Pebble Motion on Graphs with Rotations:
Efficient Feasibility Tests and Planning
Algorithms

Jingjin Yu and Daniela Rus

Abstract We study the problem of planning paths for p distinguishable pebbles
(robots) residing on the vertices of an n-vertex connected graph with p < n. A
pebble may move from a vertex to an adjacent one in a time step provided that it
does not collide with other pebbles. When p = n, the only collision free moves are
synchronous rotations of pebbles on disjoint cycles of the graph. We show that the
feasibility of such problems is intrinsically determined by the diameter of a (unique)
permutation group induced by the underlying graph. Roughly speaking, the diameter
of a group G is the minimum length of the generator product required to reach an
arbitrary element of G from the identity element. Through bounding the diameter of
this associated permutation group, which assumes a maximum value of O (n?), we
establish a linear time algorithm for deciding the feasibility of such problems and an
O (n?) algorithm for planning complete paths.

1 Introduction

In Sam Loyd’s 15-puzzle [10], a player arranges square blocks labeled 1-15, scram-
bled on a4 x 4 board, to achieve a shuffled row major ordering of the blocks using
one empty swap cell (see, e.g., Fig. 1). Generalizing the grid-based board to an arbi-
trary connected graph over n vertices, the 15-puzzle becomes the problem of pebble
motion on graphs (PMG). Here, up to n — 1 uniquely labeled pebbles on the vertices
of the graph must be moved to some desired goal configuration, using unoccupied
(empty) vertices as swap spaces. Since the initial work by Kornhauser et al. [8], PMG
and its optimal variants has received significant attention in robotics [13, 18, 19]
and artificial intelligence [9, 14], among others. The connection between PMG and
multi-robot path planning is immediately clear, with potential applications towards

J. Yu (X) - D. Rus

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology,
Cambridge, MA, USA

e-mail: jingjin@csail.mit.edu

D. Rus
e-mail: rus @csail.mit.edu

© Springer International Publishing Switzerland 2015 729
H.L. Akin et al. (eds.), Algorithmic Foundations of Robotics XI,
Springer Tracts in Advanced Robotics 107, DOI 10.1007/978-3-319-16595-0_42

730 J. Yu and D. Rus

Fig.1 Two 15-puzzle
instances. a An unsolved
instance. In the next step,
one of the blocks 5, 6, 14
may move to the vacant cell,
leaving behind it another
vacant cell for the next
move. b The solved instance

micro-fluidics [7], multi-robot path planning [13], and modular robot reconfiguration
[12], to name a few.

As early as 1879, Story [15] observed that the parity of a 15-puzzle instance
decides whether it is feasible. Wilson [20] generalized this observation by showing
that, for 2-connected graphs (other than cycles and one special graph) with n vertices
and n — 1 pebbles, the reachable configurations form an alternating (resp. symmetric)
group on n — 1 letters when the graph is bipartite (resp. non-bipartite). An associated
planning algorithm was also provided. Kornhauser et al. [8] improved the potentially
exponential time algorithm from [20] by giving an algorithm for PMG that runs in
O(n?) time. Auletta et al. [1] showed that deciding feasibility for PMG requires
linear time when the graph is a tree. Recently, the linear-time feasibility result was
extended to general graphs [6, 21]. Although not a focus of this paper, we note that
computing optimal plans for such problems is generally NP-complete [5, 11, 16, 22].

As evident from the techniques used in [8, 20], pebble motion problems are closely
related to the structure of permutation groups. Fixing a graph and the number of
pebbles, and viewing the pebble moving operations as generators, all configurations
reachable from an initial configuration form a group that is isomorphic to a subgroup
of Sp, the symmetric group on rn letters. Deciding whether a problem instance is
feasible is then equivalent to deciding whether the final configuration is reachable
from the initial configuration via generator products [15, 20]. Another interesting
problem in this domain is the study of the diameter of such groups, which is the
length of the longest minimal generator product required to reach a group element.
Driscoll and Furst [3, 4] showed that any group represented by generators that are
cycles of bounded degree has a diameter of O (n?) and such a generator sequence is
efficiently computable. For generators of unbounded size, Babai et al. [2] proved that
if one of the generators fixes at least 67 % of the domain, then the resulting group has
apolynomial diameter. In contrast, groups with super polynomial diameters exist [3].

Somewhat surprisingly, a natural generalization of PMG allowing rotations of the
pebbles without empty swap vertices has not received much attention, possibly due to
its difficulty. As an example, in Fig. 2a, the pebbles labeled 3, 4, and 5 are allowed to
rotate clockwise along the (only) triangle to achieve the configuration in Fig. 2b. We
call this generalization the problem of pebble motion with rotations (PMR), a formal
definition of which will follow shortly. Synchronous rotations are important to have

Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests ... 731

Fig. 2 Two configurations that can be turned into each other in a single synchronized move

in a multi-robot setting for at least two reasons. First, with communication, robots
are able to execute synchronous rotational moves easily. Disabling such moves thus
wastes robots’ capabilities. Second, allowing rotational moves could allow more
problem instances to be solved and could also significantly reduce the length of
plans (note that the length of a plan can never be increased by adding more modes
of motion).

In this paper, we employ a group theoretic approach to derive a linear time
algorithm for testing the feasibility of a given PMR instance. The algorithm also
implies a cubic time algorithm for computing full plans when a PMR instance is
feasible. Thus, we establish that PMR induces similar algorithmic complexity as
PMG does in the sense that planning and feasibility test take O (n?) and linear
time, respectively. Nevertheless, the algorithms for solving PMG and PMR have
significant differences due to the introduction of synchronous pebble rotations. By
delivering these algorithms for PMR, we also bring forth the contribution of pro-
viding a now fairly complete landscape over graph-based multi-robot path planning
problems.

We formally define PMG and PMR problems in Sect. 2. In Sect. 3, we look at the
groups generated by cyclic rotations of labeled pebbles, on graphs fully occupied by
pebbles. We show that such groups have O (n?) diameters. With this intermediate
result, we continue to show, in Sect. 4, that the feasibility test of the PMR problem can
be performed in O (|V|+|E|) time, which implies an O (n?) algorithm for computing
a feasible solution (the set of movements). We conclude the paper in Sect. 5.!

2 Pebble Motion Problems

Let G = (V, E) be a connected undirected graph with |V| = n. Let there be
a set p < n pebbles, numbered 1, ..., p, residing on distinct vertices of G. A
configuration of these pebbles is a sequence S = (s1, ..., sp), in which s; denotes
the vertex occupied by pebble i. A configuration can also be viewed as a bijective
map S : {1,..., p} = V(S) in which V(S) denotes the set of occupied vertices by
S. We allow two types of moves of pebbles. In a simple move, a pebble may move to

ISee http://people.csail.mit.edu/jingjin/files/ YuRus 15STAR.pdf for non-essential proofs and other
details that were omitted.

http://people.csail.mit.edu/jingjin/files/YuRus15STAR.pdf

732 J. Yu and D. Rus

an adjacent empty vertex. In a rotation, pebbles occupying all vertices of a cycle can
rotate simultaneously (clockwise or counterclockwise) such that each pebble moves
to the vertex previously occupied by its (clockwise or counterclockwise) neighbor.
Two configurations S and S’ are connected if there exists a sequence of moves that
takes S to S’. Let S and D be two pebble configurations on a given graph G, the
problem of pebble motion on graphs is defined as follows.

Problem 1 (Pebble Motion on Graphs (PMG)) Given (G, S, D), find a sequence of
simple moves that take S to D.

When G is a tree, PMG is also referred to as pebble motion on trees (PMT). In
this case, an instance is usually written as I = (7T, S, D) with T being a tree. When
both simple moves and rotations are allowed, the resulting variant is the problem of
pebble motion with rotations.

Problem 2 (Pebble Motion with Rotation (PMR)) Given (G, S, D), find a sequence
of simple moves and rotations that takes S to D.

If G is a tree, then a PMR is simply a PMT. We note that it may be possible
to achieve additional efficiency by allowing multiple simple moves and rotations
(along disjoint cycles) to take place concurrently. For example, the configuration in
Fig.2a can be taken to the configuration in Fig.2b in a single concurrent move. A
full discussion of such moves (i.e., the optimality perspective) is beyond the scope
of this paper.

3 Graph Induced Group and the Upper
Bound on Its Diameter

3.1 Groups Generated by Cyclic Pebble Motions
and Their Diameters

A particularly important case of PMR is when p = n; we restrict our discussion
to this case in this section. When p = n, only synchronous rotations are possible.
Given two configurations S and S’ that are connected, they induce a permutation of
the pebbles, which is computable via og (i) = S ~1(8'(i)) for each pebble i; o5 s
is the identity element. Given an initial configuration Sp, let . denote the set of all
configurations reachable from Sy. It can be verified, using basic definitions of groups,
that the permutations o, s, over all S; € .% form a subgroup of Sy, the symmetric
group on #n letters. Since this group is determined by the graph G, we denote it G.
Two cycles of G are disjoint if their vertex sets have empty intersection. When
p = n, each synchronous move corresponds to the rotations of pebbles along a
set of of disjoint cycles. Let % be the collection of all sets of disjoint cycles in G;
each C € % is a unique set of disjoint cycles of G. Since the pebbles may rotate
clockwise or counterclockwise along a cycle ¢; € C, each set of disjoint cycles C

Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests ... 733

Vy Vs

Fig. 3 For the graph above, the collection of sets of cycles are 4’ = {{vivav3vavs}, {vev7vgvovio},
{vivavavavs, vev7vgvovio}}

can take a configuration to 2/C! new configurations with one move. That is, each C
yields 2!€! generators of G. Let the set of all generators obtained this way be &. As
an example, the graph in Fig. 3 has two cycles, with |€| = 3 and |¢| = 8 (note that
9| = 21%1 does not hold in general). We make the simple observation that these
definitions yield a natural bijection between synchronous moves and elements of
. As such, when a configuration S’ is reachable from a configuration S, we say
that the permutation og v € G is reachable (from the identity) using products of
generators from ¢ corresponding to the synchronous moves. We frequently invoke
this bijection between synchronous moves and generators without explicitly stating
so. Lastly, any element x € G can be expressed as generator product g(g> ... gk in
which g1, ..., gr € 4. Let k, be the minimum k such that x = g;g>...gr. The
diameter of G, diam(G), is defined as the maximum k, over all x € G.

3.2 Upper Bound over Group Diameters

The main result to be established in this section is diam(G) = O (n?). To show this, G
is divided into classes based on its connectivity. When G is connected (1-connected)
but none of its subgraphs are 2-connected (i.e., G has no cycles), it is a tree. In this
case, no pebble can move. Another simple case is when G is a cycle, the simplest
2-connected graph. Then, it is clear that all elements of G are generated by a single
rotation.

Lemma 1 (Trees and Cycles) If G is a tree, then G = {1}, the trivial group. If G is
a cycle, then G = Z/n, the cyclic group of order n.

When G is connected but the removal of some vertex from G leaves two or more
components, it is separable. An important case here is when G is a set of cycles
sharing vertices so that no edge of G is on more than one cycle. Such graphs form
a subset of 2-edge-connected graphs. Figure4 gives an example with two cycles.
Following convention, A, denotes the alternating group on n letters. For groups,
G| > G or G < G denotes that G is a subgroup of G|. For two configurations
S and S’ over the same set of pebbles on the same graph, we say that they are cycle
similar if the following property holds. For any pebble a, let the sets of cycles (of
the underlying graph G) occupied by a in configurations S and S’ be Cg and Cy,
respectively. Then Cg N Cy # O.

A key result of this section is the following.

734 J. Yu and D. Rus

Fig. 4 Two cycles sharing
one common vertex. The
graph is separable at b

Theorem 1 (Cycles, Separable) If every edge of a separable graph G is on exactly
one cycle, then G > Ay and diam(G) = O (n?).

Proof Given configurations S and D, we claim:

1. In O(nz) moves, D can be taken to some configuration D’ such that S and D’
are cycle similar. As an example, in Fig.4, assuming the given configuration is
S, this step ensures that in configuration D’, pebbles g;’s are all on the left cycle
and pebbles c¢;’s are all on the right cycle. The pebble b may appear on either one
of the two cycles.

2. In O(n?) moves from D', a configuration D" can be reached such that either
D" = S or D" and § differ by a transposition (group action). We require that the
transposition is fixed for a fixed S and involves two adjacent pebbles of S. Let S’
be the result of letting this transposition act on S.

These claims are proved in lemmas that follow. By these claims, an arbitrary D
can reach either S or §’. Therefore, all configurations (and consequently elements of
Sn) are partitioned into two equivalence classes based on mutual reachability. Since
the only subgroup of S, of index 2 is Ay, this implies that G > A,,.

When G = A,,, any element of G is a product of generators from ¢ with a length
of 0(n?), proving diam(G) = O (n?). If G is not isomorphic to Ay, since the only
subgroups of S, containing A, are A, and Sy, itself, G = S,,. This implies that A,
has at most two cosets in G; denote the other coset of A, as A,¢, which also have
a diameter of O (n?) (to see this, note that any configuration D is reachable from
one of S, §” in O(n?) moves). From the identity, all elements of A, are reachable
using generator products of length O (n?). Since elements of A, are now reachable
from elements of Ay, an element of A, must be reachable from the identity using
a generator product of length O (n?) as well. Therefore, when G = Sy, all elements
of G are reachable using generator products of length O(n?), yielding diam(G) =
0 (n?). O

Before moving to the lemmas, we note that when G is separable and every edge of
G is on exactly one cycle, the edges of G can be partitioned into equivalence classes
based on the cycles they belong to. Because G is separable, every cycle must border
one or more cycles and at the same time, two cycles can share at most one vertex.
Such a graph is also called a cactus graph. Moreover, there exists a cycle that only
shares one vertex with other cycles. We call such a cycle a leaf cycle. An example
of a leaf cycle is given in Fig.5.

Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests ... 735

Fig. 5 The dual tree structure in a separable graph G with every edge on exactly one cycle. The
numbers represent distances of the cycles to the leaf cycle C, which in fact is the root of the tree

Given a cycle C’ on G, it is of cycle distance d. to C if a vertex on C’ needs to
travel through at least d,. cycles to reach C. A neighboring cycle of C has distance 0
since they share a common vertex. Let C have a cycle distance of —1 by definition.
This induces a (dual) tree structure on the cycles when viewing them as vertices
joined by edges to neighbors (see, e.g., Fig.5). Computing such a tree takes time
O(|V|+|E|) because obtaining maximal 2-connected components takes linear time
[17]. The first claim in the proof of Theorem 1 can be stated as follows.

Lemma 2 (Initial Arrangement) Given a separable G with each edge on exactly
one cycle and configurations S and D, in O (n*) moves, a configuration that is cycle
similar to S is reachable from D.

Proof Note that a pebble may reside on multiple cycles; this lemma only ensures that
each pebble gets moved to one of the cycles it belongs to in S. First we show that a
single pebble can be relocated to a cycle it belongs to in S in O (n) rotations, without
affecting pebbles that are previously arranged. When G is two cycles joined on a
common vertex (e.g., Fig.4), without loss of generality, assume that we need to move
a; from the left cycle to the right cycle. This implies that some pebble ¢ ; (and possibly
b) does not belong to the right cycle in S. We note that the group G in this case has
four generators, gy = (Zl ZT Zﬁ_l Zz) 8r = (2 2 Zr fl) , which cor-
respond to clockwise rotations along the left and right cycles, respectively, and their
inverses, g[l and g~ !, One can verify that the generator product g;i g’ gé exchanges
a; and c¢; between the two cycles without affecting the cycle membership of other
pebbles (see Fig. 6). For the general case in which a pebble needs to go through some
k cycles, denoting the generators as g1, . . ., gk, it is easy to verify that a product of the
formg,"'g;"” ... g)f ... g7 8| achieves what we need, withij +- - - +ix < n. There
may be more than these 2k basic generators, but we do not need the other generators
for this proof. Therefore, at most 2n moves are needed to move one pebble to the

736 J. Yu and D. Rus

Fig. 6 Illustration qf the a, 000 o0
vertex arrange algorithm for o~ Q O
two adjacent cycles 5

Cj O Q . . t .

desired cycle. To avoid affecting pebbles that are previously arranged, we may simply
fix a leaf cycle C and start with cycles based on their cycle distance to C in decreas-
ing order. At most 2n% moves are required to arrange all n pebbles to the desired
cycles. (]

Lemma 3 (Rearrangement) The pebbles arranged according to Lemma 2 can be
rearranged such that the resulting configuration is the same as S or differ from S
by a fixed transposition of two neighboring pebbles in S. Rearrangement requires
O(nz) moves.

Proof For a fixed G, let C be a leaf cycle and let C border other cycle(s) via vertex
v.In S, let a; be the pebble occupying counterclockwise neighboring vertex of v on
the cycle C, and let a» be the counterclockwise neighbor of a1 on C (again, see Fig. 5
for an illustration of this setup). The fixed transposition will be (a; a3).

We rearrange pebbles to match the configuration S starting from cycles with higher
cycle distances to the leaf cycle C, using the neighboring cycle with smaller cycle
distance (such a cycle is unique). We show that the pebbles on the more distant cycle
can always be rearranged to occupy the vertex specified by S. Moreover, this can be
achieved using moves that only affect the ordering of two pebbles on the neighboring
cycle. Without loss of generality, we use the two cycle example from Fig.4 and let
the right cycle be the more distant one. The generators gy, g[l, gr, and g, ! from
previous lemma remain the same. To exchange two pebbles on the right cycle, for
example ¢;, ¢;, we may use the following generator product

e
8. 8 'gegl gy g gugy e (1)

Performing such exchanges iteratively, within 21> moves, all pebbles except those
on the leaf cycle C can be rearranged to occupy vertices specified by S. Reversing
the process, we can arrange all pebbles on C to occupy vertices specified by S,
using a neighboring cycle C’, affecting the ordering of at most two pebbles on
C’. Repeating this process again with C’ using C as the neighboring cycle and
ai, a as the swapping pebbles, all pebbles except possibly aj, a» occupy the vertices
specified by S.]

The above two lemmas complete the proof of Theorem 1. At this point, it is
easy to see that when G is separable with each edge on a single cycle, G = S, if
and only if G contains an even cycle, corresponding to the composition of an odd
number of transpositions. Otherwise, G = A,. We are left with the case in which G
is 2-connected but not a (single) cycle.

Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests ... 737

Theorem 2 (2-connected, General) If G is 2-connected and not a cycle, G = Sy
with diam(G) = O (n?).

Combining Theorems 1 and 2 concludes the case for 2-edge-connected graphs that
are not single cycles; the case of general graph then follows. Since we will mention
“2-edge-connected component” fairly frequently, we abbreviate it to “TECC” except
in theorem statements. Also, we call each component of G after deleting all TECCs
a branch.

Proposition 1 (2-edge-connected) If G is 2-edge-connected and not a single cycle,
G > Ap with diam(G) = O (n?).

Proof A 2-edge-connected graph G can be separated into 2-connected components
via splitting at articulating vertices. A (dual) tree structure, similar to that illustrated
in Fig.5, can be built over these components. The two-step algorithm used in the
proof of Theorem 1, in combination with Theorem 2, can be applied to show that
G > A, and diam(G) = O (n?). O

After gathering all cases, we obtain the following main result for this section.

Theorem 3 (General Graph) Given an arbitrary connected, undirected, simple
graph G, diam(G) = 0 (n?).

Proof Pebbles on vertices of G that are not on any cycle are always immobile.
Deleting those vertices does not change G. After all such vertices are removed,
we are left with the TECCs of G. Denoting the associated groups of these compo-
nents {G;}, G is the direct product of the G;’s. Since all G;’s have O (n?) diameter,
so does G. O

4 Linear Time Feasibility Test of PMR

We now describe a linear time algorithm for testing the feasibility for PMR, using a
proof strategy similar to that from [1] on PMT. We first restate a result form [1].

Theorem 4 (Theorem 3 in [1]) Given an instance (T, S, D) of PMT, in O (n) steps,
an instance (T, S’, D) of PMT can be computed such that S', D contain the same
set of vertices and (T, S, S') is feasible.

The following corollary is also obvious.

Corollary 1 Given aninstance (T, S, D) of PMR, let (T, S', D) be the new instance
obtained according to Theorem 4. Then (T, S, D) is feasible if and only if (T, S’, D)
is feasible.

By Theorem 4 and Corollary 1, reconfiguration can be performed on a PMR
instance I = (G, S, D) to get an equivalent instance I’ = (G, S’, D) so that §’, D
have the same underlying vertex set (i.e., V(S") = V(D)). To do this, find a spanning

738 J. Yu and D. Rus

tree T of G. The O (n) time algorithm guaranteed by Theorem 4 can then compute
a desired instance (T, S, D) with S, D having the same set of vertices. Since the
moves taking (T, S, §’) is feasible, (G, S, §’) is feasible; therefore, (G, S, D) is
feasible if and only if (G, S’, D) is feasible. Given an instance I = (G, S, D) in
which S and D have the same underlying set, we call it the pebble permutation
with rotation problem or PPR. Given a PPR instance, we say that two pebbles are
equivalent if they can exchange locations with no net effect on the locations of other
pebbles. A set of pebbles are equivalent if every pair of pebbles from the set are
equivalent.

In testing the feasibility of a PPR instance I = (G, S, D), a simple but special
case is when G is a cycle. In this case, S and D induce natural cyclic orderings of
the pebbles. The following is then clear.

Lemma4 Let I = (G, S, D) be an instance of PPR in which G is a cycle. Then
is feasible if and only if s; = d(i k) mod p fOr some fixed natural number k.

When G is not a cycle, the feasibility test is partitioned into four main cases,
depending on the number of pebbles, p, with respect to the number of vertices of G.
It is assumed that G contains at least one TECC since otherwise G is a tree and the
problem is a PMT problem.

4.1 Feasibility Test of PPR When p = n

When p = n, all vertices are occupied by pebbles. Clearly, if a pebble is on a vertex
that does not belong to any cycle (i.e., a branch vertex), the pebble cannot move.
Therefore, I = (G, S, D) is feasible only if for every branch vertex v € V(G),
S~'(v) = D~'(v). Furthermore, given any TECC C of G, S~'(C) = D~1(C)
must also hold, since pebbles cannot move out a TECC. If these conditions hold, the
feasibility of / is reduced to feasibilities of {(Ci, S|s-1(c,), Dlp-1(c;,))}, in which
C;’s are the TECCs of G and S|¢-1 () denotes S restricted to the domain S~ (C;):
same applies to D|p-1(¢,)- More formally,

Proposition 2 Let I = (G, S, D) be an instance of PPR with p = n. Let {C;}
be the set of 2-edge-connected components of G. Then I is feasible if and only if
the following holds: 1. for all v € V(G\(Y;C;)), S~lv) =D 1(), 2. for each C;,
S7Y(Ci) = D™Y(Ci), and 3. foreach C;, the PPR instance (Ci, S| s-1(c, Dlp-1(c;))
is feasible. Moreover; the feasibility test can be performed in linear time.

Proof Finding TECCs of G canbe donein O (|V|+|E|) time [17]. Checking whether
condition 1 holds takes linear time. For checking condition 2, for each C;, we first
gather S~1(C;) and for each pebble in S~!(C;), mark the pebble as belonging to
C;. We can then check whether the pebbles in D! (C;) also belong to C; in linear
time. For condition 3, deciding the feasibility of (C;, S|g-1(¢,), Dlp-1(c;)) can be
done using the results from Sect. 3. This check can performed as follows. 1. Check

Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests ... 739

whether C; is a cycle, which is true if and only if no vertex of C; has degree more
than two. If this is the case, apply Lemma 4 to test the feasibility on C;; 2. Check
whether C; is a cactus with no even cycle. We can verify whether C; is a cactus as
follows: Using depth first search (DFS), detecting cycles of C;. If C; is a cactus, then
it should assume a “tree” structure shown in Fig.5; the first cycle that is found must
be a leaf cycle. Deleting this cycle (without deleting the vertex that joins this cycle to
the rest of C;) from C; yields another cactus. Repeating the process tells us whether
C; is a cactus. As we are finding the cycles, we can check whether there is an even
cycle. If C; is indeed a cactus with no even cycle, the possible configurations have
two equivalence classes. The subproblem is only infeasible if S|g-1c,), Dlp-1(c;
fall into different equivalence classes, which can be checked by computing the parity
of the permutation o p, restricted to C;, in linear time; 3. For all other types of C;,
the subproblem is feasible. O

4.2 Feasibility Test of PPR When p =n — 1

When p = n—1, nearly all PPR instances, in which G are 2-edge-connected graphs,
are feasible.

Lemma 5 Letl = (G, S, D) be an instance of PPR inwhich G is 2-edge-connected
and not a cycle. If p < n, then I is feasible.

Proof By Theorems 1 and 2, G > Ay. That is, there are at most two equivalence
classes of configurations, with configurations from different classes differ by a trans-
position of neighboring pebbles. Since there is at least one empty vertex, viewing
that vertex as a “virtual” pebble that can be exchanged with a neighboring peb-
ble in one move, it is then clear that the two configuration classes collapse into
a single class. (]

Lemma 6 Ler I = (G, S, D) be an instance of PPR in which G, after deleting one
(or more) degree 1 vertex (vertices), is a 2-edge-connected graph. If p < n, then I
is feasible.

Proof Note that by degree 1 vertices, we mean that these vertices have degree 1 in
G. Let H be the 2-edge-connected graph after deleting all degree 1 vertices and let
V1, ..., Vi be the degree 1 vertices. Let the neighbor of v; in G be v; € V(H). Since
v € vi,..., Vv has degree 1, it is attached to H via a single edge. Let H; be the
subgraph of G after deleting all vertices in vy, ..., v; except v;. Assume that v| is
empty initially, we show next that all pebbles occupying H; are equivalent. That is,
an arbitrary configuration of these pebbles can be achieved.

If H is cycle, the subroutine illustrated in Fig.7 shows how an arbitrary configu-
ration of pebbles can be achieved for a triangle H, which directly generalizes to an
arbitrary sized cycle. This shows that all pebbles on H; fall in the same equivalence
class. If H is not a cycle, we can move an arbitrary pebble j from H to v;. Lemma 5

740 J. Yu and D. Rus

’

% %6 Y O

Fig. 7 With one empty vertex, pebbles on a triangle can be arranged to achieve any desired con-
figuration. This generalizes to an arbitrary TECC

implies that all pebbles on H are equivalent. Since j is arbitrary, all pebbles on Hj
are equivalent.

Having shown that all pebbles on H; are equivalent, we move an arbitrary pebble j
to vy and empty vertex v (if there is a v2). Following the same procedure, all pebbles
on Hj are equivalent. Since j is arbitrary, all pebbles on H, vy, v» are equivalent.
Inductively, all pebbles on G are equivalent. Therefore, an arbitrary instance [is
feasible. (]

When there is a single empty vertex on G, it is clear that pebbles can be moved
so that the empty vertex is an arbitrary vertex of G. In particular, for any TECC H
of G, we can move the pebbles so that a vertex of H is empty. By Lemma 6, all
pebbles on H and its distance one neighboring vertices fall in the same equivalence
class. We now show that the feasibility of the case of p = n — 1 can be decided in
linear time.

Proposition 3 Let I = (G, S, D) be an instance of PPR in which p = n — 1 and
G is not a cycle. The feasibility of I can be decided in linear time.

Proof We start with pebble configuration S and group the pebbles into equivalence
classes. Without loss of generality, assume that S leaves a vertex of a TECC, say H,
unoccupied. By Lemma 6, all pebbles on H and its distance 1 neighbors belong to
the same equivalence class, say hg, . Now, check whether any pebble in /g is on
some other TECC H' # H. If that is the case, all pebbles on H’ and its distance
1 neighbors are also equivalent and belong to /s 1. When no more pebbles can be
added to kg 1 this way, hg, 1 is completely defined.

Let v be a vertex neighboring a vertex occupied by a pebble from g | (v itself is
not occupied by a pebble in /5 1), if v is not a TECC vertex, the pebble currently on
v cannot be move to a TECC and therefore is not equivalent to any other pebble. The
pebble then gets its own equivalence class, say /s . If v belongs to a TECC, say H,,
then all pebbles on H, and all H,’s distance 1 neighbors that are not yet classified
belong to A 2; hs 2 is then expanded similarly to A ;. At this point, the procedures
given so far apply to partition all pebbles into equivalence classes. It is not hard to see
the algorithm takes linear time to complete using breadth first or depth first search,
treating each TECC as a whole. As the start configuration S is being classified, the
same is done to D. In particular, if a set of pebbles of S belongs to an equivalence
class hg ;, then the pebbles of D occupying the same set of vertices get assigned to
the class ip ;. The instance I is feasible if and only if hs; = hp ; for all i (this
can be done in linear time as we have shown in checking the second condition in
Proposition 2). O

Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests ... 741

Fig.8 Anexample of the case p = n — 1. The pebbles are put into 5 different equivalence classes,
distinguished by different colors

Figure 8 provides an example of applying the above procedure to a given pebble
configuration, which partitions the pebbles into 5 equivalence classes.

4.3 Feasibility Test of PPR When p < N(TECCs)

We denote by N(T ECCs) the number of vertices of all TECCs of G. An instance
is almost always feasible when p < N(T ECCs).

Theorem 5 Let I = (G, S, D) be an instance of PPR in which G is not a cycle. If
p < N(TECCs), then I is feasible.

Proof Since the number of pebbles are not enough to occupy all TECC vertices, we
can update configuration S to a new one S’ such that all pebbles are on TECC vertices.
Repeating the same moves over the configuration D to get D’ (i.e., if we move a
pebble from v; to v; in the initial pebble configuration, we move the corresponding
pebble from v; to v; in the final pebble configuration). After this process is complete,
the updated start and final configurations again occupy the same set of vertices;
(G, S, D) is feasible if and only if the (G, S’, D’) is feasible. In the rest of the proof
we show that (G, S’, D) is feasible.

Since not all TECC vertices are occupied in §’, at least one TECC, say C;, has
an empty vertex. By Lamma 6, all pebbles on C; are equivalent. Now let C; be
another TECC joined to C; via a single branch (see Fig. 9 for an example). Since any
pebble on C; can be moved to vertex v; via a proper sequence of rotations, it is then
possible to exchange any pair of pebbles p; on C; and p> on C;: move p; to v;,
empty v;, move pj to v;, rotate p; to v;, and move it to v;. Via induction, any pair of
pebbles on G can be exchanged, without affecting the current configuration of other
pebbles. Given this procedure, we can iteratively arrange each pebble 7, starting from
pebble 1, by exchanging pebble i with some other pebble occupying i’s vertex in
D’. With up to p — 1 exchanges, all pebbles can be arranged to their desired final
configurations. (]

Fig. 9 A graph with two
TECCs

742 J. Yu and D. Rus

4.4 Feasibility Test of PPR When N(TECCs) < p<n-—1

For this last case, given a PPR instance, (G, S, D), we first move pebbles in S and
D so that vertices of all TECCs are occupied. To perform this in linear time, a
“fake” goal configuration D y is created with p pebbles such that all TECCs are full
occupied, in an arbitrary order. This is possible because N(TECCs) < p <n — 1.
Using a spanning tree 7 of G and apply Theorem 4 to (T, S, D), (T, D, Dy), we
get two new instances (T, ", Dy), (T, D', D) with the property that S, D', and
D all occupy the same set of vertices and (7', S, S, (T, D, D") are both feasible.
Thus, we obtain a new PPR instance (G, S’, D), which is feasible if and only if
(G, S, D) is, with the additional property that vertices of all TECCs are occupied.
For convenience, we call an instance (G, S, D) of PPR in which all TECC vertices
are occupied a rearranged pebble permutation problem, or RPP. Note that this implies
p > N(TECCs).

Next, we contract G to get a skeleton tree, T, by collapsing each TECC into
a composite vertex; other vertices and edges are left intact. For example, the graph
from Fig. 8 have the skeleton tree shown in Fig. 10. This procedure induces a natural
map fr that takes any subgraph H of G to fr(H) as a subgraph of 7 (via mapping
all vertices belonging to the same TECC of G to a composite vertex of 7 and non-
composite vertices of G to non-composite vertices of 7). Given an instance (G, S, D)
of RPP with p < n — 1 pebbles, all pebbles on the same TECC are equivalent by
Lemma 6. This induces a problem instance (Tg, S’, D) in which all pebbles (in S
and D) on the same TECC of G are combined into a composite pebble (in S’ and
D). Given two vertices u and v in a graph, u ~ v denotes a (shortest) path between
u and v. Such a path is unique when the graph is a tree. By all vertices on (resp. in)
u ~- v, we mean vertices of u ~» v including (resp. excluding) # and v. Lemma 6
from [1] can be extended to RPP as follows.

Lemma 7 Let (G, S, D) be an instance of RPP in which G is not a cycle and
N(TECCs) < p < n — 1. Let u,v, and w be vertices of G such that the path
between u and v and the path between v and w are not edge disjoint. Assume u and
v are occupied by pebbles and moves exist that take S to a new configuration in
which pebble S™Y(w) is moved to v and S~L(v) is moved to w. Then S can be taken
to an configuration S’ in which S and S’ are the same except pebbles on u and v are
exchanged.

Fig. 10 The skeleton tree (on the right) after contracting the graph on the left (from Fig.8); the
black dots are the composite vertices

Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests ... 743

Lemma 7 leads to a generalized version of Theorem 4 from [1] to RPP, given below.
We omit the proof since it is nearly identical (we need extended versions of Corollary
1 and 2 from [1], which can be easily proved in the same way Lemma 7 is proved).

Theorem 6 An RPP instance, (G, S, D), inwhich G is not a cycle and N(T ECCs)
< p < n — 1, is feasible if and only if the individual exchanges between pebble i
and SV (D(i)), 1 < i < p, can be performed using moves without affecting the
configurations of any other pebble.

By Theorem 6, if an instance of RPP, I = (G, S, D), is feasible, then pebbles i
andos p(i) =S ~L(D(i)) canbe exchanged with no net effect on other pebbles. This
enables a feasibility test of RPP problems (and therefore, PMR problems): vertices
occupied by pebbles are partitioned into equivalence classes such that two pebbles
can be exchanged if and only if the vertices occupied by them belong to the same
equivalence class. In fact, we apply the Mark algorithm from [1] on the skeleton
tree T without any change at the pseudocode level (see [1] for the simple algorithm
description); the main difference is how to check whether two adjacent pebbles are
equivalent (Lemma 8 from [1]).

Before stating our version of the lemma, some notations are in order. We work with
an arbitrary RPP instance I = (G, S, D) inwhich G isnotacycleand N(T ECCs) <
p <n—1.Letl'’ = (Tg, S’, D’) be the induced instance described earlier in which
Tc is G’s skeleton tree. A fork vertex of T is a vertex of degree at least 3 that is not
a composite vertex. F(u) is the set of connected components of 7 after deleting
the vertex u. T (u, v) is the tree of F (1) containing the vertex v; T (u, v) is the rest of
F(u). For two vertices u, v € V(Tg), d(u, v) is the length of # ~~ v. In the lemmas
that follow, only start configuration S’ is operated on; same procedure can be applied
to D. First we need a version of Corollary 3 from [1] to account for composite
vertices; we omit the essentially same proof but point out that although both fork and
composite vertices can help two pebbles switch locations, a composite vertex can do
so with one fewer empty vertex.

Lemma 8 Let p; := S '(u), pr := S""'(v) for u,v € V(Tg) such that u ~» v
contains no other pebbles; all vertices onu ~» v are of degree 2. Let w be a composite
or fork vertex such that u is in w ~> v. The tree T (u, w) has no more than d(w, u)
(resp. d(w, u) + 1) empty vertices when w is a composite (resp. fork) vertex. Let w'
be the closest composite or fork vertex to v such that v is inw' ~ u satisfying similar
properties as w. Then u and v are not equivalent.

Lemma9 Let p; := S), pr := ') for some u,v € V(Tg) such that
u ~+ v contains no other pebbles. Then p\, py are equivalent with respect to S’ if
and only if at least one of the following conditions holds:

1. There exists a fork vertex w in u ~> v such that both T (w, u), T (w, v) are not full
or at least one other tree of F(w) is not full.

2. Let w be a composite vertex such that u is in w ~> v and no other fork vertex or
composite vertex is in w ~~ u. There exists suchaw that T (u, w) has d(w, u) + 1
empty vertices.

744 J. Yu and D. Rus

3. Symmetric to 2 with u and v switched.

4. Letw be aforkvertex such that u isinw ~- v and no other fork vertex or composite
vertex is in w ~> u. There exists such a w that T (u, w) has d(w, u) + 2 empty
vertices.

5. Symmetric to 4 with u and v switched.

6. Vertex u is a fork vertex. Then at least two trees of F(u) has empty vertices or
there are at least two empty vertices outside T (u, v).

7. Symmetric to 6 with u and v switched.

8. Vertex u is a composite vertex. Then at least one tree of T (u, v) has an empty
vertex.

9. Symmetric to 8 with u and v switched.

Proof The proof is adopted from that of Lemma 8 from [1] with some repetitive
details omitted. Since the sufficiency of the conditions can be easily checked by con-
structing plans that exchange p1, p», only necessity is shown here via contradiction.
Assume that u and v are exchangeable without configuration § satisfying any of the
conditions 1-9. First consider the case in which there is no fork vertex in u ~» v and
u and v are not fork or composite vertices; these assumptions forbids conditions 1
and 6-9. If conditions 2-5 do not hold, the condition from Lemma 8 is true, thus «
and v cannot be equivalent.

For the case in which no fork vertex exists in u ~» v but u or v (possibly both)
is a fork or composite vertex, the proof from Lemma 8 from [1] applies with little
change to show that «# and v are not equivalent unless one of conditions 2-9 holds:
If conditions 2—5 do not hold, this means that p;, p> must use u or v as a “hub” for
switching locations; traveling beyond distance 1 from u# ~» v will not help u and v
to switch. On the other hand, if conditions 6-9 do not hold, u or v cannot serve as
the hub that enables u and v to switch. Furthermore, if conditions 6-9 do not hold,
reconfiguration of pebbles will not make conditions 2—5, previously invalid, become
valid.

This leaves the case in which conditions 2-9 do not hold, which means that u
and v cannot switch on T (u, v) nor T (v, u). Since there is no pebble in u ~~ v, the
vertices in u ~» v cannot be composite vertices. The same proof from Lemma 8 from
[1] then shows that unless condition 1 is met, # and v cannot be equivalent. O

With Lemma 9, all criteria needed for the Mark algorithm from [1], in partic-
ular Observations 1-4, continue to hold on 7z without change. Since Mark is not
changed, its running time is linear if deciding whether two adjacent pebbles are equiv-
alent can be performed in (amortized) constant time. For this to hold, for an arbitrary
tree T (u, w), we need to know whether T (u, w) has 0, 1, 2 holes and whether the fork
or composite vertex of T (u, w) closest to u allows u and another vertex vin T (u, w)
to exchange (i.e., T'(u, w) should have enough empty vertices). These data can be
precomputed in O (|V |+ |E|) time using two depth firth traversals over the tree 7.
At this point, it is not hard to see that this linear decision algorithm easily turns into
an algorithm that computes a feasible solution to a PPR instance. Our complexity
analysis shows that a feasible solution can be computed in O (]E]) if a high level

Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests ... 745

plan is required (computes a corresponding RPP instance, checks feasibility, and
outputs the permutation pairs for exchanges) and O (n°) if step by step output is
required (each exchange can be done in O (n%) moves produced by a fixed formula).
We summarize the main result of this section with the following theorem.

Theorem 7 The feasibility of PMR problems can be decided in linear time. More-
over, a plan for a feasible instance can be computed in O (n>) time.

5 Conclusion

In this paper, we proposed the problem of pebble motion on graphs with rotations
(PMR), a graph-based multi-robot path planning problem. Our formulation takes into
account natural, synchronous rotations of pebbles along fully occupied cycles of the
underlying graph. The inclusion of this important case, in conjunction with previous
studies of the problem that only allow pebbles to move to unoccupied vertices, paints
a fairly complete picture of graph-based multi-robot path planning problems. In our
systematic analysis of PMR, we show that, even for the fully constrained case in
which the number of pebbles equals the number of vertices, deciding the feasibility
of a PMR instance can be completed in linear time with respect to the size of the
underlying graph. Moreover, computing a full plan for all moving all pebbles requires
O (n®) time.

Acknowledgments This work was supported in part by NSF grant 0904501 and ONR projects
N00014-12-1-1000, N0O0014-09-1-1051, and N0O0014-09-1-1052.

References

1. Auletta, V., Monti, A., Parente, M., Persiano, P.: A linear-time algorithm for the feasibility of
pebble motion on trees. Algorithmica 23, 223-245 (1999)

2. Babai, L., Beals, R., Seress, A.: On the diameter of the symmetric group: polynomial bounds.
In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp.- 1108-1112 (2004)

3. Driscoll J.R., Furst M.L.: On the diameter of permutation groups. In: Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing, pp. 152-160 (1983)

4. Diriscoll, J.R., Furst, M.L.: Computing short generator sequences. Inf. Comput. 72(2), 117-132
(1987)

5. Goldreich, O.: Finding the shortest move-sequence in the graph-generalized 15-puzzle is np-
hard. Laboratory Computer Science Massachusetts Institute of Technology, unpublished man-
uscript (1984)

6. Goraly, G., Hassin, R.: Multi-color pebble motion on graph. Algorithmica 58, 610-636 (2010)

7. Griffith, E.J., Akella, S.: Coordinating multiple droplets in planar array digital microfluidic
systems. Int. J. Robot. Res. 24(11), 933-949 (2005)

8. Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on graphs, the diameter
of permutation groups, and applications. In: Proceedings of the 25th Annual Symposium on
Foundations of Computer Science, pp. 241-250 (1984)

746 J. Yu and D. Rus

9. Krontiris, A., Luna, R., Bekris, K.E.: From feasibility tests to path planners for multi-agent
pathfinding. In: Symposium on Combinatorial Search (2013)

10. Loyd, S.: Mathematical Puzzles of Sam Loyd. Dover, New York (1959)

11. Ratner, D., Warmuth, M.: The (n> — 1)-puzzle and related relocation problems. J. Symb.
Comput. 10, 111-137 (1990)

12. Reif, J.H., Slee, S.: Asymptotically optimal kinodynamic motion planning for self-
reconfigurable robots. In: The Seventh International Workshop on Algorithmic Foundations of
Robotics (2006)

13. Solovey, K., Halperin, D.: k-color multi-robot motion planning. In: The Tenth International
‘Workshop on Algorithmic Foundations of Robotics (2012)

14. Standley, T., Korf R.: Complete algorithms for cooperative pathfinding problems. In: Twenty-
Second International Joint Conference on Artificial Intelligence, pp. 668-673 (2011)

15. Story, E.-W.: Note on the ‘15’ puzzle. Am. J. Math. 2, 399-404 (1879)

16. Surynek, P.: An optimization variant of multi-robot path planning is intractable. In: The Twenty-
Fourth AAAI Conference on Artificial Intelligence, pp. 1261-1263 (2010)

17. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 140-160
(1972)

18. van den Berg, J., Snoeyink, J., Lin, M., Manocha, D.: Centralized path planning for multiple
robots: optimal decoupling into sequential plans. In: Proceedings Robotics Science and Systems
(2009)

19. Wagner, G., Choset. H.: M*: a complete multirobot path planning algorithm with performance
bounds. In: Proceedings IEEE/RS]J International Conference on Intelligent Robots and Systems,
pp. 3260-3267 (2011)

20. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. J. Comb. Theory (B) 16,
86-96 (1974)

21. Yu, J.: A linear time algorithm for the feasibility of pebble motion on graphs. arXiv:1301.2342
(2013)

22. Yu,J.,LaValle S.M.: Structure and intractability of optimal multi-robot path planning on graphs.
In: Proceedings AAAI National Conference on Artificial Intelligence, pp. 1444—-1449 (2013)

http://arxiv.org/abs/1301.2342

	Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests and Planning Algorithms
	1 Introduction
	2 Pebble Motion Problems
	3 Graph Induced Group and the Upper Bound on Its Diameter
	3.1 Groups Generated by Cyclic Pebble Motions and Their Diameters
	3.2 Upper Bound over Group Diameters

	4 Linear Time Feasibility Test of PMR
	4.1 Feasibility Test of PPR When p = n
	4.2 Feasibility Test of PPR When p = n - 1
	4.3 Feasibility Test of PPR When p < N(TECCs)
	4.4 Feasibility Test of PPR When N(TECCs) lep < n - 1

	5 Conclusion
	References

