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Optimal Multirobot Path Planning on Graphs:
Complete Algorithms and Effective Heuristics

Jingjin Yu and Steven M. LaValle

Abstract—We study optimal multirobot path planning on graphs
(MPP) over four minimization objectives: the makespan (last ar-
rival time), the maximum (single-robot traveled) distance, the to-
tal arrival time, and the total distance. Having established previ-
ously that these objectives are distinct and NP-hard to optimize, in
this paper, we focus on efficient algorithmic solutions for solving
these optimal MPP problems. Toward this goal, we first establish
a one-to-one solution mapping between MPP and a special type
of multiflow network. Based on this equivalence and integer lin-
ear programming (ILP), we design novel and complete algorithms
for optimizing over each of the four objectives. In particular, our
exact algorithm for computing optimal makespan solutions is a
first that is capable of solving extremely challenging problems with
robot-vertex ratios as high as 100%. Then, we further improve the
computational performance of these exact algorithms through the
introduction of principled heuristics, at the expense of slight opti-
mality loss. The combination of ILP model based algorithms and
the heuristics proves to be highly effective, allowing the computa-
tion of 1.x-optimal solutions for problems containing hundreds of
robots, densely populated in the environment, often in just seconds.

I. INTRODUCTION

W E study the problem of optimal multirobot path planning
on graphs (MPP), focusing on the design of complete

algorithms and effective heuristics. In an MPP instance, the
robots are uniquely labeled (i.e., distinguishable) and are con-
fined to an arbitrary connected graph. A robot may move from
a vertex to an adjacent one in one time step in the absence of
collision, which occurs when two robots simultaneously move
to the same vertex or along the same edge in opposing direc-
tions. A distinguishing feature is that our formulation allows
robots on fully occupied cycles to rotate synchronously. Such a
formulation, more appropriate for multirobot applications, has
not been widely studied (except, e.g., [1], [2]). Over the basic
MPP formulation, we look at four commonly studied minimiza-
tion objectives: the makespan (last arrival time), the maximum
(single-robot traveled) distance, the total arrival time, and the
total distance. These global objectives have direct relevance to-
ward real-world multirobot applications, including autonomous
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warehouse systems [3]. For example, minimizing makespan is
equivalent to minimizing the task completion time, whereas
minimizing total distance is applicable to minimizing the fuel
consumption of the entire fleet of robots.

In a related work [4], we show that these objectives are pair-
wise distinct and NP-hard to optimize, suggesting that efforts
on solving optimal MPP should be directed at finding effective
near-optimal algorithms. In this paper, we make an attempt to-
ward this goal and propose a novel yet general framework for
solving MPP optimally. Examining space and time dimensions
jointly, we observe a one-to-one mapping between a solution for
an MPP instance and that for a multicommodity network flow
problem (multiflow1) derived from the MPP problem. Based
on the equivalence, we translate the MPP problem into an in-
teger linear programming (ILP) model solvable using an ILP
solver. The generality of ILP allows the encoding of all four ob-
jectives to yield complete optimization algorithms. From here,
we further introduce several heuristics to boost the algorith-
mic performance at a slight loss of solution optimality. Our
method is especially effective in computing near-optimal min-
imum makespan solutions, capable of computing 1.x-optimal
solutions for hundreds of robots densely populated on the un-
derlying graph, often in just seconds.

Related work: Multirobot path planning problems, in its many
formulations, have been actively studied for decades [2], [5]–
[19]. As a universal subroutine, collision-free path planning for
multiple robots finds applications in tasks spanning assembly
[20], [21], evacuation [22], formation control [23]–[27], local-
ization [28], microdroplet manipulation [29], [30], object trans-
portation [31], [32], search and rescue [33], etc. See [34]–[36]
and the references therein for a more comprehensive review on
the general subject of multirobot path and motion planning.

The algorithmic study of graph-based multirobot path plan-
ning problems, which is the focus of this paper, can be traced to
1879 [37], in which Story makes the observation that the feasi-
bility of the 15-puzzle [38] depends on the parity of the game.
The 15-puzzle is a restricted MPP instance moving 15 labeled
game pieces on a 4 × 4 grid, from some initial configuration
to some goal configuration. The restriction is that only a single
game piece near the single empty vertex may move to the empty
vertex in a step; multiple mobile robots, on the other hand, could
move simultaneously. A generalization of the 15-puzzle is intro-
duced in [39], extending the problem from 15 game pieces on a
4 × 4 grid to n − 1 labeled pebbles on an n-vertex, 2-connected
graph. It is shown, together with an implied algorithm, that
an instance is always feasible if the graph is nonbipartite.

1multiflow is used here to refer the multicommodity flow problem.

1552-3098 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html


1164 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 5, OCTOBER 2016

When the graph is bipartite (such as the 15-puzzle), all pebble
configurations are split into two groups of equal size such that
any two configurations in the same group form a feasible in-
stance. A further generalization is introduced in [40], allowing
p < n pebbles on a graph with n vertices. For this problem, an
O(n3) algorithm is provided to solve an instance or decide that
the instance is infeasible.

As computer games and multirobot systems gain popularity,
concurrent movements are introduced and pebbles are replaced
with robots (or agents). On the feasibility side, the MPP problem
studied in this paper is shown to be solvable also in O(n3) time
[41]. To distinguish the formulations, we denote the formula-
tion that does not allow cyclic rotations of robots along fully
occupied cycles as cycle-free MPP. Until recently, the majority
of algorithmic study on MPP is on the cycle-free case. Since the
problem is shown to be tractable [40], most algorithmic study
of cycle-free MPP put some emphasis on optimality. Through
the clever use of primitive operations, algorithms from [10],
[12], [13], [42], and [43] could quickly solve difficult problems
with some form of completeness guarantees. These algorithms
do not have optimality guarantees, but the produced solutions
are often of much better quality than the O(n3) bound given by
Kornhauser et al. [40]. For more discussion and references on
suboptimal methods, see [42] and [43].

On the optimality side, most algorithmic results explore ways
to limit the exponential search space growth induced by mul-
tiple robots. One of the first such algorithms, local repair A*
(LRA*) [6], plans robot paths simultaneously and performs lo-
cal repairs when conflicts arise. Focusing on fixing the (locality)
shortcomings of LRA*, windowed hierarchical cooperative A*
(WHCA*) proposes using a space-time window to allow more
choices for resolving local conflicts while simultaneously limit-
ing the search space size [8]. A technique called subdimensional
expansion is shown to perform well in complex environments
[44]; the robot density is, however, relatively low (104 cells per
robot according to the paper). In [1] and [2], instead of applying
an agnostic dissection of an instance, the natural idea of inde-
pendence detection (ID) is explored to only consider multiple
robots jointly (the source of exponential search space growth)
as necessary. With operator decomposition (OD) that treats each
legal move as an “operator,” the authors produced algorithms
(ID, OD + ID, and related variants) that prove to be quite ef-
fective in computing total time- or distance-optimal solutions.
We point out that ID and OD + ID have support for handling
cycles (i.e., they apply to MPP instead of cycle-free MPP). More
recently, increasing cost tree search (ICTS [45]) and conflict-
based search (CBS [46]) have further pushed the performance on
cycle-free MPP. Algorithms designed for minimizing makespan
have also been attempted, e.g., [47], but the solution quality de-
grades rapidly as the robot-vertex ratio increases.

Many approaches have also been proposed for solving mul-
tirobot path planning problems in the continuous domain. A
representative method called velocity obstacles [48]–[50] ex-
plicitly examines velocity-time space for coordinating robot
motions. In [30], mixed integer programming models are em-
ployed to encode the robot interactions. A method based on the
space-time perspective, similar to ours, is explored in [51]. In

[52], an A*-based search is performed over a discrete roadmap
abstracted from the continuous environment. In [53], discrete-
RRT is proposed for the efficient search of multirobot roadmaps.
Algorithms for discrete MPP, cycle-free or not, have also helped
solving continuous problems [16], [54].

Contributions: We study the optimal MPP formulation al-
lowing up to n robots on a n-vertex connected graph, which we
believe is better suited for multirobot applications. The formula-
tion is not widely studied, perhaps due to the inherent difficulty
in handling cyclic rotations of robots. Beside the novelty of
the problem, this work brings several algorithmic contributions.
First, based on the equivalence relationship between MPP and
multiflow, we establish a general and novel solution framework,
allowing the compact encoding of optimal MPP problems using
ILP models. We show that the framework readily produces com-
plete algorithms for minimizing the makespan (last arrival time),
the maximum (single-robot traveled) distance, the total arrival
time, and the total distance, which are perhaps the four most
common global objectives for MPP. The resulting algorithms,
in particular the one for computing the minimum makespan, are
highly effective in solving challenging problem instances with
a robot-vertex ratio up to 100%. Second, we introduce several
principled heuristics, in particular a k-way split heuristic that
divides an MPP instance over the time horizon, to give the exact
algorithms a sizable performance boost at the expense of some
loss of solution optimality. With these heuristics, we are able
to extend our algorithms to tackle problems with several hun-
dred robots that are extremely densely populated, while at the
same time maintain 1.x solution optimality. Last, but not least,
our successful exploitation of ILP to attack optimal MPP shows
that the ILP method is competitive with direct search methods
in this problem domain, especially when the number of robots
becomes large. This is surprising because ILP solvers are not
designed specifically for MPP.

The rest of the paper is organized as follows. In Section II, we
define optimal MPP problems and provide a brief review of net-
work flow. We establish the equivalence relationship between
MPP and network flow in Section III. We derive complete algo-
rithms in Section IV and continue to describe the performance-
boosting heuristics in Section V. We evaluate the algorithms in
Section VI and conclude in Section VII. This paper is partly
based on [17], [55], [56].2 In comparison to [17] and [55], be-
side demonstrating significantly improved computational per-
formance due to the addition of the k-way split heuristic, we
have substantially extended the generality of our ILP-based al-
gorithmic framework, which now supports all common global
time- and distance-based objectives.

II. PRELIMINARIES

We now define MPP and the optimality objectives studied in
this paper. Following the problem statements, we provide a brief
review of network flow.

2[56] is a preliminary poster presentation.



YU AND LAVALLE: OPTIMAL MULTIROBOT PATH PLANNING ON GRAPHS: COMPLETE ALGORITHMS AND EFFECTIVE HEURISTICS 1165

Fig. 1. (a) 9-puzzle problem. (b) Desired goal configuration.

Fig. 2. Some feasible and infeasible moves for two robots. (a) Feasible syn-
chronous move. (b) Infeasible synchronous move in which two robot collide
“head-on.” (c) Infeasible synchronous move in which two robots “meet” at a
vertex.

A. Multirobot Path Planning on Graphs

Let G = (V,E) be a connected, undirected, simple graph,
with V = {vi} being the vertex set and E = {{vi, vj}} the
edge set. Let R = {r1 , . . . , rn} be a set of n robots. A con-
figuration of the robots is an injective map from R to V , i.e.,
for a given configuration, two robots ri and rj (i �= j) occupy
different vertices of V . At any given time step t = 0, 1, . . ., the
robots assume a configuration. The start (initial) and goal con-
figurations of the robots are denoted as xI and xG , respectively.
Fig. 1(a) shows a possible configuration of nine robots on a
3 × 3 grid graph. Fig. 1(b) shows a possible goal configuration,
in which the robots are ordered based on row-major ordering.3

During a discrete time step, each robot may either remain
stationary or move to an adjacent vertex. To formally describe
a plan, let a path be a map pi : Z+ → V , in which Z+ := N ∪
{0}. A path pi is feasible if it satisfies the following properties:

1) pi(0) = xI (ri).
2) For each i, there exists a smallest tfi ∈ Z+ such that

pi(t
f
i ) = xG (ri).

3) For any t ≥ tfi , pi(t) = xG (ri).
4) For any 0 ≤ t < tfi , {pi(t), pi(t + 1)} ∈ E or pi(t) =

pi(t + 1) (if pi(t) = pi(t + 1), robot ri stays at vertex
pi(t) between the time steps t and t + 1).

We say that two paths pi, pj are in collision if there exists
k ∈ Z+ such that pi(t) = pj (t) (meet collision) or (pi(t) =
pj (t + 1)) ∧ (pi(t + 1) = pj (t)) (head-on collision). As an il-
lustration, Fig. 2 shows the feasible and infeasible moves for two
robots during a single time step.4 The MPPproblem is defined
as follows.

Problem 1 (Multirobot path planning on graphs): Given a
4-tuple (G,R, xI , xG ), find a set of paths P = {p1 , . . . , pn}

3In this paper, we use shaded discs to mark start locations of robots and discs
without shades for goal locations.

4We assume that the graph G allows only “meet” or “head-on” collisions.
The assumption is mild. For example, a (arbitrary dimensional) grid with unit
edge distance is such a graph for robots with radii of no more than

√
2/4 (two

robots traveling on adjacent edges are the closest to each other when they are in
the middle of these edges).

Fig. 3. Four-step solution from our algorithm for the 9-puzzle from Fig. 1.
The directed edges show the moving directions of the robots at the tail of these
edges.

such that for all 1 ≤ i < j ≤ n: (i) pi is a feasible path for robot
ri , and (ii) pi and pj are not in collision.

For example, Fig. 1(a) and (b) defines an MPP problem on the
3 × 3 grid. We call this particular problem the 9-puzzle problem,
which readily generalizes to N 2-puzzles. We pick the name due
to its similarity with the classic 15-puzzle and (N 2 − 1)-puzzles
[57]. Despite the superficial similarities, an N 2-puzzle has N 2

robots and does not require an empty swap vertex that is required
for the (N 2 − 1)-puzzle. In an N 2-puzzle, robots may rotate
synchronously along multiple disjoint nonintersecting cycles.

Remark: With a few exceptions (e.g., [2]), most existing stud-
ies on discrete multirobot path planning problems require empty
vertices as swap spaces. In these formulations, in a time step, a
nonintersecting chain of robots may move simultaneously only
if the head of the chain is moving into a previously unoccupied
vertex. In contrast, our MPP formulation allows synchronized
rotations of robots along fully occupied cycles (see, e.g., Figs. 1
and 3). This implies that even when the number of robots equals
the number of vertices, robots can still move on disjoint cycles.
We note that MPP can be solved in polynomial time with a
feasibility test taking only linear time [41]. 


B. Optimal Formulations

Let P = {p1 , . . . , pn} be an arbitrary feasible solution to
some fixed MPP instance. For a path pi ∈ P , let len(pi) denote
the length of the path pi , which is the total number of times the
robot ri changes its residing vertex while following pi . A robot,
following a path pi , may visit the same vertex multiple times.
Recall that tfi denotes the arrival time of robot ri . In the study
of optimal MPP formulations, we examine four common objec-
tives with two focusing on time optimality and two focusing on
distance optimality.

Objective 1 (Makespan): Compute a path set P that mini-
mizes max1≤i≤n tfi .

Objective 2 (Maximum Distance): Compute a path set P
that minimizes max1≤i≤n len(pi).

Objective 3 (Total Arrival Time): Compute a path set P that
minimizes

∑n
i=1 tfi .

Objective 4 (Total Distance): Compute a path set P that
minimizes

∑n
i=1 len(pi).

A four-step minimum makespan solution to the 9-puzzle
problem from Fig. 1 is illustrated in Fig. 3. The solution is
optimal because robot 9 is four steps away from its goal.

C. Network Flow Review

A network N = (G, c1 , c2 , S) consists of a directed graph
G = (V,E) with c1 , c2 : E → Z+ being the maps specifying
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capacities and costs over directed edges (arcs), respectively,
and S ⊂ V as the set of sources and sinks. Let S = S+ ∪ S−,
with S+ denoting the set of source vertices, S− denoting the
set of sink vertices, and S+ ∩ S− = ∅. For a vertex v ∈ V , let
δ+(v) [resp., δ−(v)] denote the set of arcs of G going to (resp.,
leaving) v. A feasible (static) S+ , S−-flow on this network N
is a map f : E → Z+ that satisfies arc capacity constraints

∀e ∈ E, f(e) ≤ c1(e) (1)

the flow conservation constraints at nonterminal vertices

∀v ∈ V \S,
∑

e∈ δ+ (v )

f(e) −
∑

e∈ δ−(v )

f(e) = 0 (2)

and the flow conservation constraints at terminal vertices

F (f) =
∑

v∈S +

⎛

⎝
∑

e∈ δ−(v )

f(e) −
∑

e∈ δ+ (v )

f(e)

⎞

⎠

=
∑

v∈S−

⎛

⎝
∑

e∈ δ+ (v )

f(e) −
∑

e∈ δ−(v )

f(e)

⎞

⎠ . (3)

The quantity F (f) is called the value of the flow f . The classic
(single commodity) maximum flow problem asks the following
question: Given a network N , what is the maximum F (f) that
can be pushed through the network? The minimum cost maxi-
mum flow problem further requires the flow to have a minimum
total cost among all maximum flows. That is, we want to find a
flow among all maximum flows that also minimizes the quantity

∑

e∈E

c2(e) · f(e). (4)

The network flow formulation described so far only con-
siders a single commodity, corresponding to all robots being
interchangeable. For general MPP formulations, the robots are
distinct and must be treated as different commodities. Such
problems can be captured with multicommodity flow or sim-
ply multiflow. Instead of having a single flow function f , we
have a flow function fi for each commodity i from a set C of
commodities. The constraints (1), (2), and (3) become

∀i ∈ C,∀e ∈ E,
∑

i

fi(e) ≤ c1(e) (5)

∀i ∈ C ∀ v ∈ V \S,
∑

e∈ δ+ (v )

fi(e) −
∑

e∈ δ−(v )

fi(e) = 0 (6)

∀i ∈ C,
∑

v∈S +

⎛

⎝
∑

e∈ δ−(v )

fi(e) −
∑

e∈ δ+ (v )

fi(e)

⎞

⎠

=
∑

v∈S−

⎛

⎝
∑

e∈ δ+ (v )

fi(e) −
∑

e∈ δ−(v )

fi(e)

⎞

⎠ . (7)

Maximum flow and minimum cost flow problems may also be
posed under a multiflow setup; we omit the details. Our review of
network flows only touches aspects pertinent to this paper; for a
thorough coverage on the subject of network flows, see [58] and
[59] and the references therein. Note that the multiflow model

Fig. 4. (a) Simple G. (b) Merge-split gadget for splitting an undirected edge
through time steps, for enforcing the head-on collision constraint.

stated here is sometimes also referred to as integer multiflow
because fi must have integer values.

III. FROM MULTIROBOT PATH PLANNING TO MULTIFLOW

A close algorithmic connection exists between optimal MPP
and network flow problems. Maximum (single commodity)
flow problems generally admit efficient (low-degree polynomial
time) algorithmic solutions [59], whereas maximum multiflow
is a well-known NP-hard problem, difficult to even approximate
[60]. Mirroring the disparity between single- and multicommod-
ity flows, in the domain of MPP problems, if there is a single
group of interchangeable robots (here, for a group, it does not
matter which robot goes to which goal as long as all goal lo-
cations assigned to the group are occupied by robots from the
same group), then many optimal formulations admit polyno-
mial time algorithms [17]. However, as soon as a single group
of robots splits into two or more groups, finding optimal paths
for these robots become intractable [4]. The apparent similarity
between optimal MPP and multiflow is perhaps best explained
through a graph-based reduction from MPP problems to net-
work flow problems. The reduction will also form the basis of
our algorithmic solution.

To describe the reduction, we use as an example the undi-
rected graph G in Fig. 4(a), with start vertices {s+

i }, i = 1, 2
and goal vertices {s−i }, i = 1, 2. An instance of MPP is given
by (G, {r1 , r2}, xI : ri �→ s+

i , xG : ri �→ s−i ). We will reduce
the problem to a network flow problem N = (G′, c1 , c2 , S).
The reduction proceeds by constructing a network that is a
time-expanded version of the graph G, which allows the explicit
consideration of the interactions among the robots over space
and time. Time expansion derived in this paper can be viewed
as performing network flow over time [61]. To carry out this ex-
pansion, a time horizon must first be determined. For different
optimality objectives, the expansion time horizon, some natural
number T , is generally different; for now we assume that T is
fixed.

To begin building the network, we create 2T + 1 copies
of G’s vertices, with indices 0, 1, 1′, . . ., as shown in
Fig. 5. For each vertex v ∈ G, denote these copies v(0) =
v(0)′, v(1), v(1)′, v(2), . . . , v(T )′. For each edge {u, v} ∈ G
and time steps t, t + 1, 0 ≤ t < T , the merge-split gadget shown
in Fig. 4(b) is added between u(t)′, v(t)′, and u(t + 1), v(t + 1)
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Fig. 5. Time-expanded network with an expansion time horizon of T = 2
over the base graph Fig. 4(a).

(arrows from the gadget are omitted from Fig. 5 since they
are small). For the gadget, we assign unit capacity to all
arcs, unit cost to the horizontal middle arcs, and zero cost
to the other four arcs. The merge-split gadget ensures that
two robots cannot travel in opposite directions on an edge
of the underlying graph in the same time step, which pre-
vents head-on collision between two robots. To finish the con-
struction of Fig. 5, for each vertex v ∈ G, we add one arc
between every two successive copies (i.e., we add the
arcs (v(0), v(1)), (v(1), v(1)′), . . . , (v(T ), v(T )′)). These cor-
respond to the green and blue arcs in Fig. 5. For all green arcs,
we assign them unit capacity and cost; for all blue arcs, we
assign them unit capacity and zero cost. The green arcs allow
robots to stay at a vertex during a time step, whereas blue arcs
ensure that each vertex holds at most one robot, enforcing the
meet collision constraint.

The time-expanded network in Fig. 5 (with the exception
of arcs e1 and e2 , which will become relevant shortly) is
the desired G′. For the set S = S+ ∪ S−, we may simply
let S+ = {v(0) : v ∈ {s+

i }} and S− = {v(T )′ : v ∈ {s−i }}.
N = (G′, c1 , c2 , S) is now complete; we have reduced MPP
to an integer multiflow problem on N , with each robot from R
as a single type of commodity.

Theorem 1: Let (G,R, xI , xG ) be an MPP instance. There is
a bijection between its solution set (with a maximum number of
time steps up to T ) and the integer maximum multiflow solutions
of flow value n on the time-expanded network N constructed
from (G,R, xI , xG ) with T time steps.

Proof: Injectivity. Assume that P = {p1 , . . . , pn} (n is the
number of robots) is a solution to an MPP instance. For each
pi and every time step t = 0, . . . , T , we mark the copy of pi(t)
and pi(t)′ (recall that pi(t) corresponds to a vertex of G) at time
step t in the time-expanded graph G′. Connecting these vertices
of G′ sequentially (there is a unique way to do this) yields one
unit of flow fi on N (after connecting to appropriate source and
sink vertices in S+ , S−, which is trivial). It is straightforward
to see that if two paths pi, pj are not in collision, then the
corresponding flows fi and fj on N are vertex disjoint paths
and therefore do not violate any flow constraint. Since any two
paths in P are not in collision, the corresponding set of flows
{f1 , . . . , fn} is feasible and maximal on N .

Surjectivity: Assume that {f1 , . . . , fn} is an integer maxi-
mum multiflow on the network N , which implies that |fi | = 1
for all i’s. First, we establish that any pair of flows fi and fj

are vertex disjoint. To see this, we note that fi and fj (both are
unit flows) cannot share the same source or sink vertices due to
the unit capacity structure of N enforced by the blue arcs. If
fi and fj share some nonsink vertex v at time step t > 0, both
flows then must pass through the same blue arc [see Fig. 4(b)]
with v being either the head or the tail vertex, which is not pos-
sible. Thus, fi and fj are vertex disjoint on N . We can readily
convert each flow fi to a corresponding path pi (after deleting
extra source vertex, sink vertices, vertices in the middle of the
gadgets, and tail vertices of blue arcs) with the guarantee that no
pi, pj will collide due to a meet collision. By the construction of
N , the gadget we used ensures that a head-on collision is also
impossible. The set {p1 , . . . , pn} is then a solution to the MPP
defined by (G,R, xI , xG ). �

Remark: A multiflow problem with unit individual flows can
also be viewed as a type of multipath planning problem, known
as the edge disjoint path problem [62]. 


IV. COMPLETE INTEGER LINEAR PROGRAMMING-BASED

ALGORITHMS FOR OPTIMAL MULTIROBOT PATH PLANNING

ON GRAPHS PROBLEMS

Because optimizing MPP solutions over Objectives 1–4 are
computationally intractable, reducing MPP to multiflow prob-
lems does not make these optimal MPP problems any easier.
However, with a network flow formulation (see Section II-C),
it becomes possible to establish ILP models for optimal MPP
formulations. These ILP models can then be solved with pow-
erful linear programming packages. In comparison to A∗-based
algorithms augmented with heuristics,5 which often target an
important but limited set of problem structures, ILP-based algo-
rithms proposed here are agnostic to specific problem structures.
As such, ILP-based algorithms appear more capable of address-
ing a wider range of MPP problems and in particular difficult
MPP instances in which the robot-vertex ratio is high. In this
section, we build ILP models for each of Objectives 1–4, as-
suming a fixed time span T . That is, these models only optimize
the given objective for a specific T . The discussion of the full
algorithms and their completeness then follows.

A. Minimizing the Makespan

A minimum makespan solution to an MPP instance I =
(G,R, xI , xG ) can be computed using a maximum multiflow
formulation. Fixing a time span T , let N = (G′, c1 , c2 , S) be
the time-expanded network for I , a set of n loopback arcs are
added to G′ by connecting each pair of corresponding start and
goal vertices in S, from the goal to the start. We use ej ’s to
denote arcs of G′, and let the n loopback arcs take the first n
indices, with ej , 1 ≤ j ≤ n, being the arc connecting the goal
vertex of rj to the start vertex of rj . For example, for the G′ in

5Here, the term heuristics does not refer to the admissible heuristic used by
A∗ itself. Instead, it refers to ways of breaking the search space of a multirobot
path planning problem into disjoint, smaller subspaces.
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Fig. 5, e1 and e2 are the loopback arcs for r1 and r2 , respectively.
The loopback arcs have unit capacities and zero costs. Next, for
each arc ej ∈ G′ (including the loopback arcs), create n binary
variables x1,j , . . . , xn,j corresponding to the flow through that
arc, one for each robot 1 ≤ i ≤ n. That is, xi,j = 1 if and only
if robot ri passes through ej in G′. The variables xi,j ’s must
satisfy two arc capacity constraints and one flow conservation
constraint

∀ ej ,

n∑

i=1

xi,j ≤ 1 (8)

∀ 1 ≤ i, j ≤ n, i �= j, xi,j = 0

∀ v ∈ G′ and 1 ≤ i ≤ n,
∑

ej ∈ δ+ (v )

xi,j =
∑

ej ∈ δ−(v )

xi,j . (9)

The objective function is

max
∑

1≤i≤n

xi,i . (10)

B. Minimizing the Maximum Single-Robot Traveled Distance

For minimizing the maximum distance traveled by any robot,
the network and variable creation remains the same as the mini-
mum makespan setup; constraints (8) and (9) remain unchanged.
Because we want to send all robots to their goals, a maximum
flow may be forced through the constraint

∀1 ≤ i ≤ n, xi,i = 1. (11)

To encode the min–max objective function, we introduce an
additional integer variable xmax and add the constraint

∀1 ≤ i ≤ n,
∑

ej ∈G ′,j>n

c2(ej ) · xi,j ≤ xmax . (12)

For a fixed i, the left side of (12) represents the distance traveled
by robot ri . Note that xi,j = 0 for j < n. The objective function
is then simply

min xmax . (13)

C. Minimizing the Total Arrival Time

For minimizing the total arrival time, the network and
variables from the minimum makespan ILP-model and con-
straints (8), (9), and (11) are inherited. To represent the objective
function, for each time step 1 ≤ t ≤ T and each v = xG (ri),
1 ≤ i ≤ n, we create a binary variable yt

i . Then, we give new
indices to certain existing variables. Recall that for each arc
ej = (v(t), v(t)′) ∈ G′ (e.g., the four extra bold blue arcs in
Fig. 5), a variable xi,j is created. There are nT such variables.
Here, we give these variables a second index xt

i . That is, xt
i

is the binary variable indicating whether arc (v(t), v(t)′) ∈ G′,
v = xG (ri) is used by robot ri .

Given a network with a fixed T , if constraints (8), (9), and (11)
can be satisfied, then there is a feasible solution to the original
MPP problem. In this case, xT

i = 1 for 1 ≤ i ≤ n. We let yT
i =

xT
i . Then, each yt

i , 1 ≤ t < T is defined recursively over xt
i and

yt+1
i as

yt
i ≥ yt+1

i + xt
i − 1, yt

i ≤ yt+1
i , yt

i ≤ xt
i . (14)

Effectively, (14) performs a logical AND over xt
i and yt+1

i and
stores the result in yt

i . In the end, the smallest t for which yt
i = 1

is the time robot ri reaches its goal (and stops). Therefore, for
each 1 ≤ i ≤ n,

∑T
t=1 yt

i is the number of time steps from the
time ri arrives at its goal until time T . Thus, T −

∑T
t=1 yt

i is the
time spent by ri . To minimize the total arrival time, the objective
function can be expressed as

min

⎛

⎝nT −
∑

1≤i≤n,1≤t≤T

yt
i

⎞

⎠ . (15)

D. Minimizing the Total Distance

From the ILP model for minimizing the maximum distance,
we need to change only the objective function for computing a
minimum total distance solution. We do not need the variable
xmax and simply update the objective function to

min
∑

ej ∈G ′,j>n, 1≤i≤n

c2(ej ) · xi,j . (16)

E. Algorithm Structure and Completeness

The general algorithm structure for optimally solving MPP is
outlined in Algorithm 1. Here, we assume that the problem
(G,R, xI , xG ) is feasible, which can be readily checked [41].
Then, we make conservative estimates on the minimum time
span Tmin and the maximum time span Tmax such that there
must be a T ∈ [Tmin , Tmax] corresponding to the time span for
an optimal solution. The algorithm then simply searches through
[Tmin , Tmax] to locate T and the optimal solution. Denoting the
specific algorithms for Objectives 1–4 as MINMAKESPAN, MIN-
MAXDIST, MINTOTALTIME, and MINTOTALDIST, respectively,
we now fill in how to estimate Tmin and Tmax for them.

While Tmin = 0 always works, we can do better by setting
Tmin as the maximum over all robots the shortest path length for
each robot, ignoring all other robots. This Tmin clearly applies
to all four objectives. For MINMAKESPAN, we may set Tmax
to be the time needed for a feasible solution, which can be
computed with [41]. In the worst case, T = O(|V |3). Note that
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this establishes the completeness of MINMAKESPAN and we
may assume we have an optimal Topt for MINMAKESPAN.

For MINMAXDIST, we set Tmax = nTopt. This is true because
at each time step, at least one robot must move a distance of one.
After nTopt + 1 time, by the pigeonhole principle, some robot
must have moved Topt + 1 steps. However, since Topt is optimal
for MINMAKESPAN, there exists a solution in which no robots
travel more than Topt. This yields a contradiction.

The same Tmax = nTopt works for MINTOTALTIME for a
different reason. After nTopt + 1 time steps, at least one robot
must have spent this much time. On the other hand, the total
time from the optimal MINMAKESPAN solution is no more than
nTopt. So the optimal solution for MINTOTALTIME will not
require a time span of more than nTopt. For MINTOTALDIST,
Tmax = nTopt also works. After nTopt + 1 time steps, the total
distance traveled by all robots must exceed nTopt. However,
the optimal solution for MINTOTALTIME will not require more
than nTopt total number of moves. We have shown that the four
algorithms are all complete.

Proposition 2: MINMAKESPAN, MINMAXDIST, MINTOTAL-
TIME, and MINTOTALDIST are all complete.

V. HEURISTICS FOR EFFECTIVE COMPUTATION OF

NEAR-OPTIMAL SOLUTIONS

We have established that ILP-based algorithms are complete
and always produce optimal solutions. Their performance in
handling relatively small but highly constrained problems are
in fact quite good (see Section VI). As problem sizes grow
(i.e., as the graph G and the number of robots n increase),
however, the computation time grows rapidly. From a practical
point of view, it may be far more desirable to quickly compute a
good quality but suboptimal solution than to wait longer for the
optimal solution. In this section, we introduce several heuristics
to accomplish this goal, with a particular focus on computing
solutions with the minimum makespan.

A. Building More Compact Models

To extract the best performance out of a solver, it is benefi-
cial to have a lean model (i.e., fewest columns and rows). So
far, our focus has been to provide a general multiflow-based
framework so that the ILP models can be easily built. During
the model translation stage, the models can be further simpli-
fied. The heuristics discussed in this section aim at making the
representation of constraints (8) and (9) more compact. As such,
they apply to all objectives.

Better encoding of the collision constraints: In building the
network flow model (e.g., Fig. 5), we used a merge-split gadget
[see Fig. 4(b)] for enforcing the head-on collision constraint and
extra time steps (e.g., the blue arcs in Fig. 5) for avoiding meet
collisions. When we translate them into linear constraints, these
structures can be simplified to yield the more compact structure
illustrated in Fig. 6.

In the newer structure, each merge-split gadget now has two
arcs instead of five. Also, the blue edges are gone. The updated
gadget for an edge {u, v} ∈ E between time steps t and t + 1
is shown in Fig. 7 (note that due to the removal of the blue arcs,

Fig. 6. More compact representation of the network flow graph from Fig. 5.

Fig. 7. Simplified merge-split gadget for enforcing the head-on collision con-
straint.

vertices such as v(t)′ are no longer needed). That is, instead
of five, only two variables are needed for each robot. Denoting
these binary variables as xi,(u(t),v (t+1)) and xi,(v (t),u(t+1)) for
a robot ri , the head-on collision constraint for a single gadget
can be readily encoded as

n∑

i=1

xi,(u(t),v (t+1)) +
n∑

i=1

xi,(v (t),u(t+1)) ≤ 1. (17)

Then, to enforce the meet collision constraint, for example,
at a vertex v(t), we simply require that at most one outgoing arc
from v(t) may be used, i.e.,

∑

ej ∈ δ−(v (t)),1≤i≤n

xi,j ≤ 1. (18)

The new ILP model is roughly half of the size of the original
model.

Reachability analysis: In the time-expanded graph, there are
redundant binary (arc) variables that can never be true be-
cause some arcs are never reachable. For example, in Fig. 6, at
t = 0, the only outgoing arcs that can possibly be used are those
originating from s+

1 and s+
2 . The rest can be safely removed.

In general, for each robot ri , based on its reachability from its
start vertex and to its goal vertex, a sizable number of binary
variables xi,j ’s can be deleted.

B. Divide-and-Conquer Over the Time Domain

In evaluating the ILP model-based algorithm for optimal
makespan computation, we observe that the ILP solver running
time appears to grow exponentially as the size of the model
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Fig. 8. (a) Simple two-robot problem. (b) Time-divided instances.

grows. This prevents the algorithm from performing well over
instances with more than a few tens of robots. The observation,
while hampering the effectiveness of the exact algorithm, turns
out to offer a useful insight toward a highly effective heuristic.
We find that when robot-vertex ratio is not critically high (i.e.,
not approaching one), relatively small ILP models do not present
much challenge for ILP solvers. This is true even when there
are a large number of robots (i.e., in the hundreds). To apply the
ILP model-based method to more challenging problems (e.g.,
solving problems with hundreds of robots quickly), we simply
limit the size of the individual ILP model fed to the solver. One
way to achieve this is through divide-and-conquer over the time
domain. We use a simple example (see Fig. 8) to illustrate the
idea.

In Fig. 8(a), we have a planning problem for two robots
on a 3 × 3 grid. To execute the heuristic, we first compute a
shortest path for every pair of start and goal locations. In this
case, we get the orange and green paths for robots 1 and 2,
respectively. Then, if we decide to split the problem into two
smaller problems, for each of the paths, it is split into two equal
or nearly equal length pieces, and the middle node is set as the
intermediate goal. In our example, we may do this for robot
1 by setting the intermediate goal location at (1, 1) from the
top-left corner [the brown disc labeled 1 in Fig. 8(b)]. For robot
2, because the middle location coincides with that of robot 1,
we pick an alternative unoccupied location as the intermediate
goal for robot 2, in this case (2, 2) from the top-left corner.
The intermediate goals for the first instance will also serve as
the start locations of the second instance. This yields two child
instances both requiring a time expansion with two steps each,
effectively making the individual ILP model roughly half the
size of the original one that required a time expansion with four
steps. In general, we may divide a problem into arbitrarily many
smaller instances in the time domain.

If a problem is divided into k subproblems, we call the result-
ing heuristic a k-way split. Because the division is over time,
there is no interaction between the divided instances. Once we
obtain a solution for each child instance, the solutions can be
glued together by concatenating the results. In practice, this
heuristic dramatically improves algorithm performance without
significant negative impact on path makespans; we observe a
consistent speedup in computational experiments.

Remark: The k-way split heuristic, by design, is particularly
apposite for the makespan objective, owing to the additive nature
of the makespan objective over the split subproblems. Beside
the makespan, the heuristic also applies to distance objectives

(i.e., Objectives 2 and 4) quite well, as long as the time horizon
required for finding distance optimal solution does not differ
greatly from the time horizon required for minimum makespan
solution. The heuristic does not directly apply to Objective 3
because total time is not additive over the split subproblems.
As an example, suppose that a two-way split is carried out
with each subproblem having a time horizon of T/2. If a robot
ri does not move in the solution to the first subproblem (i.e.,
0 ≤ t ≤ T/2), it contributes 0 to the total distance. However,
if ri moves even a single step in the solution to the second
subproblem (i.e., T/2 ≤ t ≤ T ), then ri will contribute at least
T/2 to the total arrival time. Nevertheless, the k-way split is
still helpful in this case as we may use it to quickly compute an
initial T for performing the time expansion. 


VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our optimal
and near-optimal MPP algorithms with an emphasis on MIN-
MAKESPAN. Our performance evaluation covers a broad spec-
trum of typical problem settings. For each setting, we push the
limit on the robot-vertex ratio to as high as 100%. To the best
of our knowledge, the majority of the settings with high robot-
vertex ratio have never been attempted with much success prior
to our study.6

After examining a large number of existing approaches in-
cluding OD+ID, ID, WHCA*, ICTS, CBS, and COBOPT, we
focus our comparison on ID-based anytime algorithm and
COBOPT due to problem similarity and our emphasis on 100%
success rate.7 We point out that there are various differences be-
tween our robotics-based MPP formulation and these methods
to which we compare. OD+ID and ID support cycles, whereas
CBS and WHCA* appear to be designed for cycle-free MPP,
as they could not solve any 9-puzzle. The problem definition
for COBOPT suggests it solves MPP, but it employs a cycle-free
subroutine for finding feasible solutions. Except for COBOPT,
most of these methods are designed for optimizing total time
and total distance optimal objectives, and do not naturally extend
to the makespan. However, the associated makespans produced
by these algorithms are usually of good quality. Among these,
our experiments show that ID-based anytime algorithm is the
most versatile due to its IDA*-like incremental structure. On
the other hand, OD+ID, ICTS, CBS, and WHCA* do not scale
well when the robot-vertex ratio goes beyond 10%. COBOPT is
designed for makespan.

We implemented all algorithms (MINMAKESPAN, MIN-
MAXDIST, MINTOTALTIME, and MINTOTALDIST) in the Java
programming language. We take advantage of multicore CPUs
when the k-way split heuristic is being used. Also, Gurobi [64],
the ILP solver used in our implementation, can engage multiple

6For completeness, 15-puzzle and 24-puzzle have been successfully at-
tempted [63]. Beside, differences in not allowing cyclic rotation, the solutions
also do not support multiple vacant cells.

7Some of these algorithms were evaluated without requiring that all robots
reach their goals. For example, in the WHCA* work [8], if an instance with n
robots is solved for p < n robots, the problem is counted as partially solved.
We require each instance to be fully solved to be counted as a success, which is
a stringent requirement for robot path planning.
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Fig. 9. Typical 24 × 18 grid instance with 25% vertices removed to simulate
obstacles and 50 start and goal locations. Note that the connectivity of the
graph is low in some areas. For example, the lower right corner blob is only
singly-connected to the rest of the graph. Some (blue shaded) start locations
may overlap with some (not shaded) goal locations.

cores automatically for hard problems. We ran all our tests on a
MacBook Pro laptop computer (Intel Core i7-4850HQ, 16 GB
memory). We obtained the C code implementing OD + ID, ID,
and WHCA*among others from Trevor Standley. We modified
(the original code supports only 32 × 32 grids) and compiled the
code as a 64-bit windows executable under MSVC 2010 with
all speed optimization flags turned on. C# code for CBS was
retrieved from the authors’ online repository.8 The comparison
to COBOPT uses the result provided in [47], which covers only
8 × 8 and 16 × 16 grids.

A. Performance of MinMakespan and k-Way Split Heuristic

We begin our experimental evaluation focusing on MIN-
MAKESPAN and the k-way split heuristic. For this purpose,
we use as the base graph a 24 × 18 grid with varying number
of vertices (0–25%) removed to simulate obstacles. The con-
nectivity of the graph is always maintained. We note that with
25% vertices removed, the graph is already sparsely connected
at some places (see e.g., Fig. 9), making solving these problems
optimally a challenging task. In presenting the computational
results, each data point in the figures is an average over ten
sequentially, randomly generated instances. For each obstacle
percentage, we start from the lowest number of robots (usually
10 or 20) and allocate a maximum of 600 s for each problem
instance. If an instance takes more than 600 s to produce a result,
the instance is stopped and we move to the next obstacle per-
centage. This also means that a data point is given only if each of
the ten instances is completed within 600 s. Over the same set of
problem instances, the MINMAKESPAN algorithm is executed in
the exact manner (which produces optimal makespan solutions)
and with the k-way split heuristic.

8https://bitbucket.org/eli.boyarski/.

Fig. 10. [top] Average computation time of the exact MINMAKESPAN algo-
rithm over instances on a 24 × 18 grid with randomly placed obstacles and
start/goal locations. [bottom] The (average) optimal makespan.

The exact makespan computation result is summarized in
Fig. 10. For all obstacle settings, the MINMAKESPAN algorithm
computes optimal makespan solutions consistently for up to
100 robots with an average computation time of no more than
100 s. Notably, for 50 robots and obstacles up to 20%, the
MINMAKESPAN algorithm is able to complete in about 15 s
in all cases. From the top plot of Fig. 10, we observe that for
each fixed obstacle percentage, the computation time appears to
grow exponentially with respect to the number of robots. The
computational difficulty of a particular problem instance also
depends heavily on the actual optimal makespan. For example,
a problem instance in the case of 25% and 20 robots has a
particularly long makespan (see the bottom plot of Fig. 10),
resulting in an large jump of the computation time. Examining
the instance reveals that a narrow corridor-like setting is present,
similar to the scenario from Fig. 9, which requires two robots to
pass through the corridor from opposing directions. This induces
a much larger T in the time expansion step, causing a significant
increase in computation time.

The k-way split heuristic brings a significant performance
boost, allowing a much higher robot-vertex ratio in general. In
our tests, we are often able to double or even triple the supported
robot density. For the 24 × 18 grid, we evaluated the k-way
split heuristic for k up to 16. The four-way split performance
is illustrated in Fig. 11. In the figure, we measure optimality
using a conservatively estimated optimality ratio. To obtain this,
we divide the objective value returned by the optimizer over a
conservative estimate (a lower bound). For makespan, this lower
bound estimate is obtained by first computing the shortest path
for each robot ignoring all other robots. The minimum makespan
estimate is obtained by taking the maximum length over all these
shortest paths. Clearly, the optimality ratio obtained this way is
an overestimate.

https://bitbucket.org/eli.boyarski/.
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Fig. 11. [top] Average computation time of the MINMAKESPAN algorithm
(with four-way split heuristic) over instances on a 24 × 18 grid with randomly
placed obstacles and start/goal locations. [bottom] The achieved (conservatively
estimated) optimality ratio.

We make three comments over Fig. 11. First, from the top
plot, we observe that our method is highly effective in terms of
computation time, capable of computing minimum makespan
solutions for up to 180 robots, which translates to a maximum
robot-vertex ratio of 44%. The majority of the cases are solved
within 10 s. Even when there are 25% obstacles, we could solve
the problem consistently for up to 60 robots in about 40 s.
Second, we again observe an exponential relationship between
computation time and the number of robots. Third, all computed
solutions are very close to being optimal, with all but one case
having an optimality ratio of below 1.1. The average minimum
makespan for these instances is about 35.

The rest of the k-way split evaluation is presented in Fig. 12, in
which the computation time and optimality ratio are shown side
by side. To improve clarity, axis labels are omitted. The omitted
keys are the same as those from Fig. 10, representing different
obstacle percentages. In conjunction with Figs. 10 and 11, as k
increases, we observe a general trend of reduced computation
time at the expense of loss of optimality. With 16-split, MIN-
MAKESPAN can solve problems with 300 robots, corresponding
to a robot-vertex ratio of 69%.

For comparison, we ran ID-based anytime algorithm over the
same set of instances with a 600-s time limit (we also attempted
OD + ID, CBS, and WHCA*, which are unable to consistently
go past 40 robots under the same setup; we used 21 × 21 grid for
CBS). The result is plotted in Fig. 13. ID actually performs quite
well for up to 60 robots, which can be attributed to its A* root
with minimum overhead as compared to our method. However,

Fig. 12. Performance of the MINMAKESPAN algorithm with k-way split for
k = 2 (top row), 8 (middle row), and 16 (bottom row). The computation time
and optimality ratio plots for each k are shown side by side. The x-axis for
all plots represents the number of robots. The y-axis for the plots on the left
represents the computation time in seconds. The y-axis for the plots on the right
represents the optimality ratio. The keys for all plots are the obstacle percentage,
identical to that of Fig. 10.

Fig. 13. Performance of the ID-based anytime algorithm over the same set of
problem instances. The plot setup is the same as that from Fig. 12.

the performance of ID degrades faster—it does not scale well
beyond 100 robots in our tests. MINMAKESPAN, with two-way
split, readily outperforms ID when there are 40 or more robots.
Conceivably, it may be possible to combine ID and k-way split
to make it run faster. However, adding k-way split to ID will
inevitably make the overall makespan more suboptimal.
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Fig. 14. Instance of a 25-puzzle problem solved by MINMAKESPAN.

B. Minimum Makespan Solution to N 2-Puzzles

Next, we evaluate the efficiency of the MINMAKESPAN algo-
rithm for finding minimum makespan solutions to the N 2 -puzzle
for n = 3, 4, 5, and 6. These problems have a robot-vertex ratio
of 100%, making them highly constrained. Note that an N 2-
puzzle instance is always solvable for n ≥ 3 [41]; this means
that all states are connected in the state (search) space. We
ran the MINMAKESPAN algorithm on 100 randomly generated
N 2-puzzle instances for n = 3, 4, 5. For the 9-puzzle, compu-
tation on all instances completed successfully with an average
computation time of 0.46 seconds per instance. To compare the
computational result, we implemented a (optimal) BFS algo-
rithm. The BFS algorithm is heavily optimized. For example,
cycles are precomputed and hard coded to save computation
time. Since the state space of the 9-puzzle is small, the BFS al-
gorithm is capable of optimally solving the same set of 9-puzzle
instances with an average computation time of about 1.08 s per
instance.

Once we move to the 16-puzzle, the power of general ILP
solvers becomes evident. MINMAKESPAN solved all 100 ran-
domly generated 16-puzzle instances with an average computa-
tion time of 4.2 s. On the other hand, the BFS algorithm with a
priority queue that worked for the 9-puzzle ran out of memory
after a few minutes. As our result shows that an optimal solu-
tion for the 16-puzzle generally requires 6 time steps, it seems
natural to also try bidirectional search, which cuts down the
total number of states stored in memory. To complete such a
search, one side of the bidirectional search generally must reach
a depth of 3, which requires storing over 5 × 108 states (the
branching factor is over 1000), each taking 64 bits of memory.
This translates into over 4 GB of raw memory and over 8 GB of
working memory, which is more than the JavaVM can handle:
A bidirectional search ran out of memory after about 10 min
in general. We also experimented with C++ implementation
using STL libraries, which yields a similar result (i.e., ran out
of memory before reaching a search depth of 3).

For the 25-puzzle, without a good heuristic, bidirectional
search cannot explore even a tiny fraction of the fully con-
nected state space with about 1025 states. On the other hand,
MINMAKESPAN again consistently solves the 25-puzzle, with
an average computational time of 391.6 s over 100 randomly
created problems. Fig. 14 shows one of the solved instances with
a seven-step solution given in Fig. 15. Note that seven steps are
the least possible as it takes at least seven steps to move robot
10 to its desired goal. We also tested MINMAKESPAN on the

Fig. 15. Optimal seven-step solution (from left to right, then top to bottom)
to the 25-puzzle problem from Fig. 14, by MINMAKESPAN in about 15 min.

36-puzzle. While we had some success here, MIN-
MAKESPAN generally does not seem to solve a randomly gener-
ated instance of the 36-puzzle within 24 h, which has 3.7 × 1041

states and a branching factor of well over 106 .
As a comparison, CBS and WHCA* cannot solve the 9-

puzzle. OD + ID and ID and can solve only the 9-puzzle but
could not solve any 16-puzzles in 600 s.

C. Minimum Makespan on 8 × 8, 16 × 16, and 32 × 32 Grids

In this section, we evaluate MINMAKESPAN with underlying
graphs that are 8 × 8 grids, 16 × 16 grids, and 32 × 32 grids
with 20% obstacles. In addition to further demonstrating the
effectiveness of MINMAKESPAN, this allows us to better compare
our results. 8 × 8 and 16 × 16 grids are used as the environment
for evaluation in [47]. 32 × 32 grids with 20% obstacles are used
for evaluation in [2] and [8].

For 8 × 8 and 16 × 16 grids, the instances are constructed
using the same procedure stated in Section VI-A. Again, each
data point is an average over ten sequentially randomly created
instances. Given the size of 8 × 8 and 16 × 16 grids, we limit k
to 8; using 16-way split can solve more instances but incurs an
average solution optimality between 2 and 4. Each instance is
given a time limit of 600 s. The outcome of these experiments is
plotted in Fig. 16, along with the result from running ID. CBS,
OD + ID, and WHCA* cannot consistently solve the instances
with 20 robots in 600 s. Makespan, instead of optimality ratio, is
used in Fig. 16 for easy comparison with the results from [47].

We observe that, over the 8 × 8 grid, with the two-way split
heuristic, MINMAKESPAN can solve problems with 50 robots
to almost true optimal solutions in just 10 s. With the four-way
split, MINMAKESPAN can further push to 60 robots (robot-vertex
ratio of 94%) with solutions that are within 1.7-optimal. ID can
only handle up to 30 robots. As reported in [47], COBOPT gen-
erally takes more than half an hour to produce its final solution
when there are 24 or more robots.9 The solution quality also de-
grades quickly as the number of robots increases. For example
(Fig. 2 and Fig. 3 in [47]), at 50 robots, COBOPT takes over an

9We did not directly run COBOPT over our randomly created instances.
However, the instances in [47] are created in an identical manner. Therefore,
given that similarly powered computers are used, the computation time and
solution makespan are directly comparable between ours and those from [47].
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Fig. 16. Performance of the MINMAKESPAN algorithm with k-way split for
k = 2–8 and the ID-based anytime algorithm. The computation time and solu-
tion makespan plots are shown side by side. The x-axis for all plots represents
the number of robots. The y-axis for the plots on the left represents the com-
putation time in seconds. The y-axis for the plots on the right represents the
solution makespan. Note that we did not plot the makespan computed by the
exact MINMAKESPAN algorithm. Instead, the lower bound (LB) estimate of
makespan is plotted (in magenta color). [top] Result on the 8 × 8 grid. [bottom]
Result on the 16 × 16 grid.

hour to produce a solution with a makespan of over 160, whereas
our two-way split heuristic yields a near-optimal makespan of
11.8 in just 10 s.

Over the 16 × 16 grid, MINMAKESPAN is able to handle
instances with 190 (robot-vertex ratio of 74%) robots with the
eight-way split, while at the same time yielding solutions that
are always less than 1.4-optimal. When switched to the four-
way split, MINMAKESPAN can consistently solve problems with
up to 160 robots to no worse than 1.03-optimal. In comparison,
ID can solve instances with up to 80 robots to relatively good
quality. Taking on average an hour of computation, COBOPT can
handle up to 128 robots; the solution makespans are also highly
suboptimal. For example, (see [47, Figs. 4 and 5]), for about
100 robots, the computed makespan by COBOPT is at 200,
whereas the optimal makespan is about 25. Across 8 × 8 and
16 × 16 grids, we observe a speedup of over 100 times when
MINMAKESPAN (with the four-way split heuristic) is compared
with COBOPT. At the same time, our method yields solutions
with much smaller makespan.

A classical test scenario is the 4-connected 32 × 32 grid with
20% vertices randomly removed.10 For completeness, we also

10Some work (e.g., [2]) also adopts an 8-connected model. That is, each
vertex is on the grid is connected to its 8-neighborhood. This causes the unit
cost to be assigned to all edges, although a diagonal edge should have length√

2 times than that of a nondiagonal edge. Since we are modeling robots in this
work, we do not discuss the 8-connected model here. However, we mention that
our algorithms easily extend to the 8-connected model. Our tests show that we
can in fact compute near-optimal makespan for 400 robots on 32 × 32 grids
assuming 8-connectivity.

Fig. 17. Performance of MINMAKESPAN and the ID-based anytime algorithm
over 32 × 32 grid. The axis setup is the same as that from Fig. 12.

perform an evaluation of this setup. We randomly generated
the instance as before, ran the test, and plotted the result in
Fig. 17. From the figure, we observe a pattern consistent with
experiments on the 8 × 8, 16 × 16, and 24 × 18 grids.

D. Algorithm Performance Over All Objectives

Finally, we evaluate the performance of our algorithms at op-
timizing all objectives. The result on MINMAKESPAN is already
presented in Section VI-A, which we also use as the solution to
optimizing Objective 2 (i.e., we simply use MINMAKESPAN in
place of MINMAXDIST due to its superior performance). Note
that no change to the plots are needed here because, on one hand,
we can use a (near)-optimal makespan solution as a solution to
minimize the maximum single-robot traveled distance. This is
true because the makespan of a solution is always no less than the
minimum maximum single-robot distance. On the other hand,
the lower bound estimate for the minimum makespan is the same
as that for the minimum maximum single-robot distance.

Before moving to MINTOTALTIME and MINTOTALDIST, we
note that these algorithms possess some properties of an anytime
algorithm, which is of practical importance. In solving these
ILP models, the solver generally uses variations of the branch-
and-bound algorithm [65]. For computing total time (and dis-
tance) optimal solutions, a branch-and-bound algorithm always
computes a feasible solution first and then iteratively improves
over the feasible solution. This naturally leads to the steadily
improving solution quality commonly observed in an any-
time algorithm. The anytime property of MINTOTALTIME and
MINTOTALDIST allows us to set a desired suboptimal threshold
to reduce the computation time. Note that the same cannot be
said for MINMAKESPAN because a feasible solution is also an
optimal solution for the minimum makespan case.

Our next set of results focuses on the MINTOTALTIME algo-
rithm (see Fig. 18). The general setup is the same as that used in
Section VI-A. In particular, the same set of problem instances is
used. In our experiment, we limit both time (600 s) and required
suboptimality threshold (automatically adjusted) to achieve a
balanced performance. The lower bound estimate for comput-
ing optimality ratio is obtained by summing over the individual
shortest path lengths. The actual optimal total time is about 15
times the number of robots (i.e., 150 for 10 robots and 1500
for 100 robots), regardless of the percentage of obstacles. We
observe that the MINTOTALTIME algorithm is fairly effective,
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Fig. 18. [top] Average computation time of the MINTOTALTIME algorithm
over instances on a 24 × 18 grid with randomly placed obstacles and start/goal
locations. [bottom] The achieved (conservatively estimated) optimality ratio.

Fig. 19. [top] Average computation time of the MINTOTALDIST algorithm
over instances on a 24 × 18 grid with randomly placed obstacles and start/goal
locations. [bottom] The achieved (conservatively estimated) optimality ratio.

capable of computing 1.1-optimal solutions for up to 100 robots
in the allocated time.

Similar outcomes are also observed in the performance eval-
uation of the MINTOTALDIST algorithm with the four-way split
heuristic (see Fig. 19). The optimal total distance is again about
15 times the number of robots. In comparison with the total time

Fig. 20. Performance of MINTOTALTIME MINTOTALDIST, and the ID-based
anytime algorithm over 24 × 18 with 0–20% obstacles. Each instance is al-
lowed 600 s of time. The axis setup is the same as that from Fig. 12. [top]
MINTOTALTIME versus total time ID; the red lines correspond to data for
MINTOTALTIME. [bottom] MINTOTALDIST versus total distance ID; the red
lines correspond to data for MINTOTALDIST.

optimal case, due to the four-way split heuristic, the MINTO-
TALDIST algorithm is faster but produced solutions that are
more suboptimal but still quite good.

For comparison, we run MINTOTALTIME, MINTOTALDIST,
and ID (total time and total distance versions) on 24 × 18 grids
with 0–20% obstacles with a maximum time limit of 600 s. The
setting is slightly different from that used in obtaining Figs. 18
and 19; we do not set a suboptimal threshold here. The re-
sult is plotted in Fig. 20. In the case of total time (Objective 3),
ID could solve more instances. For the instances that are solved,
the achieved optimality is similar. For total distance (Objec-
tive 4), we observe similar outcomes. Here, ID could produce
one more data point; the achieved optimality by both methods
are again comparable (and good). Overall, MINTOTALTIME and
MINTOTALDIST are competitive with ID.

VII. CONCLUSION

In this paper, we propose a general algorithmic framework for
solving MPP problems optimally or near-optimally. Through an
equivalence relationship between MPP and multiflow, we pro-
vide ILP model-based algorithms for minimizing the makespan
(last arrival time), the maximum (single-robot traveled) dis-
tance, the total arrival time, and the total distance. With addi-
tional heuristics, our algorithmic solutions are highly effective,
capable of computing near-optimal solutions for hundreds of
robots in seconds in scenarios with very high robot-vertex ratio.
In pushing for high-performance algorithms aiming at solving
MPP optimally or near-optimally, our eventual goal is to ap-
ply these algorithms to multirobot path planning problems in
continuous domains. To this end, preliminary work has begun
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to show promising results, producing algorithms that can com-
pute solutions for around a hundred disc robots in bounded
two-dimensional environments with holes [66].
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