract. This paper connects multi-agent path planning on graphs (roadmaps) to
network flow problems, showing that the former can be reduced to the latter, there-
fore enabling the application of combinatorial network flow algorithms, as well as
general linear program techniques, to multi-agent path planning problems on graphs.
Exploiting this connection, we show that when the goals are permutation invariant,
the problem always has a feasible solution path set with a longest finish time of no
more than n+V −1 steps, in which n is the number of agents and V is the number of
vertices of the underlying graph. We then give a complete algorithm that finds such
a solution in O(nVE) time, with E being the number of edges of the graph. Tak-
ing a further step, we study time and distance optimality of the feasible solutions,
show that they have a pairwise Pareto optimal structure, and again provide efficient
algorithms for optimizing two of these practical objectives.

1 Introduction

Consider the problem illustrated in Fig. 1, which inspired the authors to pursue this
research. As an exercise (26-1 in [7]), the escape problem is to determine, given
m ≤ n2 evaders placed on m different points of an n× n grid, whether there are m
vertex disjoint paths from these m locations to m different points on the boundary of
the grid. Intended as a demonstration of applications of maximum flow algorithms
(Ch. 26 of [7]), it undoubtedly mimics multi-agent path planning problems on

Jingjin Yu
Department of Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign
e-mail: jyu18@uiuc.edu

Steven M. LaValle
Department of Computer Science,
University of Illinois, Urbana-Champaign
e-mail: lavalle@uiuc.edu

E. Frazzoli et al. (Eds.): Algorithmic Foundations of Robotics X, STAR 86, pp. 157–173.
DOI: 10.1007/978-3-642-36279-8_10 © Springer-Verlag Berlin Heidelberg 2013

158 J. Yu and S.M. LaValle

(a) (b)

Fig. 1 Examples of the escape problem on a 6×6 grid. The black discs are the initial evader
locations. The goal is to plan disjoint paths for the evaders to reach different vertices on the
boundary of the grid. a) An instance with solution given as the bold edges. b) An instance
without a solution.

graphs. Intrigued by the elegant network flow based solution to the escape prob-
lem, we wonder: How tightly are these two classes of problems intertwined and
how we may take advantage of the relationship?

In this paper, we explore and exploit the connection between multi-agent path
planning on collision-free unit-distance graphs (or CUGs, see Section 2 for the def-
inition) and network flow. We begin by showing that multi-agent path planning on
CUGs is closely related to a class of problems called dynamic network flow or net-
work flow over time. We then focus on the permutation invariant multi-agent path
planning problem on CUGs (by permutation invariant, we mean that goals are not
pre-assigned to agents. Instead, we only require that each goal is reached by a unique
agent), establishing that such problems always have solutions. To solve the problem
algorithmically, an adapted maximum flow algorithm is provided which plans col-
lision free paths for all agents with worst time complexity O(nVE), in which n is
the number of agents, V is the number of vertices of the CUG and E is the num-
ber of edges of the CUG. Moreover, we guarantee that the last agent takes time no
more than n+V − 1 to reach its goal, assuming that agents travel at unit speed.
Next, we construct efficient algorithms for obtaining temporally and spatially opti-
mal solutions. For example, our algorithm for shortest overall time has running time
O(nVE logV). We also show that these temporal and spatial objectives cannot be
optimized simultaneously (i.e., they have a Pareto optimal structure).

As a universal subroutine in multi-agent systems, collision-free path planning for
multiple agents finds applications in tasks spanning assembly [18, 31], evacuation
[4, 37], formation control [2, 36, 39, 41, 43], localization [14], object transportation
[29, 38], search and rescue [20], and so on. Given its importance, path planning for
multi-agent systems has remained as a subject of intense study for many decades.
Due to the vast size of the available literature, we only mention a most related subset
of the research in this field and refer the readers to [5, 24, 26] and the references
therein for a more comprehensive review of the subject.

When all agents are treated as a single agent with a high dimensional configura-
tion space, the problem can be solved using cylindrical algebraic decomposition [6]
or Canny’s roadmap algorithm [3], in theory. Such coupled approaches suffer from

Multi-agent Path Planning and Network Flow 159

the curse of dimensionality; even when sampling based methods [22, 25] are used,
instances involving only a small number of agents can be computationally challeng-
ing. This difficulty prompts the study of methods that seek to explore local features
whenever possible to avoid working with too many agents at a time. Among these,
decoupled planning is the most popular, which generally performs coordination of
robot motion after deciding a path for each robot [17, 21, 32, 35, 40, 47]. In contrast,
priority based methods force an order on agents to significantly reduce the search
space [10, 45]. Some more recent works using decoupling heuristics include apply-
ing optimal decoupling techniques to exploit problem instances with low degrees of
coupling [46], using push-and-swap primitives to avoid unnecessary exploration of
search space [28], and heuristics aimed at performance guarantees (completeness is
lost) [48].

Our algorithmic efforts in this paper focus on the permutation invariant multi-
agent path planning problem on CUGs. Such formulations, in both discrete and
continuous forms, are extensively studied as formation control problems [2, 36, 39,
41, 43], among others. On research that appears mostly related to this aspect of our
paper, a discrete grid abstraction model for formation control was studied in [30].
To plan the paths, a three-step process was used in [30]: 1) Target assignment, 2)
Path allocation, 3) Trajectory scheduling. Although it was shown that the process
always terminates, no characterization of solution complexity was offered. In con-
trast, we provide very efficient algorithms that solve a strictly more general class
of problems with optimality assurance. On the continuous side, a novel formation
space approach was employed to represent the entire formation of robot teams with
a single polynomial of which the roots correspond to the unassigned configurations
for the robots in the formation [23].

We delay the literature review on network flow, from which we devise our time
expansion construction for multi-agent path planning, to Section 3. The basic idea
of applying time expansion to robotics problem is far from new [10, 34]. To the
best of our knowledge, however, the research presented here is an original attempt
at proposing a general time expansion technique, connecting it to network flow, and
making full use of the benefits that come with this approach. We also note that our
exact and complete algorithms all come with low constants in their respective worst
case time complexity because they are derived from well studied fully combinatorial
algorithms1. Our simulation result, which we omit due to the length limit, confirms
this assertion.

There are three main contributions. First, we formally establish the link between
multi-agent path planning on graphs and network flow, showing how multi-agent
path planning can be reduced to network flow problems, thereby enabling the poten-
tial application of powerful tools from combinatorial optimization to path planning
for multiple agents in a principled way. Second, for the planning problem in which
agents do not have pre-specified goals, we give fast and complete algorithms for
finding collision free path sets that deliver every agent to a different goal. Third, we

1 A fully combinatorial algorithm is an algorithm that only adds, subtracts, and compares
values; no multiplication and division operations are allowed (i.e., ordered group opera-
tions versus ordered field operations) [16].

160 J. Yu and S.M. LaValle

study time and distance optimality of the feasible solutions to the aforementioned
problem, show that they have a pairwise Pareto optimal structure, and again provide
efficient algorithms for optimizing two of these practical objectives.

The rest of the paper is organized as follows. In Section 2, we define two multi-
agent path planning problems on CUGs. Section 3 starts with a quick review of
network flow problems and then proceeds to show the reduction from multi-agent
path planning on CUGs to network flow. Concentrating our efforts on the permuta-
tion invariant multi-agent path planning problem, Section 4 begins with a key con-
struction that allows us to tightly bound the time steps required for a time-expanded
network to have a feasible solution, which in turn enables efficient algorithms. Sec-
tion 5 takes a further step and studies solution optimality on three natural objectives,
showing the objectives have a Pareto optimal structure. We conclude in Section 6.
Proof sketches of key theorems are provided; full proofs are omitted due to length2.

2 Multi-agent Path Planning Problems on Collision-Free
Unit-Distance Graphs

Let G = (V,E) be a connected, undirected, simple graph (i.e., no multi-edges), in
which V = {vi} is its vertex set and E = {(vi,v j)} is its edge set. Let A= {a1, . . . ,an}
be a set of agents with initial and goal locations on G given by the injective maps
xI : A →V and xG : A→V , respectively. Note that A is essentially an index set; xI(A)
and xG(A) are the set of initial and goal locations, respectively. We require that xI(A)
and xG(A) be disjoint. For convenience, we let n = |A| and use V,E to denote the
cardinality of the sets V,E , respectively, since the meaning is usually clear from the
context. Let σ be a bijection3 that acts on xG, a feasible path for a single agent ai is
a map pi : Z+ → V with the following properties4: 1. pi(0) = xI(ai). 2. For each i,
there exists a smallest kmin ∈ Z

+ such that pi(kmin) = (σ ◦xG)(ai) for some fixed σ .
That is, the end point of the path pi is some goal vertex. 3. For any k ≥ kmin, pi(k)≡
(σ ◦ xG)(ai). 4. For any 0 ≤ k < kmin, (pi(k), pi(k+ 1)) ∈ E or pi(k) = pi(k+ 1).
Intuitively, think of the domain of the paths as discrete time steps. We say that two
paths pi, p j are in collision if there exists k ∈ Z

+ such that pi(k) = p j(k) (meet) or
(pi(k), pi(k+1)) = (p j(k+1), p j(k)) (head-on). If p(k) = p(k+1), the agent stays
at vertex p(k) during the time interval [k,k+ 1] .

As mentioned, in this paper, we work with a specific type of graph called the
collision-free unit-distance graph (CUG): A CUG is a connected, undirected graph
G satisfying the following: 1. Every edge is of unit length; 2. Given any two distinct
edges (u1,v1) and (u2,v2) of G with u1 �= u2,v1 �= v2, two disc shapes (or spherical
for 3D or more) agents of radius less than

√
2/4 traveling at unit speed through

these edges (starting simultaneously at u1,u2, respectively) will never collide. A

2 A comprehensive extended version of this paper, including all proofs and extensions, is
permanently available at http://arxiv.org/abs/1204.5717.

3 σ is introduced to unify the problem formulations; its use will become clear shortly. For
now, the reader may think of it simply as the identity map.

4
Z
+ :=N∪{0}.

Multi-agent Path Planning and Network Flow 161

radius of
√

2/4 is the largest possible for two adjacent agents to travel along an “L”
shaped path. One can easily verify that any graph with unit edge length and no acute
angles between adjacent edges is a CUG. Hence, a connected 2D grid with holes is
a CUG. Since subgraphs of 2D grids are easy to draw and visualize, we generally
use subgraphs of 2D grids when we create examples in this paper. With the above
setup, the multi-agent path planning on CUGs problem is defined as follows.

Problem 1. [Multi-agent Path Planning on CUGs] Given a 4-tuple (G,A,xI ,xG) in
which G is a CUG, find a set of paths P = {p1, . . . , pn} such that pi’s are feasible
paths for respective agents ai’s with σ being the identity map and no two paths pi, p j

are in collision.

We require the graph to be a CUG so that it is suitable for multi-agent path planning.
We formalize the rationale in the following observation.

Observation 1. Let pi, p j be two paths that are not in collision (as a partial solution
to Problem 1). Then two disc shaped agents5 of radius less than

√
2/4, starting at

the same time and moving along these respective paths with unit speed, will never
collide.

Observation 1 shows that a solution to Problem 1 provides a path set for disc agents
with radius

√
2/4 in A to reach their respective goals without a collision. It is easy

to see that not all instances of this problem are solvable. Moreover, the decision
version of Problem 1 (i.e., is there a solution that takes the agents to goals within
K time steps) is NP-complete6. If we remove the assumption that all agents must
reach their respective goals and allow permutation invariant paths (i.e., as long as
each goal gets occupied by a unique agent in the end), Problem 1 becomes the
permutation invariant multi-agent path planning on CUGs problem.

Problem 2. [Permutation Invariant Multi-agent Path Planning on CUGs] Given a
4-tuple (G,A,xI ,xG) in which G is a CUG, find a set of paths P = {p1, . . . , pn}
such that pi’s are feasible paths for respective agents ai’s for an arbitrary (but fixed)
permutation σ and no two paths pi, p j are in collision.

Problem 2 models the problem in which multiple identical or indistinguishable
agents need to be deployed for serving requests at different locations (for exam-
ple, formation control). This problem always has a solution: We simply plan and
execute one path at a time and use more “remote” goal vertices earlier to avoid pos-
sible blocking of later paths; a formal result on the existence of such a choice of
paths is given in Section 4.

5 Or spherical agents with radius less than
√

2/4, for dimensions higher than 2.
6 The lengthy proof is out of scope for the current paper. For curious readers, the NP-

hardness proof is similar to that from [42]; the NP membership proof, which is non trivial,
leads to efficient complete algorithms for solving Problem 1.

162 J. Yu and S.M. LaValle

3 Multi-agent Path Planning on CUGs and Network Flow

3.1 Network Flow

In this subsection we give a brief review of network flow problems and algorithms
pertinent to our problems. For surveys on network flow, see [1, 13]. We start with
the classic static network flow problems.

Static Network Flow. A network N = (G,u,c,S) consists of a directed graph G =
(V,E) with u,c : E → Z

+ as the maps defining the capacities and costs on edges,
respectively, and S ⊂ V as the set of sources and sinks. We let S = S+ ∪ S−, with
S+ denoting the set of sources and S− denoting the set of sink vertices. Following
conventions, for a vertex v ∈ V , let δ+(v) (resp. δ−(v)) denote the set of edges of
G going to (resp. leaving) v. A feasible (static) S+,S−-flow on this network N is a
map f : E → Z

+ that satisfies edge capacity constraints,

∀e ∈ E, f (e) ≤ u(e), (1)

the flow conservation constraints at non terminal vertices,

∀v ∈V\S,
�

e∈δ+(v)

f (e) −
�

e∈δ−(v)
f (e) = 0, (2)

and the flow conservation constraints at terminal vertices,
�

v∈S+

(
�

e∈δ−(v)
f (e) −

�

e∈δ+(v)

f (e)) =
�

v∈S−
(
�

e∈δ+(v)

f (e) −
�

e∈δ−(v)
f (e)). (3)

The quantity on either side of (3) is called the value of the flow.
The classic (single-commodity) maximum flow problem asks the question: Given

a network N , what is the maximum value of flow that can be pushed through the
network (i.e., seeking to maximize the value of the flow)? The minimum cost max-
imum flow problem further requires the flow to have minimum total cost among all
maximum flows. That is, we want to find the flow among all maximum flows such
that the quantity �

e∈E

c(e) · f (e) (4)

is minimized. Given integer inputs, integer maximum flow always exists, and many
polynomial time algorithms exist for finding such a solution [9, 15]. The minimum
cost maximum flow problem is equivalent to the minimum cost circulation problem,
which is also solvable in polynomial time [44].

When additional structure is put on S, additional questions arise. If we limit the
supply (resp. demand) of the source (resp. sink) vertices, we obtain a type of the
flow problem called the transshipment problem. To formalize this, let d : V → Z be
the supplies on the vertices of G. Given a vertex v ∈V , a positive d(v) suggests that

Multi-agent Path Planning and Network Flow 163

the vertex has positive supply (v ∈ S+) and a negative one suggests that the vertex
has positive demand (v ∈ S−). For all other vertices v, d(v) = 0. The basic version
of the transshipment problem asks for a feasible flow through the network that also
respects the supply/demand requirements

∀v ∈ S+,
�

e∈δ−(v)
f (e) −

�

e∈δ+(v)

f (e) = d(v),

∀v ∈ S−,
�

e∈δ+(v)

f (e) −
�

e∈δ−(v)
f (e) = d(v).

(5)

The transshipment problem becomes the evacuation problem when |S−| = 1 and
the demand of the single sink vertex is equal to the total supply of the source
vertices. The transshipment problem and the evacuation problem, as special cases
of the maximum flow problem, can be solved with maximum flow algorithms
mentioned above. If we instead require that vertices of S+,S− are paired up as
(s1,s′1), . . . ,(sk,s′k) and that commodity of type i can be injected only into si and
taken out at s′i, we get the multi-commodity flow problem. Optimality questions as
these from the single-commodity case can be asked here as well. Unlike in the sin-
gle commodity case, finding integer maximum flow for multi-commodity problems
is NP-hard in general and MAX SNP-hard (NP-hard to approximate below a certain
multiple of optimal flow value) even for some simple restrictions [8].

Dynamic Network Flow. If we consider that flowing commodities through edges
takes some time to complete, the problem becomes a dynamic network flow problem,
which sometimes is also called network flow over time. There are two common
variations of the dynamic network flow model: Discrete time and continuous time.
In a discrete time model, flows enter and exit from vertices at integer time steps
t = 0,1, . . . ,T . For a given edge e = (u,v) ∈ E , we may view the cost c(e) as the
time that is required to pass an amount of flow (not exceeding the capacity) from
the tail u to the head v of the edge e. Therefore, we may interpret a (static) flow
network N as a dynamic one without any change of notations. In the closely related
continuous time model, which we do not use in this paper, a flow rate is assigned
to each edge, designating how fast a unit of flow can pass through the edge. The
constraints imposed in the static network flow model generally apply to dynamic
network flow models, except that dynamic network flow further requires that at any
time, the flow passing through any edge cannot exceed the edge capacity.

Given a dynamic flow network, a question similar to the single-commodity max-
imum flow problem is the following: Starting at t = 0, what is the maximum units
of flow the can reach the sinks on or before time t = T ? It turns out that this prob-
lem can be solved using static flow algorithms such as Edmonds-Karp [9] over a
time-expanded network. For example, given the dynamic flow network in Fig. 2(a),
its time-expanded network with T = 4 is given in Fig. 2(b). To compute a flow
over the time expanded network, we first add a super source and connect it using

164 J. Yu and S.M. LaValle

y

x

2

0 1

2

1s
+

s
-

y

x

s
+

s
-

1 3 420

(a) (b)

Fig. 2 a) The (static) flow network with source s+ and sink s−. The numbers on the edges
are the costs/time delay for passing through these edges. We may assume that the capacities
are all unit capacities. b) The time-expanded network with 5 copies of the original vertices
(T = 4). All edges have unit capacity. There is a forward edge between two vertices u and v at
time steps t and t ′, respectively (e.g. x at t = 0 and y at t ′ = 1), if one of the following is true:
1. e = (u,v) is an edge of the static network with c(e) = t ′ − t (the black edges, which retain
the costs as c(e)’s); 2. u,v are the same vertex of the static network and t ′ − t = 1 (the green
edges, which have unit costs). The green edges are also called holdover edges since traveling
through a green edge is the same as the agent not actually moving.

outgoing edges to all copies of source vertices at t = 0, and add a super sink and con-
nect all copies of sink vertices for all t to it using outgoing edges (the super source,
super sink, and additional edges are not shown in Fig. 2(b)). With this construction,
a static flow on the time-expanded network corresponds to a dynamic flow on the
dynamic flow network.

Lemma 2. For a sufficiently large T , a flow for a dynamic flow network N is feasi-
ble if and only if the corresponding static flow on the time-expanded network of N
is feasible.

A proof of Lemma 2 can be found in [12]. Note that determining a minimally suf-
ficient T required by Lemma 2, which directly affects the running time of the re-
sulting algorithm, is non-trivial. The standard maximum flow algorithms have time
complexity depending polynomially on T and are therefore pseudopolynomial in
general. For a special class of problems, the quickest transshipment problem, of
which the goal is finding the quickest feasible flow for a transshipment problem
over a dynamic network, a strongly polynomial time algorithm7 exists [19]. How-
ever, the algorithm requires calling subroutines (for example, submodular function
optimization routines) that are not combinatorial algorithms and also has with large
constant terms when it comes to asymptotic time complexity.

7 An algorithm is a strongly polynomial algorithm if: 1. The number of operations in the
arithmetic model of computation is bounded by a polynomial in the number of integers in
the input instance, and 2. The space used by the algorithm is bounded by a polynomial in
the size of the input [16].

Multi-agent Path Planning and Network Flow 165

3.2 Equivalence between Multi-agent Path Planning on CUGs
and Maximum Network Flow

In this subsection, we establish a reduction from the problems of our interest to
multi-commodity network flow. For illustration purposes, we use the simple graph
G in Fig. 3(a), with initial locations {s+i }, i = 1,2 and goal locations {s−i }, i = 1,2.
An instance of Problem 1 is given by (G,{a1,a2},xI : ai �→ s+i ,xG : ai �→ s−i). To
apply maximum flow algorithms, we construct from G a time-expanded directed
graph G′, part of which is shown in Fig. 3(c). We construct Fig. 3(c) as follows.

Since we cannot create an infinite time-expanded network, we need to spec-
ify the required number of time steps. For now assume that this number is some
sufficiently large T (that is, if a flow with value F is achievable with an arbitrar-
ily long time expansion, then F is also achievable with only T time steps). After
fixing a T , we create 2T + 1 copies of vertices from G, with indices 0,1,1′, . . .,
as shown in Fig. 3(c). For each vertex v ∈ G, we denote these copies v(0) =
v(0)′,v(1),v(1)′,v(2), . . . ,v(T)′. For each edge (u,v) ∈ G and time steps t, t + 1,
0 ≤ t < T , we then add the gadget shown in Fig. 3(b) between u(t)′,v(t)′ and
u(t + 1),v(t + 1) (arrows from the gadget are omitted from Fig. 3(c) since they
are too small to draw). This gadget ensures that two agents cannot travel in op-
posite directions on an edge in the same time step. For the gadget, we assign unit
capacity to all edges, unit cost to the horizontal middle edge, and zero cost to the
other four edges. To finish the construction of Fig. 3(c), for each vertex v ∈ G,
we add one edge between every two successive copies (i.e., we add the edges
(v(0),v(1)),(v(1),v(1)′), . . . ,(v(T),v(T)′)). These correspond to the green and blue
edges in Fig. 3(c). For all green edges, we assign them unit capacity and cost; for all
blue edges, we assign them unit capacity and zero cost.

s 1
+

s 2
+

s 1
-

s 2
- u(t+1)u(t) 0

v(t+1)v(t) 0

s 1
+

s 2
+

s 1
-

s 2
-

20 1
0

1

(a) (b) (c)

Fig. 3 a) A simple CUG G. b) A gadget for splitting an undirected edge through time steps.
c) Part of the time-expanded network (T = 2).

The graph Fig. 3(c) is the main piece of G′, which is mostly done with the excep-
tion of the set S. We may simply let S+ = {u(0) : u ∈ {s+i }} and S− = {v(T)′ : v ∈
{s−i }}. That is, S+ contains the first copies of the initial locations and S− the last
copies of the goal locations. The network N ′ = (G′,u,c,S+∪S−) is now complete;
we have reduced Problem 1 to an integer maximum multi-commodity flow problem
on N ′ with each agent from A as a single type of commodity.

166 J. Yu and S.M. LaValle

Theorem 3. Given an instance of Problem 1 with input parameters (G,A,xI ,xG),
there is a bijection between its solutions (with maximum number of time steps up to
T) and the integer maximum multi-commodity flow solutions of flow value n on the
time-expanded network N ′ constructed from (G,A,xI ,xG) with T time steps.

PROOF SKETCH. Fixing a T , one can establish a bijection between solutions on the
original network and solutions on the time-expanded network with T time steps. ��
Since integer maximum multi-commodity flow is NP-hard, the above construction
does not directly offer an efficient solution to Problem 1. Moving to Problem 2,
allowing an arbitrary permutation σ to act on xG means that we may treat all agents
as a single type of commodity. Theorem 3 then implies that Problem 2 is equivalent
to the quickest transshipment problem, which is solvable in polynomial time using
subroutines for optimizing submodular functions. In the next section, we show that
we can do better by bounding the required time steps for finding a feasible solution
to Problem 2 and then apply more standard combinatorial algorithms for network
flow to solve it.

4 Efficient Combinatorial Algorithms for Permutation
Invariant Multi-agent Path Planning on CUGs

If we choose to apply combinatorial network flow algorithms over the time-expanded
network to find solutions to Problem 2, the first priority is to determine the required
number of time steps necessary to find a solution; otherwise we cannot declare that
the algorithm is complete. We now provide a tight bound on T . Let (G,A,xI ,xG)
be an instance of Problem 2. We first prove some intermediate results on path
sets over G. To distinguish these paths from the solution path set, denote them as
Q = {q1, . . . ,qn}. For convenience, head(qi), tail(qi), and len(qi) denote the start
vertex, end vertex, and length of qi, respectively. With a slight abuse of notation,
V (·), E(·) denote the vertex set and edge set of the input parameter, which can be
either a path, qi, or a set of paths, such as Q. To start off, we want a path set Q with
the following properties:

Property 1. For all 1 ≤ i ≤ n, head(qi) ∈ xI(A) and tail(qi) ∈ xG(A). For any two
paths qi,q j, head(qi) �= head(q j) and tail(qi) �= tail(q j).

Property 2. Each path qi is a shortest path between head(qi) and tail(qi) on G.

Property 3. The total length of the path set Q is minimal.

Property 4. If we orient the edges of every path qi ∈ Q from head(qi) to tail(qi),
no two paths share a common edge oriented in different directions.

Lemma 4. There exists a set of paths Q = {q1, . . . ,qn} that satisfies Properties 1-4.

PROOF SKETCH. Properties 1 and 2 are merely restrictions to have the initial and
goal vertices paired up using shortest paths. Since we work with a discrete problem,
a path set satisfying Property 3 always exists. Property 4 is implied by Property 3:

Multi-agent Path Planning and Network Flow 167

If on the contrary that two edges from two paths are oriented differently, switching
destinations on those paths will reduce the total path length by two. ��
The technique from the proof of Lemma 4 can be generalized to show that oriented
paths cannot form a directed cycle.

Proposition 5. A path set Q that satisfies Properties 1-3 induces a directed acyclic
graph (DAG) structure on E(Q).

A standalone goal vertex is a vertex v ∈ xG(A) such that there is a single path q ∈ Q
containing v.

Corollary 6. A path set Q that satisfies Properties 1-3 has a standalone goal vertex.

PROOF SKETCH. The absence of standalone vertices implies the existence of a di-
rected cycle, contradicting Proposition 5. ��
The existence of a standalone goal vertex allows the construction of a path set which
decomposes into paths that can be sequentially scheduled without colliding into
each other. We characterize such a path set as one with an additional property.

Lemma 7. There exists a path set Q satisfying Properties 1-4 and the following
additional property:

Property 5. Let Qi := {qi, . . . ,qn}. For any 1 ≤ i ≤ n, restricting to Qi, among all
possible paths connecting an initial location (of Qi) to a standalone goal location (of
Qi) using oriented edges from E(Qi), qi is one shortest such.

PROOF SKETCH. Using an arbitrary shortest path set Q0, one can iteratively con-
struct a new path set Q using edges of E(Q0), staring with a “furthest” standalone
vertex, that satisfies Property 5. ��
If we schedule agents using a path set Q satisfying properties 1-5, there can never
be cases where two agents block each other, as a direct consequence of Lemma 4.
There is still the possibility that one agent blocks another. The following theorem
shows that such blocking can be minimized.

Theorem 8. Given an instance of Problem 2 with input parameters (G,A,xI ,xG)
and let � be the largest pairwise distance between a member of xI(A) and a member
of xG(A),

�= max
∀u∈xI(A),v∈xG(A)

dist(u,v). (6)

A time-expanded network N ′ with T = n+ �− 1 is necessary and sufficient for a
feasible solution to Problem 2 to exist.

PROOF SKETCH. Starting with a path set Q satisfying Properties 1-5 and letting path
qi start at time step t = i− 1, one can show that no collision can occur. ��
Since � cannot be larger than V , the number of vertices of G, the following corollary
is immediate.

168 J. Yu and S.M. LaValle

Corollary 9. For every instance of Problem 2, a feasible solution exists.

In particular, the construction in the proof of Lemma 4 yields a complete (may not be
efficient) algorithm for Problem 2. In addition to confirming that any maximum flow
algorithm over the time expanded network N ′ with T = n+�−1 is a also complete
algorithm, Theorem 8 enables us to show that such algorithms are efficient.

Theorem 10. Problem 2 is solvable usign a combinatorial algorithm in strongly
polynomial time.

Using the Ford-Fulkerson algorithm [11], the time complexity is O(nVE). In prac-
tice, even better running times are possible. If G is a planar graph, we have E ∼O(V)

and �∼ O(V
1
2). The time complexity then becomes O(MF(n,V (n+V

1
2 −2),V(n+

V
1
2 − 2))) ∼ O(MF(n,V (n +V

1
2),V (n +V

1
2))). Since in our case n < V , Ford-

Fulkerson gives us the running time O(nV (n+V
1
2)) = O(n2V + nV

3
2).

5 Optimal Solutions

In this section, we present optimal solutions for the permutation invariant multi-
agent path planning problem. After introducing several temporal and spatial ob-
jectives of practical importance, we apply techniques from network flow to obtain
optimal solutions for two of these objectives. Since these objectives are different
from the basic version of Problem 2, the time bound T may be different. Lastly,
we show that these objectives possess a Pareto optimal structure and they cannot be
optimized simultaneously.

5.1 Optimizing over the Feasible Solutions

Having found feasible solutions to Problem 2, we turn the focus to the optimality of
these solutions for practical purposes. As mentioned in Section 2, we intend to use
the formulation as a model for scenarios such as multi-robot servicing. For many
applications, time optimality is a top priority. Optimizing over the feasible solutions
to Problem 2 (that is, we require that all goals are reached), there are two natural
criteria for measuring time optimality:

Objective 1. Minimizing the average time it takes for all agents to reach their goals.

Objective 2. Minimizing the time it takes for the last agent to reach its goal.

In terms of agents (robots or people) serving requests, Objective 1 seeks to minimize
the average time before a request gets served. The sufficient condition on the time
bound T for this objective is given below.

Multi-agent Path Planning and Network Flow 169

Theorem 11. There exists an optimal solution for Objective 1 in a time-expanded
network with T = (n− 1)(n− 2)/2+V.

The second objective, minimizing the time that its last goal is reached, provides a
lower bound on the time that is required to reach all goals. Solutions optimizing
this objective are useful in providing worst servicing time estimate or guarantee.
Solutions to the quickest transshipment problem [19] yield optimal solutions to this
objective. However, we can avoid using submodular function optimization routines
if we have a polynomial bound on T , which is provided in the following corollary
of Theorem 8.

Corollary 12. There exists an optimal solution for Objective 2 in a time-expanded
network with T = n+ �− 1.

To see that Corollary 12 is true, note that T = n+ �− 1 is sufficient for finding
a feasible solution, which must have completion time as large as that of a solu-
tion to Objective 2. With the bound on T , running logT rounds (via binary search)
of maximum flow over time-expanded network with different time horizon then
gives us an optimal solution to Objective 2. The running time is then bounded
by O(MF(n,V 2,V E) logV), which is strongly polynomial. In particular, with Ford-
Fulkerson, the running time becomes O(nVE logV). After time optimality, another
very useful solution property to optimize is the total distance traveled by the agents,
i.e., spatial optimality:

Objective 3. Minimizing the total distance traveled by the agents on G.

Because we work with a CUG, if an agent ai actually moves along path pi between
time steps t and t + 1, pi(t) must be different from pi(t + 1). These correspond to
the black edges in the time-expanded network (see Fig. 3(b)). Thus, to optimize this
objective, we can find the shortest total distance traveled by all agents via setting the
cost of the holdover edge (green edges in Fig. 3(b)) to zero and then running min-
imum cost maximum flow algorithm over the time-expanded network. The method
is again strongly polynomial, with complexity O(V 2E logV), due to the following
corollary.

Corollary 13. There exists an optimal solution for Objective 3 in a time-expanded
network with T = n+ �− 1.

5.2 Pareto Optimality between the Objectives

From the discussion in the previous subsection, we observe that each of the three
objectives is of practical importance. At this point, one might be tempted to seek
solutions that optimize multiples of these objectives simultaneously. We show that

170 J. Yu and S.M. LaValle

(a) (b)

Fig. 4 a) Overlaying grid on a workspace with obstacles. b) Adapting a roadmap to obtain a
graph that can be used with our multi-agent path planning algorithms.

this is not possible for each pair of these objectives. In the following theorem, we
say that two objectives are compatible if and only if they can be optimized simulta-
neously. Otherwise, we say the objectives are incompatible.

Theorem 14. Over the feasible solutions to Problem 2, Objectives 1-3 are pairwise
incompatible.

6 Conclusion, Future Work, and Open Problems

In this paper, we established the close link between two classes of problems: Multi-
agent path planning on CUGs and network flow. Focusing on the permutation in-
variant versions of the multi-agent path planning problem, we proved a tight bound
on the number of time steps necessary and sufficient for a feasible path set to exist in
the time-expanded network, enabling efficient algorithmic solutions to these prob-
lems. We then explored optimality issues, demonstrating that the time-expansion
bound generally carry over to yield strongly polynomial algorithms for optimizing
two of these practical objective functions. Interestingly, each pair of these objectives
cannot be optimized simultaneously.

Given our study, an immediate question or criticism is the applicability of the
results to problems beyond CUGs. After all, real agents, whether robots or people,
do not always live on a discrete graph. To answer this question, we have research
under way that explores the idea of overlaying the CUGs on the actual workspace.
That is, we may first create a roadmap over the workspace that captures the con-
nectivity and then discretize the roadmap over which the statement of Observation
1 continues to hold (as long as the edges are close to unit length the angle between
two edges is obtuse, similar version of Observation 1 can be stated) [33]. A basic
solution (Fig. 4(a)) may be to put a grid on the roadmap and delete vertices inside or
close to obstacles. To overcome the issue of the inherited Manhattan metric of grids,
we may adapt the grid to align with the geodesics of the environment. For example,
for a two dimensional workspace with polygonal obstacles, we can arrange the grid
edges to follow edges of the visibility graph [27] of the environment when possible.

Multi-agent Path Planning and Network Flow 171

When clearance is tight, we may start with a maximum clearance roadmap [33] and
add the vertices carefully (see Fig. 4(b)). Note that because the workspace is often
two dimensional, these preparations can be computed relatively efficiently.

Many interesting open problems remain. Although finding a distance optimal so-
lution to Problem 1 using a time-expanded network is impractical due to its intrinsic
hardness, the network flow approach might still produce efficient methods that yield
basic feasible solutions since the time-expanded network has a forward only struc-
ture. In addition, approximation algorithms on integer multi-commodity flow could
lead to better heuristics for optimal solution search. Along this line, we only touched
the most essential results in the field of network flow, which are but the tips of an
iceberg. It would not be surprising that results from the vast amount of network
flow literature could be readily carried over to tackle path planning problems, either
along the structure we proposed in this paper or in some other forms. As an example,
for Problem 2, since Objectives 1-3 are all of practical concerns but incompatible, it
is desirable to seek solutions that provide performance guarantees on each of these
objectives. Network flow methods, closely relate to linear programming, appear to
be promising tools for such parametric optimization tasks.

Acknowledgments. The authors thank Max Katsev for double checking the proofs and the
anonymous reviewers for their constructive suggestions. This work was supported in part by
NSF grants 0904501 (IIS Robotics) and 1035345 (Cyberphysical Systems), DARPA SToMP
grant HR0011-05-1-0008, and MURI/ONR grant N00014-09-1-1052.

References

1. Aronson, J.E.: A survey on dynamic network flows. Annals of Operations Re-
search 20(1), 1–66 (1989)

2. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE
Transaction on Robotics and Automation 14(6), 926–939 (1998)

3. Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1988)
4. Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network models for building evacuation.

Management Science 28(1), 86–105 (1982)
5. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun,

S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press,
Cambridge (2005)

6. Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–
183. Springer, Heidelberg (1975)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press, Cambridge (2001)

8. Costa, M.-C., Létocart, L., Roupin, F.: Minimal Multicut and Maximal Integer Multiflow:
A Survey. European Journal of Operational Research 162, 55–69 (2005)

9. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for net-
work flow problems. J. ACM 19(2), 248–264 (1972)

10. Erdmann, M.A., Lozano-Pérez, T.: On multiple moving objects. In: Proceedings IEEE
International Conference on Robotics & Automation, pp. 1419–1424 (1986)

172 J. Yu and S.M. LaValle

11. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Research Memorandum
RM-1400, The RAND Corporation (November 1954)

12. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows.
Operations Research 6, 419–433 (1958)

13. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, New Jersey
(1962)

14. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative
multi-robot localization. Autom. Robots 8(3), 325–344 (2000)

15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. In: STOC
1986: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
pp. 136–146. ACM, New York (1986)

16. Grötschel, M., Schrijver, A., Lovász, L.: Complexity, Oracles, and Numerical Computa-
tion. Springer (1988)

17. Guo, Y., Parker, L.E.: A distributed and optimal motion planning approach for multiple
mobile robots. In: Proceedings IEEE International Conference on Robotics and Automa-
tion, pp. 2612–2619 (2002)

18. Halperin, D., Latombe, J.-C., Wilson, R.: A general framework for assembly planning:
The motion space approach. Algorithmica 26(3-4), 577–601 (2000)

19. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Operations
Research 25(1), 36–62 (2000)

20. Jennings, J.S., Whelan, G., Evans, W.F.: Cooperative search and rescue with a team of
mobile robots. In: Proceedings IEEE International Conference on Robotics & Automa-
tion (1997)

21. Kant, K., Zucker, S.: Towards efficient trajectory planning: The path velocity decompo-
sition. International Journal of Robotics Research 5(3), 72–89 (1986)

22. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics
& Automation 12(4), 566–580 (1996)

23. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot forma-
tions. IEEE Transactions on Robotics 22(4), 650–665 (2006)

24. Latombe, J.-C.: Robot Motion Planning. Kluwer, Boston (1991)
25. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. TR 98-11,

Computer Science Dept., Iowa State University (October 1998)
26. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006),

http://planning.cs.uiuc.edu/
27. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among

polyhedral obstacles. Communications of the ACM 22(10), 560–570 (1979)
28. Luna, R., Bekris, K.E.: Push and swap: Fast cooperative path-finding with completeness

guarantees. In: Twenty-Second International Joint Conference on Artificial Intelligence,
pp. 294–300 (2011)

29. Matarić, M.J., Nilsson, M., Simsarian, K.T.: Cooperative multi-robot box pushing. In:
Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
556–561 (1995)

30. Miklic, D., Bogdan, S., Fierro, R., Nestic, S.: A discrete grid abstraction for formation
control in the presence of obstacles. In: Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3750–3755 (2009)

31. Nnaji, B.: Theory of Automatic Robot Assembly and Programming. Chapman and Hall
(1992)

32. O’Donnell, P.A., Lozano-Pérez, T.: Deadlock-free and collision-free coordination of two
robot manipulators. In: Proceedings IEEE International Conference on Robotics & Au-
tomation, pp. 484–489 (1989)

http://planning.cs.uiuc.edu/

Multi-agent Path Planning and Network Flow 173

33. O’Dúnlaing, C., Yap, C.K.: A retraction method for planning the motion of a disc. Jour-
nal of Algorithms 6, 104–111 (1982)

34. Peasgood, M., Clark, C., McPhee, J.: A complete and scalable strategy for coordinating
multiple robots within roadmaps. IEEE Transactions on Robotics 24(2), 283–292 (2008)

35. Peng, J., Akella, S.: Coordinating Multiple Robots with Kinodynamic Constraints along
Specified Paths. In: Boissonat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Al-
gorithmic Foundations of Robotics V. STAR, vol. 7, pp. 221–237. Springer, Heidelberg
(2004)

36. Poduri, S., Sukhatme, G.S.: Constrained coverage for mobile sensor networks. In: Pro-
ceedings IEEE International Conference on Robotics & Automation (2004)

37. Rodriguez, S., Amato, N.M.: Behavior-based evacuation planning. In: Proceedings IEEE
International Conference on Robotics and Automation, pp. 350–355 (2010)

38. Rus, D., Donald, B., Jennings, J.: Moving furniture with teams of autonomous robots.
In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 235–242 (1995)

39. Shucker, B., Murphey, T., Bennett, J.K.: Switching rules for decentralized control with
simple control laws. In: American Control Conference (July 2007)

40. Siméon, T., Leroy, S., Laumond, J.-P.: Path coordination for multiple mobile robots:
A resolution complete algorithm. IEEE Transactions on Robotics & Automation 18(1)
(February 2002)

41. Smith, B., Egerstedt, M., Howard, A.: Automatic generation of persistent formations
for multi-agent networks under range constraints. ACM/Springer Mobile Networks and
Applications Journal 14(3), 322–335 (2009)

42. Surynek, P.: An optimization variant of multi-robot path planning is intractable. In: The
Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1261–
1263 (2010)

43. Tanner, H., Pappas, G., Kumar, V.: Leader-to-formation stability. IEEE Transactions on
Robotics and Automation 20(3), 443–455 (2004)

44. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinator-
ica 5(3), 247–255 (1985)

45. van den Berg, J., Overmars, M.: Prioritized motion planning for multiple robots. In: Pro-
ceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (2005)

46. van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for
multiple robots: Optimal decoupling into sequential plans. In: Proceedings Robotics:
Science and Systems (2009)

47. Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robotics
and Autonomous Systems 23, 125–152 (1998)

48. Wang, K.-H.C., Botea, A.: Tractable multi-agent path planning on grid maps. In: Pro-
ceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI 2009,
pp. 1870–1875. Morgan Kaufmann Publishers Inc., San Francisco (2009)

	Multi-agent Path Planning and Network Flow
	Introduction
	Multi-agent Path Planning Problems on Collision-Free Unit-Distance Graphs
	Multi-agent Path Planning on CUGs and Network Flow
	Network Flow
	Equivalence between Multi-agent Path Planning on CUGs and Maximum Network Flow

	Efficient Combinatorial Algorithms for Permutation Invariant Multi-agent Path Planning on CUGs
	Optimal Solutions
	Optimizing over the Feasible Solutions
	Pareto Optimality between the Objectives

	Conclusion, Future Work, and Open Problems
	References

