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Abstract—We propose a novel non-linear extension to the
Orienteering Problem (OP), called the Correlated Orienteering
Problem (COP). We use COP to plan informative tours (cyclic
paths) for persistent monitoring of an environment with spatial
correlations, where the tours are constrained to a fixed length
or time budget. The main feature of COP is a quadratic
utility function that captures spatial correlations among points
of interest that are close to each other. COP may be solved
using mixed integer quadratic programming (MIQP) that can
plan multiple disjoint tours that maximize the quadratic utility
function. We perform extensive characterization of our method to
verify its correctness, as well as its applicability to the estimation
of a realistic, time-varying, and spatially correlated scalar field.

I. INTRODUCTION

We envision control algorithms for teams of robots where
the robots use correlations established between different parts
of the environment for specific events using historical data
to determine more effectively the next action. For example,
consider a scenario where a robot senses a specific event,
say an intruder at a specific location in the environment.
Using correlations and prediction a different robot can adjust
its location to intercept the intruder. Toward that goal, in
this paper, we consider how previously learned correlations
can improve the performance and capabilities of teams of
robots tasked with persistent surveillance and monitoring with
limited travel budgets. Figure 1 provides a graphical example
illustrating the problem addressed in this work.

In persistent surveillance and monitoring tasks using mobile
robots, such as unmanned aerial vehicles (UAVs), the mobile
robots usually have fixed base stations from which they must
depart and return. Moreover, these robots have limited travel
distance or time budget. Thus, when a large number of points
of interest (nodes) must be surveyed, it may well be the case
that only a subset of the nodes can be visited by the robots.
Then, choices among the nodes must be made to accommodate
two conflicting goals: 1. each robot must follow a tour (cyclic
path) whose total cost does not exceed its travel budget,
and 2. the robots must visit as many nodes as possible to
maximize the amount of collected information, as measured
by some utility (reward) function. When nodes have utilities
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Fig. 1. [top] A surveillance scenario in which an UAV with limited range
and sensing budgets is faced with the problem of covering a large number
of nodes. [bottom] Using correlations among nodes in a network, it becomes
possible to infer at least partial information for nodes that are not directly
surveyed by the UAV. Following the red tour path, which is much shorter
than a traveling salesman (TSP) tour, the UAV can provide at least partial
information about every node in the network.

that are additive, an Orienteering Problem (OP) [1], a problem
closely related to the well known Traveling Salesman Problem
(TSP) [2], arises. Research on OP has yielded many effective
algorithms for solving many versions of the problem, including
Team Orienteering Problem (TOP)[3], in which multiple tours
must be planed.

In practice, however, the information to be collected at the
nodes are frequently correlated between nodes that are close to
each other, rendering the total utility a non-linear combination
of individual node utilities. That is, it is often the case that such
information can be viewed as forming a spatially continuous
field (that also varies over time). Therefore, surveying a given
node will also yield partial information about its neighbors. For
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example, the nodes may be cities, city blocks and locations
in reservoirs with the associated quantities being population
dynamics, criminal activities, and water pollutant concentra-
tion, respectively. In this paper, assuming that the spatial
correlation among the nodes are intrinsic (i.e., determined
by local structures and mostly time-invariant) we propose a
quadratic extension to OP and TOP, called the Correlated
Orienteering Problem (COP), to incorporate such correlations
in the informative path planning phase. After formulating COP,
we provide mixed integer quadratic programming (MIQP)
models for solving the problem for a single robot as well as
for multiple robots. Our simulations indicate that COP and the
associated MIQP capture spatial correlations among the nodes
quite well. In a nutshell, COP can be viewed as a relaxation
from the problem of planning informative tours for multiple
robots under a spatially correlated field; the relaxed problem
is then solved exactly. We also note that we do not assume
convexity or submodularity over the underlying field.

Our work brings together ideas from two relatively disjoint
branches of research: (discrete) OP and (mostly continuous)
informative path planning for persistent monitoring tasks. OP,
as indicated by its name, originates from orienteering games
[3], [4]. In such a game, rewards of different sizes are spatially
scattered. A player (or players in TOP) is faced with the task of
maximizing the additive rewards under a time constraint that
translates naturally to a distance constraint. Thus, OP can be
viewed as a variation of both the Knapsack Problem (KP) [5]
and the Traveling Salesman Problem (TSP) [2]. For a detailed
account of OP, see [1].

The literature on informative path planning for persistent
monitoring is fairly rich [6]–[19], covering both theories and
applications. On work most closely related to ours, in [8],
iterative TSP paths are planned to minimize the maximum
latency across all nodes in a connected network. The authors
show that the approach yields O(logn) approximation on
optimality in which n is the number of nodes in the network.
The problem of generating speed profiles for robots along
predetermined cyclic (closed) paths for keeping bounded the
uncertainty of a varying field is addressed in [16], in which
the authors characterize appropriate policies for both single
and multiple robots. In [17], decentralized adaptive controllers
were designed to morph the initial closed paths of robots to
focus on regions of high importance.

Sampling based planning methods (e.g. PRM, RRT, RRT∗

and their variations [20]–[22]) have also been applied to in-
formative path planning problems. In [18], Rapidly-Exploring
Random Graphs (RRG) are combined with branch and bound
methods for planning most informative path for a mobile
robot. In [13], the authors tackle the problem of planning a
cyclic trajectory for best estimation of a time-varying Gaussian
Random Field, using a variation of RRT called Rapidly-
Expanding Random Cycles (RRC).

Lastly, our problem, and OP in general, also has a coverage
element. Coverage of a two-dimensional region has been
extensively studied in robotics [23]–[25], as well as in purely
geometric settings, for example, in [26], where the proposed

algorithms compute the shortest closed routes for continuous
coverage of polygonal interiors under an infinite visibility
sensing model. Coverage with limited sensing range was also
addressed later [27], [28].

This work brings two main contributions. First, we propose
COP as a novel non-linear extension to OP to model the
spatial correlations that are frequently present in informative
path planning problems for persistent monitoring tasks. In
particular, our formulation addresses the difficult problem
of planning tours (cyclic paths) under limited travel budget.
Second, we provide complete mixed integer quadratic pro-
gramming (MIQP) models for solving COP. These models,
with a MIQP solver, can effectively compute tours for multiple
robots, each with a fixed base node. We then show that
our models are applicable to estimate time-varying, spatially
corrected scalar field, with computational experiments.

The rest of the paper is organized as follows. Section II
formulates the Correlated Orienteering Problem (COP) that
we study. MIQP models are then outlined for solving the
single-robot and multi-robot cases in Section III. In Section IV,
we perform extensive computational experiments to evaluate
the applicability and effectiveness of COP and the associated
MIQP models. Section V concludes the paper.

II. PROBLEM STATEMENT

Table I lists the symbols used in this paper. We study the
problem of using mobile sensors to periodically monitor a set
of nodes for quantities of interest that can be measured at
these nodes. In general, these quantities can be represented
as a continuous scalar or vector field that changes over space
and time. One common characteristic of such fields is that they
have spatial continuity. That is, at any fixed time instance, the
values do not fluctuate much for nodes that are (spatially) close
to each other. Such relationships can be represented as some
form of correlations among the nodes1.

This paper focuses on node networks in which the corre-
lations determined by spatial relationships are known and do
not vary much over time (i.e., it is time-invariant) whereas
the field itself may vary significantly over time. Then, using
these correlations, it becomes possible to evaluate the field’s
value at one node using nearby nodes at any given time.
In particular, we are interested in using mobile sensors with
limited travel range to “sample” nodes of the network and
then estimate the field’s value at the rest of the nodes using
correlations. We assume that the field changes at a slower
pace in comparison to the time it takes a mobile sensor to
complete a set of measurements at sampled nodes (i.e., the
field remains relatively static during a trip by the mobile
sensor(s)). Below, this problem is formulated as a Correlated
Orienteering Problem (COP). More precisely, our formulation
is a quadratic extension to the linear Orienteering Problem
(OP), in which one or multiple team members use only paths
with fixed end points to visit sites and gain rewards. Our

1Here, we use the broad meaning of correlation, which could be, but is not
necessarily, the correlation of random variables.
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TABLE I
LIST OF FREQUENTLY USED SYMBOLS AND THEIR INTERPRETATIONS.

V = {vi} Node or point of interest, |V |= n
G = (V,E) Node network

pi The two dimensional coordinate of vi
ri Utility of knowing complete information about vi

ψ(vi, t) Time-varying scalar field
A = {ak} Mobile robot k, |{ak}|= m

vbk Start and end node for robot ak
ck Travel budget for robot ak
Π π1, . . . ,πm, a set of robot tours

J(Π) The cost function for a given set of robot tours
wi j The weight measuring vi’s influence on v j
xi Binary variable indicating whether vi is on a tour
xi j Binary variable indicating whether v j is visited immedi-

ately after vi
xi jk Binary variable indicating whether v j is visited immedi-

ately after vi, by robot ak
ui Integer variable, 2 ≤ ui ≤ n, the order of vi in a tour path,

if used
uik Integer variable, 2 ≤ uik ≤ n, the order of vi in a tour

path, if used, by robot ak
di j Travel cost from vi to v j , maybe non-symmetric

αi j,βi j Linear regression coefficients

particular focus in this paper are tours - cyclic paths with
the same starting and ending nodes.

Let V = {v1, . . . ,vn} be a set of spatially distributed nodes
in some workspace W ⊂ R2. Each node vi ∈ V is associated
with coordinates pi ∈ R2. Let

r : V → R+,vi 7→ ri,

represent the importance (utility) of the nodes. Let ψ(p, t) be
a scalar field over W that changes over time. The values on the
nodes of V , with a slightly abuse of notation, are written as
as ψ(vi, t),1 ≤ i ≤ n. We assume that the spatial relationship
among the nodes of V , as determined by ψ , induces a directed
graph G over V . More precisely, G=(V,E) has an edge (vi,v j)
if and only if ψ(v j, t) is dependent on ψ(vi, t). That is, let
Ni = {vi1 , . . . ,vik} be the neighbors of vi (in G, with edges
pointing to vi), then for some time-invariant fi,

ψ(vi, t) = fi(ψ(vi1 , t), . . . ,ψ(vik , t)). (1)

We point out that these requirements are quite mild as we do
not assume that ψ has properties such as convexity.

Let there be m mobile robots (sensors), A = {a1, . . . ,am}.
For a single robot ak, let its base (i.e., where it must start and
end in a tour) be a node vbk ∈V . Let

c : A → R+,ak 7→ ck,

represent the maximum distance budget the mobile robots can
travel. In TOP, a team of mobile robots, working together, get
to collect a reward (utility) ri for visiting vi the first time. The
robots do not gain more utility for subsequent visits to vi. The
goal is to find tours for the robots satisfying the travel budget
constraint (i.e., tour distance for robot ak is no more than ck)
so that the total utility is maximized. Given a set of tours
(paths) Π = {π1, . . . ,πm} taken by the robots, let {x1, . . . ,xn}
be n binary variables, with xi = 1 if and only if vi (i.e., pi)

is on some tour πk ∈ Π. We emphasize that the robots are
not constrained to stay on the graph G, but can move between
any two nodes with a cost proportional to the distance between
them. The graph G only represents the spatial correlations in
the field.

Our generalization of OP to COP aims at incorporating
correlations among the nodes during the tour planning phase.
To obtain a problem amenable to mathematical programming
techniques, we relax Equation (1) in the following way. Let

w : E → R+,(v j,vi) 7→ w ji,

represent the effectiveness (a weighting) of using ψ(v j, t) to
estimate ψ(vi, t). One may view w ji as representing the amount
of information that ψ(v j, t) has about ψ(vi, t), independent of
other neighbors of vi. The utility that can be collected over a
vertex vi is defined as

ri(xi + ∑
v j∈Ni

wi jx j(x j − xi)),

in which the quadratic term x j(x j −xi) is non-zero if and only
if x j = 1 and xi = 0. Obviously, for each 0≤ i≤ n, ∑v j∈Ni w ji ≤
1. Note that we do not assume that wi j = w ji, which may be
the case if the field’s values at vi and v j are Gaussian random
variables. Over a set of tours for the robots, Π, the total utility
to be maximized is then

J(Π) =
n

∑
i=1

(rixi + ∑
v j∈Ni

r jwi jxi(xi − x j)). (2)

The tour length constraints and the cost function given by
Equation (2) defines a quadratic extension to TOP. In the next
section, we propose a quadratic integer programming model
with quadratic cost functions and linear constraints (often
known as mixed integer quadratic programming or MIQP) for
solving the problem. Then we will look at several practical
estimation scenarios, involving one or multiple mobile robots,
that can be tackled using this fairly general method.

Remark.We note that OP, TOP, and COP are all NP-hard
problems. Restricting to OP (i.e., a one-member team or a
single mobile robot), for a given travel budget, an algorithm
for OP must answer the question of whether the budget is
enough for going through all nodes in V . Therefore, OP
requires solving (potentially many) TSPs. For COP, making the
weights {wi j} sufficiently small reduces it to an OP, because
the quadratic cost (the second summation in Equation (2)) then
becomes negligible.

III. MIXED INTEGER QUADRATIC PROGRAMMING
MODELS FOR QUADRATIC TEAM ORIENTEERING PROBLEM

In this section, we outline MIQP models for COP, starting
from the case of a single mobile robot and then move to the
case of multiple robots. Then, we show how these models may
be applied to potential applications.
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A. MIQP Model for COP with a Single Tour

We start with the case of a single tour (m = 1). Without loss
of generality, let the single robot start from v1. We adapt the
constraints from [1]. Let xi j be a binary variable with xi j = 1
if and only if the robot visits v j immediately after it visits
vi. Note that this does not depend on the existence of an edge
between vi and v j in G. Because it is never beneficial to return
to revisit a vertex, the robot should only enter and leave any
vertex at most once, yielding the following constraints.

n

∑
i=2

x1i =
n

∑
i=2

xi1 = x1 = 1, (3)

n

∑
j=1, j ̸=i

xi j =
n

∑
j=1, j ̸=i

x ji = xi ≤ 1, ∀2 ≤ i ≤ n. (4)

The equality in Equation (3) is due to the requirement that the
base node must be used.

Equations (3) and (4) ensure that the robot will take a
tour starting and ending at v1. They do not, however, prevent
additional disjoint tours being created. To prevent this from
happening, let 2 ≤ ui ≤ n be integer variables for 2 ≤ i ≤ n.
The constraints

ui −u j +1 ≤ (n−1)(1− xi j), 2 ≤ i, j ≤ n, i ̸= j (5)

guarantees that no additional tours not containing vi get
created.

With the definition of the variables {xi j}, the tour distance
constraint can be easily enforced as

n

∑
i=1

n

∑
j=1, j ̸=i

xi jdi j ≤ c1, (6)

in which di j is the distance between vi to v j and c1 is the tour
distance constraint for the single (first) robot. Note that the
distance di j needs not to be symmetric. Moreover, it is easy
to incorporate sensing cost at a node vi by absorbing that cost
to di j for all j ̸= i. Alternatively, if the sensing cost is not
compatible with the travel cost, an additional cost constraint
can be added as well.

The objective function Equation (2), subject to the constraint
Equations (3), (4), (5), and (6), define a complete MIQP model
that can be solved using an MIQP solver.

B. MIQP Model for COP with Multiple Tours

Once the MIQP model for a single robot is fully specified,
extending it for multiple robots is rather straightforward. To
accommodate m robots, the variables {xi j} and {ui} are
extended to xi jk and uik, with 1 ≤ k ≤ m representing the
robots. Constrain Equations (3) and (4) become

n

∑
i=1,i ̸=bk

xbkik =
n

∑
i=1,i ̸=bk

xibkk = xbk = 1, 1 ≤ k ≤ m (7)

and
n

∑
j=1, j ̸=i

xi jk =
n

∑
j=1, j ̸=i

x jik ≤ 1, ∀1 ≤ i ≤ n,1 ≤ k ≤ m (8)

m

∑
k=1

n

∑
j=1, j ̸=i

xi jk =
m

∑
k=1

n

∑
j=1, j ̸=i

x jik = xi ≤ 1, ∀1 ≤ i ≤ n. (9)

Equation (4) splits into Equations (8) and (9) because each
vertex should only be used at most once by each robot as
well as by all robots.

The constraints on uik become (for all 1 ≤ k ≤ m)

uik −u jk +1 ≤ (n−1)(1− xi jk), i, j ̸= bk, i ̸= j,1 ≤ i, j ≤ n.
(10)

The traveled distance constraint, Equation (6), becomes
n

∑
i=1

n

∑
j=1, j ̸=i

xi jkdi j ≤ ck, 1 ≤ k ≤ m. (11)

Finally, the cost function Equation (2) remains the same.
Remark. The above MIQP model for COP does not allow

two robots to start from the same base. We can easily ac-
commodate such scenarios via modifying Equations (7), (8),
and (9) accordingly. Also, if a fixed base is not required, the
models can be easily modified to accommodate this.

C. Application to Persistent Monitoring Tasks

We project that our MIQP models will be useful in ap-
proaching OPs in which the objective is not simple linear
summations of individual utility at the nodes. Here, we il-
lustrate COP as a relaxed problem for multi-robot persistent
monitoring tasks. As an example application, we look at planar
networks. Such networks are fairly prevalent in persistent
monitoring tasks.2 To connect to COP, we assume that the
fi’s in Equation (1) take the form

ψ(vi, t) = α0i + ∑
v j∈Ni

α jiψ(v j, t), (12)

in which α0i and α ji’s are coefficients. Note that when not
all values of ψ are available for nodes in Ni, Equation (12)
can still be applied. To map these coefficients to our relaxed
COP models, for each w ji, we compute two sets of coefficients
(using historical data). The first set of coefficients α ′

ji’s are
computed assuming all of Ni are available; the second set,
α ′′

ji’s, are computed assuming v j is vi’s only neighbor. We
then compute the weight w ji via

w ji =
α ′

ji +α ′′
ji

∑k∈Ni(α
′
ki +α ′′

ki)
. (13)

Equation (13) was chosen to balance the impact of single
neighbors as well as the impact of the entire neighborhood
in estimating the value of ψ of a node using its neighbors.

IV. SIMULATION EXPERIMENTS

In this section, we first evaluate MIQP models for COP
over various benchmark examples. Then, we apply the models
to a realistic synthetic scalar field that varies spatially and
temporally. All computations were performed on a computer
with Intel Core-i7 3930K CPU under an 8GB JavaVM. The
MIQP solver used is Gurobi[29].

2For example, cities and connecting roads form such natural node networks.
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A. Validity of the MIQP Models for COP

We first verify the validity of the MIQP models, i.e., we
check whether the models actually maximizes the objective
function given by Equation (2). For this task, we begin with a
single robot. Here, 3×3 and 4×4 grid networks are used with
unit edge length as test node networks. For such grids, we set
the weights w ji for a vertex i simply as 1/|Ni|. For example,
if vertex i has three neighbors, then all w ji’s are set to 1/3.

Fig. 2. Single robot tours for travel budgets 2,3,4,5, and 6, in that order,
from left to right.

For the 3×3 grid, we let the single robot start at the middle
node on the top row (the circled node in Figure 2) and let the
maximum allowed travel budget vary from 2 to 6 with unit
increments. Each node has a unit utility. The computed tours
for these budges are are illustrated in Figure 2, with utilities as
4.0,4.5,5.7,7.3, and 9 (maximum possible), respectively. One
can easily verify (manually) that these are consistent with the
design of the MIQP model for a single robot.

Fig. 3. Single robot tours for travel budgets 4,8, and 12, in that order, from
left to right.

For the 4× 4 grid, under a similar setup, we get the tours
as illustrated in Figure 3 for travel budgets 4,8, and 12,
respectively. The associated maximum utilities are 6.2,11.5,
and 16.0, respectively.

Fig. 4. Two-robot tours for travel budgets (per robot) 3,5, and 7, in that
order, from left to right.

Next, a two-robot setup is tested on the 4×4grid, with the
robots starting at opposite locations as indicated as the red
and purple circled nodes in Figure 4, which illustrates the
tours with individual travel budgets 3,5, and 7, respectively.
The associated maximum utilities are 7.2,12.5, and 16.0,
respectively. Each problem instance in this subsection took
at most two seconds to solve.

B. Irregular Node Network

Our second experiment works with the irregular, realistic
node network from Figure 1. The bounding rectangle of the
network is roughly 13 units by 8 units. For this network,
synthetic weights (wi j’s) are again computed based on the
number of neighbors. Up to three robots were attempted with
the longest running time being about 100 seconds. The trial
results and the associated parameters are given in Figure 5.
The base nodes, indicated as colored circles, were hand picked
(only once, i.e., we did not try any other choices and then
select the best one) to be roughly evenly distributed on the
network.

(a) B=15.0, R=7.9 (b) B=25.0, R=14.7 (c) B=35.0, R=18.0

(d) B=9.0, R=10.9 (e) B=13.5, R=14.9 (f) B=18.0, R=18.0

(g) B=7.5, R=11.8 (h) B=10.5, R=15.3 (i) B=13.5, R=18.0

Fig. 5. Results from running MIQP models for COP on the irregular, realistic
node network from Figure 1. The numbers under each picture indicate the
budget (B) per tour/robot and the total utility (R), respectively.

From the result (Figure 5), we see that the MIQP model
always select tours that do not have spatial overlaps, which
is expected but nevertheless a nice feature to have. Also,
regardless of the number of robots and tours, the total travel
budgets (35.0 for one tour, 36.0 for two tours, and 40.5 for
three) to ensure full coverage of the network appear to be
similar. We note that for the cases with multiple tours, some
of the individual budgets can be shortened. For example, the
tours in Figure 5(f) can be (manually) updated to the tours in
Figure 6, with reduced total (actual) travel budget but without
reducing the collected utility. Varying individual budget is
supported in the model by default.

Fig. 6. Updated two-robot tours with the same utility as the tours in
Figure 5(f).

346



C. Computational Performance

The third experiment seeks to establish the performance of
our current MIQP models for solving COP. To evaluate the
computational performance, we again start with a single robot
and attempt grid networks with different sizes. Unlike the last
experiment, the grid network is perturbed so that the edge
lengths are no longer uniform; Figure 7 shows a typical 5×5
perturbed node network used in this experiment.

Fig. 7. A purturbed 5×5 grid network.

For a single robot, computation over a 7× 7 grid network
with 49 nodes for a full range of travel budgets can be
completed within 20 minutes. We list the computational results
in Table II. We notice from the experiment that, similar
to TOP, the computational time can vary greatly depending
on the travel budget for the same node network. The most
computationally costly instances are these with utilities (for
the given budget) close to the maximum possible utility. On
the other hand, if the travel budget is too small to yield
the maximum possible utility, then the computational cost is
relatively low. Same holds when the travel budget is very large.

TABLE II
COMPUTATIONAL PERFORMANCE THE MIQP MODEL FOR A SINGLE

ROBOT

Grid size Trial #
1 2 3 4

3×3
budget
time(s)
utility

2.7
0.04
4.0

5.4
0.08
7.6

8.1
0.01
9.0

10.8
0.01
9.0

4×4
budget
time(s)
utility

3.6
0.02
5.3

7.2
0.92
11.2

10.8
0.16
15.4

14.4
0.01
16.0

5×5
budget
time(s)
utility

4.5
0.19
6.1

9.0
8.1
13.8

13.5
33.1
20.0

18.0
4.7

25.0

6×6
budget
time(s)
utility

10.8
31.6
16.25

16.2
48.3
24.9

21.6
23.6
32.6

27.0
0.89
36.0

7×7
budget
time(s)
utility

12.6
358
20.2

18.9
376
31.2

25.2
337
39.8

31.5
2387
46.8

We also tested the case of two and three robots using
the same node networks; the model worked well with up to
6×6 grids. While all cases for 5×5 grids can be computed
relatively quickly, hard instances for the 6×6 grid took over
a day to compute, at which point we stopped the trial run.
The results are listed in Tables III and IV for the two-robot
and three-robot cases, respectively. It is interesting to see that

the computational time does not seem to vary much between
those to cases.

TABLE III
COMPUTATIONAL PERFORMANCE FOR TWO ROBOTS

Grid size Trial #
1 2 3 4

3×3
budget
time(s)
utility

2.4
0.04
6.5

3.6
0.04
9.0

4.8
0.04
9.0

6.0
0.04
9.0

4×4
budget
time(s)
utility

3.2
0.1
9.6

4.8
6.2
13.8

6.4
9.0
16.0

8.0
3.7
16.0

5×5
budget
time(s)
utility

4.0
0.4
10.5

6.0
166
16.2

8.0
1.5K
20.8

10.0
1.3K
25.0

6×6
budget
time(s)
utility

2.4
0.2
7.3

4.8
18.2
14.3

7.2
27K
20.5

TABLE IV
COMPUTATIONAL PERFORMANCE FOR THREE ROBOTS

Grid size Trial #
1 2 3 4

4×4
budget
time(s)
utility

2.1
0.5
9.8

3.2
0.2
13.5

4.3
1.8
14.6

5.3
3.2
16.0

5×5
budget
time(s)
utility

2.7
0.4
11.5

4.0
1.0
15.6

5.3
1.4K
19.8

6.7
20K
24.3

6×6
budget
time(s)
utility

3.2
1.421
14.7

4.8
157
20.3

D. Measuring a Time-Varying Scalar Field

Lastly, we perform experiments to verify the effectiveness of
Equation (13) in connecting actual scalar fields to our relaxed
COP problem and models. We focus on the case of a single
robot as the number of robots do not matter in measuring the
quality of the tours produced by the MIQP model.

Our experiments are performed over a synthetic scalar
field generated by three two-dimensional Gaussians. These
Gaussians have fixed centers but varying magnitudes and
covariance matrices over time; we fix the centers to ensure
that the spatial correlations are relatively time-invariant. The
field is simulated for 200 time steps; the snapshots of the field
at time steps 0,50,100,150, and 200 are provided in Figure 8.
The node network used here is the same 5× 5 randomized
grids (see, e.g., Figure 7 ) scaled to the dimensions of the
support of the scalar field. For each fixed travel budget, 100
random 5×5 node networks were generated. In each randomly
generated network, the nodes of the network are given equal
importance (i.e., unit utility). To estimate α ′

i j’s and α ′′
i j’s for

computing the weights, data from the first fifty time steps were
used. For running the models, the second diagonal node from
the top-left corner was used as the base node.

After a tour is produced, the quality of the tour is estimated
as follows. Visiting each node yields one quality point. For
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t = 0 t = 50 t = 100 t = 150 t = 200

Fig. 8. Snapshots of a synthetic scalar field at time steps 0,50,100,150, and 200, from left to right, respectively. [top row] Three-dimensional views. [bottom
row] Two-dimensional heat-map views.

a node that is not visited but is a neighbor of one or more
visited nodes, the values of the node at time steps 100,150,
and 200 are estimated in the following way. Let vi be such
a node and let N′

i be its neighbor set that is actually visited
by the robot. The data for vi and nodes in N′

i from t ∈ [1,50]
were used to perform multiple linear regression according to

ψ(vi, t) = β0i + ∑
v j∈N′

i

β jiψ(v j, t). (14)

The resulting parameters were then used to estimate ψ(vi, t)
for t = 100,150, and 200. Let the estimated value be ψ ′(vi, t),
we compute the quality of ψ ′(vi, t) as

∑t∈{100,150,200}(ψ(vi, t)−|ψ ′(vi, t)−ψ(vi, t)|)
∑t∈{100,150,200} ψ(vi, t)

(15)

To compare to our results, we also exhaustively search
through the network for tours starting and ending at the
same base node for the tour that minimizes the same quality
defined by Equation (15) under the same travel budget. This
experiment was limited to travel budgets 6 and 8. These
budgets correspond to tours containing up to five nodes. While
our model can produce tours with many more nodes, for
comparing the result, we have to exhaustively search through
all tours starting from the base node to find the best one,
which becomes exponentially costly for tours with more than
5 nodes. The quality score obtained this way is denoted as
“actual quality”.

TABLE V
MODEL FIDELITY OVER A SYNTHETIC SCALAR FIELD

Travel Budget Model Quality Actual quality Relative error
6.0 7.16 7.64 0.48
8.0 8.46 9.38 0.92

The comparison result is given in Table V. Using the given
metric, the average quality error was less than one, meaning
that it was not more than the error incurred by omitting a single

node. In roughly 30% of the cases, the tour found using our
method was identical to the one found using exhaustive tour
search.
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Fig. 9. Estimated scalar field based on the data obtained using the MIQP
model.

As a secondary measure of the quality of our method, we
put a regular 6× 6 node network fitted over the same field
(Figure 8) and run the MIQP model such that we just have
enough budget to obtain a full utility of 36. We let the start
node be the second left most node on the first row. From the
output we can then estimate ψ for all nodes that are not visited
on the tour. We then plot the much sparser survey data over
the same space for time steps 100,150, and 200 as shown
in Figure 9. Comparing these figures with the corresponding
ones from Figure 8, we observe that our models provide
very reasonable estimation of the entire synthetic scalar field
without the need to visit all the nodes.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce COP as an extension to OP with
a non-linear cost function, to address the problem of planning
tours for surveying a spatially correlated field that also varies
over time. Our preliminary computational experiments show
that the MIQP models for COP are effective in capturing the
spatial correlation among nearby nodes, indicating that COP
and the associated MIQP models are applicable to persistent
monitoring tasks in which the mobile robots have limited travel
range.
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As a first attempt to introduce a new problem, our discussion
of COP and its solution in the current paper is certainly limited
in its scope. In the future, we expect to extend this study in
several directions. Whereas our method is reasonably effective,
it cannot yet handle networks with a large number of nodes
quickly. We are working toward improving the current models
to make them more efficient. To improve the computational
efficiency, in addition to perfecting the MIQP model through
techniques such as reachability analysis, we hope to under-
stand from the solutions to the MIQP problems the general
structures of these (optimal or near optimal) solutions. From
there, we can then design heuristic algorithms that produce
approximate solutions quickly. Currently, we are evaluating the
performance of some preliminary heuristic algorithms; early
results show that much larger problem instances involving
hundreds of nodes can be solved quickly.

At the same time, we hope to improve our models to
better capture real-world application scenarios. Toward this
end, we note that the current weight selection criterion has
lots of room for improvement. Through a more systematic
approach, perhaps via statistical methods, we hope to derive
more principled procedures for selecting the weights for the
MIQP models.

Beyond these immediate steps, this paper only begins to
address the problem of using correlations in informative path
planning in a discrete fashion. The dual problem to this esti-
mation problem is a learning problem: how can we learn the
correlations among the nodes so as to apply the methods from
this paper? Can we do learning and estimation simultaneously?
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