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Correlated Orienteering Problem and its Application
to Persistent Monitoring Tasks

Jingjin Yu, Mac Schwager, and Daniela Rus, Fellow, IEEE

Abstract—We propose the correlated orienteering problem
(COP) as a novel nonlinear extension to the classic orienteering
problem (OP). With the introduction of COP, it becomes possi-
ble to model the planning of informative tours for the persistent
monitoring of a spatiotemporal field with time-invariant spatial
correlations using autonomous mobile robots, in which the robots
are range- or time-constrained. Our focus in this paper is QCOP,
a quadratic COP instantiation that looks at correlations between
neighboring nodes in a node network. The main feature of QCOP is
a quadratic utility function capturing the said spatial correlation.
We solve QCOP using mixed integer quadratic programming, with
the resulting anytime algorithm capable of planning multiple dis-
joint tours that maximize the quadratic utility. In particular, our
algorithm can quickly plan a near-optimal tour over a network
with up to 150 nodes. Beside performing extensive simulation
studies to verify the algorithm’s correctness and characterize its
performance, we also successfully applied QCOP to two realistic
persistent monitoring tasks: 1) estimation over a synthetic spa-
tiotemporal field and 2) estimating the temperature distribution in
the state of Massachusetts in the United States.

Index Terms—Orienteering problem, persistent monitoring,
situation awareness, spatial correlation.

I. INTRODUCTION

CONSIDER an application scenario in which unmanned
aerial vehicles (UAVs) with on-broad cameras are dis-

patched to monitor traffic at intersections in a large city. Mobile
aerial vehicles generally have limited fuel supply and, there-
fore, limited flying time. At the same time, traffic events, such
as congestion, tend to have strong spatial correlations, i.e., if
the vehicle density at an intersection is high, the same is of-
ten true at nearby intersections. Therefore, blanket coverage of
intersections following the road network’s topological structure
may offer little additional information. As aerial vehicles are not
restricted to travel along roads, routes with carefully selected,
not necessarily adjacent intersections can offer a better picture
of the current traffic situation per unit of traveled distance. The
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Fig. 1. Top: Surveillance scenario in which a range-limited UAV must cover
a large area. Bottom: Abstracted node network and the tour (dashed lines) taken
by the UAV. As a measurement is made from the UAV at a node (e.g., the black
node), the spatial correlation yields partial information about its neighbors (e.g.,
the three nearby, circled nodes). Following the given tour, much shorter than a
traveling salesman (TSP) tour, the UAV can gather at least partial information
of all nodes in the network.

following question then naturally arises: how to plan the best
tours for the UAVs so that they can collect the maximum amount
of information per flight? Such scenario (see Fig. 1) is far from
unique: identical settings appear when one wants to deploy au-
tonomous marine vehicles to collect samples for the detection
of water pollution events such as oil spills, or event when a
political candidate wants to maximize her reach given limited
travel and time budgets.

In this paper, we propose the correlated orienteering prob-
lem (COP) for capturing the above-mentioned scenarios, moti-
vated by its potential application toward autonomous persistent
surveillance and monitoring using mobile robots. COP has two
defining elements: 1) the target domain may be represented as
a network with spatial correlation between nearby nodes, and
2) each mobile robot has limited travel budget, such as dis-
tance, that is often insufficient for blanket coverage. The goal,
under these conditions, is to plan budget-limited tour(s) for
the robot(s) to maximize the total information gain as mea-
sured by some reward function. Convexity or submodularity
(of the information gain) over the underlying domain is not as-
sumed. To demonstrate the modeling power of COP, we focus on
quadratic correlated orienteering problem (QCOP) as a
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concrete instantiation of COP that only examines time-invariant
spatial correlations between neighbors. Then, mixed integer
quadratic programming (MIQP) models are developed for solv-
ing QCOP for both single and multiple robots. Our comprehen-
sive evaluation suggests that COP and QCOP nicely capture
spatial correlations and the anytime MIQP algorithm quickly
produces approximate solutions to QCOP for instances with
about 150 nodes with good optimality guarantees. COP and
QCOP are NP-hard problems.

Related work: A problem closely related to COP is the
orienteering problem (OP) [1]. OP, as indicated by its name,
has its origin from orienteering games [2], [3]. In such a game,
rewards of uniform or varying sizes are spatially scattered. To
collect a reward, a player must physically visit the location
where the reward is placed to “pick it up.” The goal for a player
or a team of players is to plan the best path(s) to gather the
maximum possible reward in the allocated time. Thus, OP can
be viewed as a variation of both the Knapsack problem [4] and
the traveling salesman problem (TSP) [5]. Research on OP has
yielded effective algorithms for solving many versions of the
problem, including the team orienteering problem (TOP) [2],
in which multiple tours must be planned.1 For a detailed ac-
count of OP, see [1]. The key (and crucial) difference between
OP and COP is that OP assumes that neighboring nodes have
no correlation.

The information collection perspective of COP is tightly
linked to informative path and policy planning problems. The
literature on informative path and policy planning for persis-
tent monitoring is fairly rich, covering theories, systems, al-
gorithm designs, and applications. Fundamental limits as well
as provably correct algorithms were established for a variety
of persistent monitoring problems, for example, in graph-based
settings [6], pertaining to minimalism process design [7], for
the monitoring of a continuously evolving scalar field [8], [9],
or for stochastic data harvesting [10]–[12]. At the same time,
comprehensive systems have been designed to address specific
application domains, such as aerial [13]–[15], underwater [16],
and multidomain [17] applications. On work most closely re-
lated to ours, in [6], iterative TSP paths are planned to minimize
the maximum latency across all nodes in a connected network.
The authors show that the approach yields O(log n) approxi-
mation on optimality in which n is the number of nodes in the
network. The problem of generating speed profiles for robots
along predetermined cyclic paths for keeping bounded the un-
certainty of a varying field is addressed in [9], in which the
authors characterize appropriate policies for both single and
multiple robots. In [18], decentralized adaptive controllers were
designed to morph the initial closed paths of robots to focus on
regions of high importance.

Sampling-based planning methods (e.g., Probabilistic Road-
Map (PRM), Rapidly-exploring Random Trees (RRT), RRT∗,
and their variations [19]–[21]) have also been applied to in-
formative path planning problems. In [22], rapidly exploring
random graphs are combined with branch and bound methods

1Henceforth, we use Orienteering Problem (OP) as a blanket term to cover
all additive/linear utility OPs, which include TOP.

for planning the most informative path for a mobile robot. In
[8], the authors tackle the problem of planning a cyclic tra-
jectory for the estimation of a time-varying Gaussian random
field, using a variation of RRT called rapidly expanding random
cycles.

Lastly, our problem, and OP in general, also has a coverage
element. Coverage of a two-dimensional (2-D) region has been
extensively studied in robotics [23]–[27], as well as in purely
geometric settings, for example, in [28], where the proposed
algorithms compute the shortest closed routes for the continu-
ous coverage of polygonal interiors under an infinite visibility
sensing model. Coverage with limited sensing range was also
addressed [29], [30], with recent progress on approximation
algorithms [31].

Contribution: Our work brings the following contributions:
1) We introduce COP as a novel nonlinear extension to OP,

to model and harness time-invariant spatial correlations
frequently present in informative path and policy plan-
ning problems. In particular, our formulation addresses
the challenge of planning information maximizing tours
for single and multiple robots under a limited travel bud-
get.

2) We provide complete mixed integer quadratic program-
ming models for solving QCOP, a quadratic COP in-
stantiation. The MIQP models yield anytime algorithms
that can effectively compute tour(s) over networks with
tens to well over a hundred of nodes, for the (near-) opti-
mal estimation of the underlying spatially correlated spa-
tiotemporal fields. Our models and algorithms are shown
to be effective over both synthesized benchmarks and real-
world data.

In comparison to the conference publication [32], this paper
provides a thorough treatment of COP, starting from a more
general version of COP and the specialized QCOP instanti-
ation. From the perspective of algorithmic solutions, we have
developed an anytime version of the algorithm which provides a
significant boost to computational speed, allowing much larger
problems to be solved with good solution quality. In the sim-
ulation study, a much more comprehensive evaluation of the
algorithmic performance as well as simulations on real temper-
ature data are included. In particular, the superior performance
of COP (QCOP) over OP is fully demonstrated.

Organization: The rest of the paper is organized as fol-
lows. In Section II, we formally introduce COP and QCOP. In
Section III, we derive MIQP-based anytime algorithms for solv-
ing QCOP for single and multiple robots. In Section IV, we
perform extensive computational experiments to verify the cor-
rectness and evaluate the performance of our algorithmic solu-
tions. We then illustrate how QCOP may be applied to solve
realistic persistent monitoring tasks in Section V and conclude
the paper in Section VI. Table I lists symbols that are frequently
used in this paper.

II. PROBLEM STATEMENT

Due to spatial and temporal variations, spatiotemporal fields
can be highly complex and dynamic. However, in applications
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TABLE I
FREQUENTLY USED SYMBOLS AND THEIR INTERPRETATIONS

V = {vi } Node or point of interest, |V | = n

G = (V , E ) Node network
p i Two-dimensional coordinate of vi

ri Utility of knowing complete information about vi

ψ (vi , t) Time-varying scalar field
A {a1 , . . . , am }, a set of mobile robots
vb k

Start and end node for robot ak

ck Travel budget for robot ak

Π π1 , . . . , πm , a set of robot tours
J (Π) Cost function for a given set of robot tours
wi j Weight measuring vi ’s influence on vj

xi Binary variable indicating whether vi is on a tour
xi j Binary variable indicating whether vj is visited immediately after vi

xi j k Binary variable indicating whether vj is visited immediately after
vi , by robot ak

ui Integer variable, 2 ≤ ui ≤ n , the order of vi in a tour path, if used
ui k Integer variable, 2 ≤ ui k ≤ n , the order of vi in a tour path, if

used, by robot ak

di j Travel cost from vi to vj , which may be asymmetric
αi j , βi j Linear regression coefficients

involving large domains (e.g., terrains, road networks, forests,
oceans, etc.), the underlying spatial structure often does not
change quickly, limiting the variation of the field in the spa-
tial domain. The observation motivates us to work with the
premise that nearby nodes have mostly time-invariant spatial
correlations,2 even though the overall field may change signif-
icantly over time. Assuming time-invariant spatial correlations
and the field remains relatively static during a trip of the robot(s),
the COPis stated. Then, we introduce a special COP with a
quadratic cost function induced by independent, linear corre-
lations between adjacent nodes. We call this instantiation of
COP, the QCOP. Below, COP and QCOP are formally defined.

A. Correlated Orienteering Problem

Let V = {v1 , . . . , vn} be a set of spatially distributed nodes
in some workspace W ⊂ R2 . Each vi ∈ V is associated with
coordinates pi ∈ R2 . Let ψ(p, t),p ∈ R2 be a time-varying
scalar field over W . The values on the nodes of V , with a slight
abuse of notation, are denoted as ψ(vi , t), 1 ≤ i ≤ n. We assume
that the spatial relationship among the nodes of V , as determined
by ψ, induces a directed graph G over V . More precisely, G =
(V,E) has an edge (vj , vi) (i.e., −−→vj vi) if and only if ψ(vi, t) is
dependent on ψ(vj , t). That is, let Ni = {vi1 , . . . , vik

} be the
set of neighbors of vi in G, with edges pointing to vi , then for
some time-invariant fi

ψ(vi, t) = fi(ψ(vi1 , t), . . . , ψ(vik
, t)). (1)

There are m ≥ 1 mobile robots, A = {a1 , . . . , am}. Each
robot follows the standard single integrator dynamics with con-
stant magnitude on the control input. Each robot has a base node
where it must start and end its tour. For a robot ak , let its base
be vbk

∈ V . Let c : A → R+ , ak �→ ck represent the maximum
distance (budget) the mobile robots can travel before they must

2Here, we use the broad meaning of correlation, which could be, but is not
necessarily, the correlation of random variables.

Fig. 2. Two tours with the same budget over the same node network and ψ .
Here, all edges have unit length. Given a budget of three with the black node as
the starting node, intuitively, with correlations of node values between nearby
nodes, if we want to estimate ψ over all nine nodes, the tour (dashed path) on
the left is likely better because each of the nine nodes is on the tour or adjacent
to some node visited by the tour. COP aims to allow the planning of such a tour
Π through the maximization of a properly defined J (Π).

return to their respective bases. Other than the single integra-
tor dynamics and the distance budget constraints, these robots
have no other motion constraints. In particular, a robot is not
constrained to the implicitly defined graph G and can travel in a
straight line between any pi ,pj ∈ W as permitted by the travel
distance constraint.

Remark: We assume in this paper that the base nodes are
fixed to have a more focused discussion. If there is flexibility in
the base node, then techniques developed in [33] can be used to
allow automatic selection of the optimal base node.

A mobile robot can measure ψ(vi, t) when the robot reaches
vi ∈ V . Let Π = {π1 , . . . , πm} be a set of tours. Each πk ∈ Π
is a cycle for ak that goes through a set of nodes including vbk

.
The overall quality of Π is measured by some utility function
J : {Π} → R+ ∪ {0} that maps path sets to real. We do not
consider sensor measurement noises in this paper.

A COP is specified by a 4-tuple (V, ψ, {vbk
}, J). The task is

to find a policy Π that maximizes J(Π). Note that ψ is fixed but
generally unknown; it can only be measured (by mobile robots)
at particular locations and time instances. An illustrative and
qualitative example of what COP aims to achieve is given in
Fig. 2.

Remark: At a first glance, COP may appear to mimic a
problem whose underlying process is a Markov decision pro-
cess (MDP). In spite of some similarities (e.g., like in an MDP-
based problem, in COP, the robots take actions to go to different
physical states and the information to be collected follows some
distribution), a key difference is that it is never beneficial to
revisit a node in a COP instance but revisiting a state in an
MDP problem can be rewarding. This is also a key source of
computational difficulty associated with COP because dynamic
programming techniques that are useful in solving MDP prob-
lems can no longer be applied.

B. Quadratic Correlated Orienteering Problem

Following the definition of COP, we now describe an instan-
tiation of COP with a quadratic utility (reward) function. If
tours of the m robots, Π, go through a node vi ∈ V , then a
utility of r(vi) is collected, defined according to the mapping
r : V → R+ , vi �→ ri. The robots do not gain additional util-
ity for revisiting vi . To represent the total utility of QCOP, let
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{x1 , . . . , xn} be n binary variables, with xi = 1 if and only
if vi (i.e., pi) is on some π ∈ Π. To incorporate correlations
among the nodes during the tour planning phase while also ren-
dering the formulation more concrete, we let ψ (and therefore
{fi}) and J have the following instantiation. Let the weight
function w : E → R+ , (vj , vi) �→ wji represent the effective-
ness of using ψ(vj , t) to estimate ψ(vi, t). One may view wji as
representing the amount of information that ψ(vj , t) has about
ψ(vi, t), independent of other nodes. Let wii = 0 by definition.
The utility that can be collected over a node vi is defined as

ri

⎛
⎝xi +

∑
∀vj ,wj i �=0

wjixj (xj − xi)

⎞
⎠ (2)

in which the quadratic term xj (xj − xi) is nonzero if and
only if xj = 1 and xi = 0. Essentially, (2) states that corre-
lations are only relevant for vi if vi is not directly visited by
a robot. Obviously, for each 0 ≤ i ≤ n,

∑
vj ∈Ni

wji ≤ 1. Note
that wij = wji is not assumed. Over a set of tours for the robots,
Π, the total utility to be maximized is

J(Π) =
n∑

i=1

⎛
⎝rixi +

∑
∀vj ,wj i �=0

riwjixj (xj − xi)

⎞
⎠ . (3)

We observe that the utility function (3) defines a natural
quadratic extension to OP, which has a linear utility

∑n
i=1 rixi .

We denote this COP instantiation as QCOP. By assuming inde-
pendence among wij ’s in formulating QCOP, we trade model
fidelity for computational efficiency. Nevertheless, QCOP re-
mains a computationally difficult problem.

Lemma 1: COP and QCOP are NP-hard.
Proof: We limit the case to a single robot (m = 1). First, we

establish that OP is NP-hard (note that OP has been shown to be
NP-hard [1]; a quick proof is provided here for completeness).
For this purpose, we reduce Euclidean TSP [34] to OP. An
Euclidean TSP instance is fully specified by a set of nodes V
in the plane with a real number c, with the decision problem
being whether c is enough for finding a TSP tour through all
|V | nodes. We may reduce the Euclidean TSP instance to an
OP instance via setting each node vi ∈ V to have a visiting
reward of ri ≡ 1. The OP decision problem is then simply the
following: Is a budget c enough for collecting a total reward
of |V |? Clearly, a reward of |V | is possible if and only if c is
sufficient for finding a Euclidean TSP tour over V . Because
Euclidean TSP is NP-hard [34], so is OP.

To show that COP and QCOP are NP-hard, we point out
that OP is a special case of COP and QCOP in which the
network has only nodes (i.e., the set V ) and no connections
between them. To reduce an OP instance to a COP instance,
we may simply let the function set ψ to the empty set and ask
the question: Is there a tour with a distance of no more than c
that yields a reward of J = |V |? To reduce an OP to a QCOP,
we may equivalently set all weights {wij : i �= j} to be zero and
ask the same question. �

Remark: For completeness, we point out that the utility given
by (3) can be converted to have a linear form. To do this, for
each (i, j) pair, define a binary variable zij . We then enforce

Fig. 3. Top row: Single robot tour classes under QCOP model with maximum
distance constraint set to 2, 3, 4, 5, and 6, in that order, from left to right. The
circled node is the base node. Bottom row: Possible classes of tours under
OP model with the same distance constraints from 2 to 6. Both solid (red) tours
and dotted (green) tours are optimal solutions.

zij = 1 if and only if xi(xi − xj ) = 1 by adding two constraints
zij ≤ xi and zij ≤ xi −xj +1

2 to the model. Equation (3) is then
updated to

J(Π) =
n∑

i=1

⎛
⎝rixi +

∑
∀vj ,wj i �=0

riwjizji

⎞
⎠ . (4)

Having a linear utility effectively transforms our MIQP model
into a mixed integer linear programming (MILP) model. We did
not include result on this MILP model in this paper as simula-
tion suggests that it does not demonstrate clear computational
advantage over the MIQP model.

C. Key Difference Between OP and COP

Whereas COP and QCOP models appear similar to OP, the
quadratic cost causes COP to behave differently from OP with
linear additive cost. In particular, COP encourages the spatial
exploration of the underlying domain while OP is largely a
one-dimensional model. We illustrate the difference, intuitively,
with the help of Fig. 3. For simplicity, a QCOP setup is used
with weights wji set to be 1/|Ni |. For example, if node i has
three neighbors, then all wji’s are set to 1/3. Assuming unit edge
lengths and ri = 1, for tours with maximum length constraint
of 2–6, the objective function (3) induces the tour classes given
in the top row of Fig. 3. Here, by class, we mean that there can
be similarly shaped tours with the same J(Π). These tours yield
J(Π) values of 4.0, 4.5, 5.7, 7.3, and 9 (maximum possible),
respectively. As a comparison, possible (classes of) optimal
tours for OP with the same budgets are given in the bottom
row of Fig. 3. For tour distance 2, either the red or the green
tour are the same under OP. However, they have J(Π) values of
4 and 3.18 under the QCOP model, respectively. This means
that, on average, tours found with OP do not provide the spatial
coverage to best harness correlation. Similar scenario happens
for tour distance of 3, 5, and 6. More thorough comparative
studies are provided in Section IV.

III. MIXED INTEGER QUADRATIC PROGRAMMING BASED

ANYTIME ALGORITHMS FOR QUADRATIC COP

We develop a MIQP model for solving QCOP with the
quadratic objective function specified by (3). We start from the
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case of a single mobile robot, followed by the case of multiple
robots. An algorithm outline then follows discussions on the
MIQP approach’s anytime property.

A. MIQP Model for a Single Robot

For a single robot (m = 1), we adapt the constraints for
OP from [1], which yields a compact model. Whereas our de-
scription of the model is self-contained for completeness, more
background knowledge on the development of linear OP models
can be found in [1] and the references within.

Without loss of generality, let the robot start from v1 . Let xij

be a binary variable with xij = 1 if and only if the robot visits
vj immediately after it visits vi , which does not require vi and
vj to be correlated. As it is never beneficial to revisit a node, the
robot visits any node at most once (except the base node). The
number of times that the robot enters (resp. leaves) a node i can
be written as

∑n
j=1,j �=i xji (resp.

∑n
j=1,j �=i xij ); both quantities

are at most one. The tour constraint requires
∑n

j=1,j �=i xji =∑n
j=1,j �=i xij . Recall that xi is the binary variable indicating

whether vi is visited. We have (note that x1 = 1)

n∑
j=1,j �=i

xij =
n∑

j=1,j �=i

xji = xi ≤ 1 ∀2 ≤ i ≤ n, (5)

The constraints from (5) and x1 = 1 ensure that the robot
will take a tour starting and ending at v1 . They do not, however,
prevent multiple disjoint tours from being created. To prevent
this from happening, let 2 ≤ ui ≤ n be integer variables for
2 ≤ i ≤ n and add the following constraints:

ui − uj + 1 ≤ (n − 1)(1 − xij ), 2 ≤ i, j ≤ n, i �= j. (6)

Since ui − uj + 1 ≤ n − 1 for all 2 ≤ ui, uj ≤ n, (6) can
only be violated if xij = 1. The condition xij = 1 only holds if
vj is visited immediately after vi is. Setting ui to be the order
with which vi is visited on the tour, if xij = 1, then ui − uj +
1 = 0, satisfying (6). On the other hand, if vij = 1 and there
is another tour other than the one starting from v1 , then the
right-hand side of (6) equals zero. We then must have ui < uj .
However, this condition cannot hold for all consecutive pairs of
nodes on a cycle. Thus, (6) allows a single cycle containing v1 .

The tour distance constraint can be enforced via

n∑
i=1

n∑
j=1,j �=i

xij dij ≤ c1 (7)

in which dij is the distance from vi to vj and c1 is the tour
distance constraint for the single robot. Note that the distance
dij can be asymmetric. Moreover, it is straightforward to incor-
porate sensing cost at a node vi by absorbing that cost into dij

for all j �= i. Alternatively, if the sensing cost is not compatible
with the travel cost, an additional cost constraint can be added
as well. Putting things together, we obtain a complete MIQP

model for QCOP, summarized as

maximize J(Π) =
n∑

i=1

⎛
⎝rixi +

∑
1≤j≤n,wj i �=0

riwjixj (xj − xi)

⎞
⎠

subject to

n∑
j=1,j �=i

xij =
n∑

j=1,j �=i

xji = xi ≤ 1, 1 ≤ i ≤ n, x1 = 1

ui − uj + 1 ≤ (n − 1)(1 − xij ), 2 ≤ i, j ≤ n, i �= j

n∑
i=1

n∑
j=1,j �=i

xij dij ≤ c1 . (8)

B. MIQP Model for Multiple Robots

Extending a single tour to multiple tours is straightforward.
To accommodate m robots, the variables {xij} and {ui} are
extended to xijk and uik , with 1 ≤ k ≤ m representing the
labels of the robots. Then, (5) becomes (note that xbk

= 1)
n∑

j=1,j �=i

xijk =
n∑

j=1,j �=i

xjik ≤ 1 ∀1 ≤ i ≤ n, 1 ≤ k ≤ m

(9)
m∑

k=1

n∑
j=1,j �=i

xijk =
m∑

k=1

n∑
j=1,j �=i

xjik = xi ≤ 1 ∀1 ≤ i ≤ n.

(10)

Equation (5) splits into (9) and (10) because we need (9) to
ensure that a node is used by at most one robot. With only (10)
but not (9), it can happen that one robot enters a node while a
different robot exits the same node, which should not happen.

The constraints on uik become (for all 1 ≤ k ≤ m)

uik − ujk + 1 ≤ (n − 1)(1 − xijk ), i, j �= bk , i �= j,

1 ≤ i, j ≤ n. (11)

The traveled distance constraint (7) becomes
n∑

i=1

n∑
j=1,j �=i

xijkdij ≤ ck , 1 ≤ k ≤ m. (12)

Finally, the utility function (3) remains unchanged.
Remark: The above MIQP model does not allow two robots

to start from the same base. We can accommodate such scenarios
by modifying (9) and (10) accordingly.

C. Anytime Property

An interesting and extremely useful property coming from the
MIQP-based method is its anytime property. Integer program-
ming solvers, using branch-and-bound or related algorithms,
work with a polytope containing all feasible solutions to a
(relaxed) continuous optimization problem. Roughly speaking,
solvers break the polytope into increasingly smaller pieces and
recursively check whether a piece may contain the optimal solu-
tion. At any given time, lower and upper bounds on the objective
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Algorithm 1: QCOP ESTIMATION.

Input: G = (V,E): node network, |V | = n
W = {wij}, 1 ≤ i, j ≤ n: correlation weights
VB = {vb1 , . . . , vbm

}: base nodes
C = {c1 , . . . , cm}: travel distance budgets
gap: optimality tolerance

Output: ψ′(vi, ts), 1 ≤ i ≤ n: node estimation at time ts
%Compute robot tours

1 M ← SetUpModel(G,W, VB ,C) %Set up model
2 {π1 , . . . , πbm

} ← SolveModel(M, gap)%Compute tours
%Run tours and collect data

3 {ψ′(vi, ts)} ← CollectData({π1 , . . . , πbm
})

%Estimate value at unvisited nodes
4 {ψ′(vi, ts)} ← UpdateNodeEstimate({ψ′(vi, ts)})
5 return {ψ′(vi, ts)}

function are maintained for each active piece of the polytope,
which allows the estimation of how optimal the current best
solution (called the incumbent) is. The relative difference is the
optimality gap. An optimal solution is found when the gap drops
to zero. Under the context of QCOP, because there is a trivial
feasible solution (i.e., a tour that does not go anywhere) yield-
ing an already nonzero J(Π), an anytime algorithm is obtained
naturally. As QCOP is computationally challenging, having an
anytime algorithm with known optimality gap is highly ben-
eficial. Because it generally takes increasingly more time for
an MIQP solver to find better and better solutions, having the
option to stop early at a suboptimal solution can save a signifi-
cant amount of time. As we know conservatively how optimal
the incumbent is at an arbitrary time instance during the execu-
tion process, we may stop running the algorithm and have the
confidence that a desired level of optimality is achieved.

D. Algorithm Outline

Algorithm 1 outlines the MIQP-based anytime algorithm for
solving QCOP. In lines 1 and 2, the MIQP model is set up and
solved to obtain the desired set of tours for the robots. The robots
then follow the planned tours and collect data as they pass over
the nodes on these tours in line 3. The collected data {ψ′(vi, ts)}
are subsequently updated through correlation to yield the final
estimated node values. Note that UpdateNodeEstimate(·) is only
determined when QCOP is connected to a particular spatiotem-
poral field ψ(·, ·) (an example is given in Section V).

IV. COMPUTATIONAL STUDY: EFFECTIVENESS AND

EFFICIENCY OF MIQP-BASED ALGORITHMS FOR QCOP

In this section, we perform computational experiments to
gauge the effectiveness and efficiency of the MIQP-based al-
gorithm at solving QCOP. In particular, we highlight the com-
parative advantage of QCOP over OP. For this purpose, only
lines 1 and 2 of Algorithm 1 are evaluated. We implemented
both OP and QCOP models in JAVA interfacing with Gurobi
[35]. All computations were performed on a commodity PC with

Fig. 4. Top: Single robot tours. Bottom: Two-robot tours. The numbers under
each picture indicate the budget (B) per tour/robot and the total utility (U),
respectively. Base nodes are marked with circles around the nodes.

an Intel Core-i7 5820 CPU under an 8GB JavaVM. All reported
computation time is the wall-clock time.

A. Effectiveness in Capturing Spatial Correlation

We have briefly shown the expansive coverage induced by
QCOP in Fig. 3. Here, additional examples are provided to
further demonstrate this key property of QCOP, over both regular
grids and irregular networks.

Regular Grids: Under the same setup used for obtaining Fig. 3
(i.e., unit edge length, unit reward, and neighborhood-based
weighting scheme), tours on a 4 × 4 grid are computed and
shown in Fig. 4 for a single robot (top row) and for two robots
(bottom row) under various travel budgets. For multiple robots,
we let each robot have the same distance budget. Nonuniform
budgets, however, are supported by our model by default. We
note that, in general, the base nodes (circled) are manually se-
lected to have them reasonably separated. As we mentioned,
base node selection can be fully automated but is beyond the
scope of this paper. We observe that the objective of QCOP ap-
pears to expand to assume a 2-D structure whenever possible.
From Fig. 4, we observe that QCOP causes the tours to be
spread out over the 2-D domain.

Irregular Node Network: In the second experiment, we em-
ploy the irregular node network from Fig. 1. The bounding
rectangle of the network is set to be approximately 13 units by
8 units. For this network, weights (8’s) are also computed based
on the number of neighbors. Up to three robots were attempted
with the longest running time being about 22 s. The results are
given in Fig. 5. We again observe that QCOP ensures tour paths
to spread out spatially, allowing them to effectively capture cor-
relations among the nodes, as desired.

B. Comparison With Standard OP

Fig. 3 and the associated discussion indicate that COP and
QCOP produce tours more suitable for harnessing spatial corre-
lations than OP does. We now establish this fact quantitatively,
which is a key strength of QCOP (and COP).

Regular Grids: We revisit regular grids, but on a larger
scale, for comparing QCOP and OP. Although OP models are
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Fig. 5. Results from running MIQP models for QCOP on the irregular node
network from Fig. 1. The numbers under each picture indicate the budget (B)
per tour/robot and the total utility (U), respectively. Base nodes are marked with
circles around the nodes.

Fig. 6. Running QCOP (left) and OP (right) with the same budget of 16.

Fig. 7. Two sets of performance comparison of QCOP versus OP. Left: Exact
computation over grids of size 4 × 4, 5 × 5, and 6 × 6. Right: QCOP with
20% gap versus OP 5% gap on larger networks.

generally easier to solve computationally, for exact optimal so-
lutions and a single robot, both QCOP and OP can only handle
a grid size of 6 × 6 with a maximum of 2500 s (wall-clock time).
One set of exact solutions for QCOP and OP over a 5 × 5 grid is
given in Fig. 6. Both were given a budget of 16. Similar to Fig. 3,
the solution to QCOP covers the entire network more evenly.
However, Fig. 6 shows more clearly that OP-based solution does
not optimize spatial coverage. The overall J(Π)s [for OP, after
the linear cost based tour is computed, (3) is used to compute
J(Π)] for QCOP and OP are 23.3 and 18.3, respectively.

To provide a more complete picture, we plot the ratio of J(Π)
optimized by the QCOP model over that from the OP model,
for grids with varying sizes, in Fig. 7. In the first (left) fig-
ure, grids of sizes 4 × 4 to 6 × 6 are considered, over which

Fig. 8. Performance comparison of QCOP versus OP over the irregular
network given in Fig. 1 for 1–3 robots.

QCOP and OP can both compute optimal solutions under
2500 s. In our computational experiment, for each fixed grid
size and budget, two objective values, one for QCOP and one
for OP, are produced. Denoting these two numbers as JCOP and
JOP , and assuming the grid has N nodes, then a point in the
figure is computed as

(
max{JCOP , JOP}

N
,
JCOP

JOP

)
. (13)

As an example, for the tours from Fig. 6, N = 25, JCOP = 23.3,
JOP = 18.3. These yield a data point (0.93, 1.27). We group
the data points by the grid size N to form lines. As we can see,
QCOP produced tours that always outperform these given by
the OP model. For this set of tests, QCOP shows an advantage
around 15% with a peak difference of 29%.

The second (right) figure is constructed similarly over grids
of sizes 7 × 7 to 12 × 12. These data points are suboptimal
solutions given the difficulty of QCOP and OP. For QCOP, a gap
of 20% is used. Because OP is relatively easier to solve, we set
a gap of 5% which puts QCOP at a disadvantage. Nevertheless,
we again observe that in all but one cases, QCOP produces
better tours for harnessing correlation. This set of tests yields
an average advantage of 12% for QCOP with a peak of 30%. In
practice, with additional computation time or better computing
resources (MIQP solvers can be readily clustered), the advantage
could be further boosted.

Irregular Node Network: Over the irregular network from
Fig. 1, Fig. 8 is produced following the same procedure used for
generating Fig. 7. More budgets are incorporated in addition to
those listed in Fig. 5. This simulation provides a data point for
QCOP versus OP over both irregular networks and for multiple
robots.

We make three observations regarding Fig. 7 and Fig. 8. First,
for very small and very large budgets, QCOP and OP are ex-
pected to produce similar results. For small budgets, not enough
distance is present for providing substantial spatial coverage.
On the other hand, large budgets saturate the utility gain. Sec-
ond, for multiple robots, because robots are already spread out
on the network, the advantage of QCOP becomes less obvious
as compared to the single robot case. Third and most impor-
tantly, regardless of the network type, QCOP, even in the case of
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TABLE II
PERFORMANCE, ONE ROBOT, REGULAR GRIDS, EXACT SOLUTION

Trial #

Grid 1 2 3 4 5

4 × 4 B/U 3.2/4.3 6.4/9.7 9.6/13.7 12.8/16.0 16.0/16.0
T(s) 0.03 0.34 0.29 0.05 0.04

5 × 5 B/U 4.0/5.9 8.0/12.1 12.0/18.0 16.0/23.3 20.0/25.0
T(s) 0.02 2.4 4.4 0.94 0.3

6 × 6 B/U 4.8/5.92 9.6/14.2 14.4/22.3 19.2/28.3 24.0/34.0
T(s) 0.05 27.2 13.4 97.6 189

finding near-optimal solutions, consistently outperforms
OP with an advantage of about 14% on average. The set
of experiments, therefore, fully demonstrates that COP and
QCOP achieve the goal of picking up the nonlinear reward
(utility) that OP is unable to collect.

C. Computational Performance

In this section, the computational performance of Algorithm 1
is put to test. A 2500 s time limit is set for a single problem; the
majority of runs took much less time. We emphasize that com-
putational experiments, carried out on a commodity personal
computer, demonstrate that our approach is fully capable of
handling decent sized problems with about 150 nodes. Because
MIQP solvers can be easily distributed across machines due
to the inherent structure of branch-and-bound methods, larger
instances can be readily tackled using multiple machines with
longer computation time.

Single Robot, Regular Grid: For a single robot over regular
grids, the MIQP model can handle networks with 36 nodes when
an (exact) optimal solution is required, with all computation
completed within 200 s (Table II; B, U, and T refer to distance
budget, utility, and computation time, respectively). Some but
not all cases attempted on the 7 × 7 grid can be solved within
the time limit. When the anytime property is employed with a
maximum 20% tolerance on optimality, regular network with
144 nodes can be solved (see Table III). Because of the 20%
maximum tolerance, as the utility is getting close to the max-
imum possible, more budget does not lead to increased utility.
This happened once in Table III (the last two entries of the first
row), as the utility falls within 20% of the maximum possible
49.

Because QCOP is NP-hard, it is unclear how to asymptoti-
cally characterize the computational advantage of the anytime
property. Fig. 9 provides some intuition. Over the 6 × 6 grid
and various budget-gap combinations, the required computation
time for solving the resulting models is plotted. We observe here
speedups from several folds to several hundreds folds, which are
typical in our computational experiments.

Single Robot, Perturbed Network: As regular grids have par-
ticular structures, the performance on them may not represent
typical scenarios. To ensure a fair evaluation of the MIQP model
for QCOP, a more general set of examples is created. Starting

TABLE III
PERFORMANCE, ONE ROBOT, REGULAR GRIDS, 20% GAP

Trial #

Grid 1 2 3 4 5

7 × 7 B/U 8.4/11.6 16.8/24.3 25.2/36.4 33.6/41.9 42.0/41.0
T(s) 16.5 20.5 6.5 0.05 0.7

8 × 8 B/U 9.6/14.0 19.2/25.9 28.8/41.5 38.4/53.4 48.0/54.9
T(s) 6.3 54.8 35.9 15.9 3.2

9 × 9 B/U 10.8/15.5 21.6/31.9 32.4/47.2 43.2/62.0 54.0/68.5
T(s) 28.3 440 574 55.9 59.1

10 × 10 B/U 12.0/17.1 24.0/33.3 36.0/53.4 48.0/68.9 60.0/85.4
T(s) 125 361 86.5 145 70.9

11 × 11 B/U 13.2/18.8 26.4/38.5 39.6/58.3 52.8/77.3 66/92.6
T(s) 208 139 548 789 1874

12 × 12 B/U 14.7/20.8 19.3/40.3 44.9/64.7 58.7/87.4 73.3/106.2
T(s) 90.3 718 728 808 553

Fig. 9. Computation time for various budgets and optimality tolerance (gap)
levels over the 6 × 6 grid.

Fig. 10. Perturbed network with 28 nodes.

from a random grid, several sources of significant perturbation
are introduced.

1) For the eight-neighborhood of each node, edges are ran-
domly selected to be present with 0.5 probability.

2) The locations of the nodes are perturbed up to ±30%.
3) The utility (i.e., ri) of a node is perturbed up to ±25%.
After these modifications, the resulting network has a highly

random structure. Fig. 10 provides an example with 28 nodes.
The network is not necessarily connected.

For comparison, exact computation was done over perturbed
grids from 4 × 4 to 6 × 6. Given the randomized nature, each
data point is collected as the average over 10 sequential random-
ized runs. The result, including standard deviations, summarized
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TABLE IV
PERFORMANCE, ONE ROBOT, PERTURBED GRIDS, EXACT SOLUTION

Trial #

Grid 1 2 3 4 5

4 B 3.2 6.4 9.6 12.8 16
× U 4.7 ± 0.8 10.6 ± 1.0 15.0 ± 0.9 16.1 ± 0.5 16.0 ± 0.5
4 T(s) 0.01 ± 0.01 0.21 ± 0.05 0.28 ± 0.22 0.03 ± 0.02 0.03 ± 0.02

5 B 4 8 12 16 20
× U 6.0 ± 0.6 12.5 ± 0.9 19.5 ± 1.5 24.3 ± 0.8 25.2 ± 0.7
5 T(s) 0.03 ± 0.02 3.3 ± 2.1 5.2 ± 4.6 3.0 ± 3.2 0.2 ± 0.1

6 B 4.8 9.6 14.4 19.2 24
× U 7.5 ± 1.1 15.7 ± 1.5 25.9 ± 1.5 33.0 ± 1.8 35.7 ± 0.9
6 T(s) 0.2 ± 0.1 137 ± 120 217 ± 281 122 ± 273 57.7 ± 89.7

TABLE V
PERFORMANCE, ONE ROBOT, PERTURBED GRIDS, EXACT SOLUTION

Trial #

Grid 1 2 3 4 5

5 × 6 B/U 4/5.8 8/13.2 12/20.0 16/24.9 20/26.4
T(s) 0.07 21.0 8.1 1.2 0.4

6 × 8 B/U 4.8/7.5 9.6/15.9 14.4/24.6 19.2/32.6 24/38.8
T(s) 0.6 557 266 28.5 8.9

7 × 10 B/U 10/16.4 20/34.7 30/52.2 40/59.6 50/61.3
T(s) 981 612 60.0 13.9 8.7

8 × 12 B/U 12/21.5† 24/42.6 36/61.6 48/77.0 60/83.4
T(s) 889 1304 630 249 37.1

in Table IV, shows very similar performance characteristics as
seen in Table II. The standard deviations on computation times
show that the difficulty of the randomized problems is highly
variable.

Results on larger networks with up to about 100 nodes, with
each data point an average over 5 runs, are listed in Table V,
computed using a suboptimality tolerance of 20%. Since stan-
dard deviations do not add additional insights, they are omitted
from this table. One of the five instances per data entry did
not complete within 2500 s (the entry is marked with a † in
Table V). Scaling on networks with over 100 nodes under a
randomized setting proves to be challenging—it appears that,
although infrequently, some very hard instances get created due
to the randomization process.

Multiple Robots: Table VI lists the computational results on
grids for two robots and with up to 25 nodes; one instance is
not solved under the time limit. Because the MIQP model for
multiple robots requires one extra set of variables for each extra
robot, computing exact solutions for multiple robots quickly
becomes more difficult as the number of robots increases. For
three robots (we omit the limited detail here), an exact solution
for 25 nodes is already difficult to compute within 2500 s for
any budget. As expected, engaging the anytime property allows
us to push further in the multirobot case as well (Tables VII
and VIII). Using a 20% tolerance on optimality, we were able to
solve all instances on the 6 × 6 network and half of the instances

TABLE VI
PERFORMANCE, TWO ROBOTS, REGULAR GRIDS, EXACT SOLUTION

Trial #

Grid 1 2 3 4

4 × 4 B/U 3.2/8.5 4.8/11.8 6.4/16.0 8.0/16.0
T(s) 0.01 7.2 0.5 0.02

5 × 5 B/U 4.0/11.8 6.0/16.8 8.0/– 10.0/25.0
T(s) 16.7 2022 > 2500 14.8

TABLE VII
PERFORMANCE, TWO ROBOTS, REGULAR GRIDS, 20% GAP

Trial #

Grid 1 2 3 4

4 × 4 B/U 3.2/8.5 4.8/11.3 6.4/13.5 8.0/16.0
T(s) 0.02 2.5 0.02 0.01

5 × 5 B/U 4.0/11.8 6.0/16.8 8.0/20.8 10.0/21.3
T(s) 8.0 76.0 0.4 0.2

6 × 6 B/U 4.8/11.8 7.2/20.2 9.6/26.2 12.0/30.3
T(s) 188 1005 1004 0.9

7 × 7 B/U 5.6/– 8.4/– 11.2/31.3 14/39.2
T(s) > 2500 > 2500 951 1844

TABLE VIII
PERFORMANCE, THREE ROBOTS, REGULAR GRIDS, 20% GAP

Trial #

Grid 1 2 3 4

4 × 4 B/U 2.1/10.7 3.2/12.1 4.3/13.8 5.3/14.1
T(s) 0.01 0.02 0.21 0.04

5 × 5 B/U 2.7/11.0 4.0/17.3 5.3/19.8 6.7/21.9
T(s) 0.02 131 1992 2.3

6 × 6 B/U 3.2/12.5 4.8/– 6.4/– 8.0/30.0
T(s) 0.04 > 2500 > 2500 36.0

on the 7 × 7 grid. For three robots, a 20% gap allows us to solve
all instances on the 5 × 5 grid and half of the instances on the
6 × 6 grid.

V. APPLICATIONS TOWARD PERSISTENT MONITORING

In this section, we demonstrate how QCOP and our algo-
rithm may be applied to realistic persistent monitoring prob-
lems. Because our focus here is on estimation quality, we apply
the exact algorithm on a single mobile robot. To be extensive,
we include one simulation experiment performed over a syn-
thetic spatiotemporal field and one simulation experiment using
real temperature data from 14 weather stations in the state of
Massachusetts. When it comes to applying QCOP to persistent
monitoring tasks, we must first obtain {wij} from historical
data collected over all nodes, which is a learning problem. Re-
call that Ni := {vj | (vi, vj ) ∈ E} is the neighbor set of vi ∈ V .
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Fig. 11. Snapshots of a synthetic scalar field at time steps 0, 50, 100, 150, and 200, from left to right, respectively. Top row: Three-dimensional views. Bottom
row: Two-dimensional heat-map views.

We apply a linear regression model over ψ, i.e.,

ψ(vi, t) = α0i +
∑

vj ∈Ni

αjiψ(vj , t) (14)

in which α0i and αji’s are coefficients to be computed from
T sets of data. Equation (14) corresponds to models such as
the Gaussian process. To map these coefficients to QCOP, for
each wji , we compute two sets of such coefficients. The first
set of coefficients α′

j i’s are computed assuming all of Ni are
visited; the second set α′′

j i’s are computed assuming vj is vi’s
only visited neighbor. We then compute the weight wji via

wji =
α′

j i + α′′
j i∑

k∈Ni
(α′

ki + α′′
ki)

. (15)

Equation (15) was chosen to balance between the impact of
single neighbors and the impact of the entire neighborhood.
With {wij}, for a given travel budget, a utility maximizing tour
can be computed. Assuming the robot collects exact values at
time ts from nodes it visits, the values on nodes that are not
visited by the robot are estimated as follows. Let vi be such a
node and let N ′

i be its neighbor set such that a node vj ∈ N ′
i has

either measured or estimated value (at time ts). The historical
data for vi and nodes in N ′

i from 1 ≤ t ≤ T are then used to
perform multiple linear regression according to

ψ(vi, t) = β0i +
∑

vj ∈N ′
i

βjiψ(vj , t). (16)

The obtained β0i and βji’s can then be used to compute the
estimated ψ′(vi, ts) using (16). The process is repeated until all
nodes are covered. This iterative process defines the function
UpdateNodeEstimate(·) in Algorithm 1.

A. Measuring a Time-Varying Scalar Field

The first application-driven simulation verifies the effective-
ness of (15) in connecting scalar fields to QCOP. Our exper-
iments are performed over a synthetic scalar field generated
by three 2-D Gaussian distributions. These distributions have
fixed centers but varying intensities and covariance matrices

TABLE IX
MODEL FIDELITY OVER A SYNTHETIC SCALAR FIELD

Travel budget Model quality Actual quality Relative error

6.0 7.16 7.64 0.48
8.0 8.46 9.38 0.92

Fig. 12. Estimated scalar field using Algorithm 1.

Fig. 13. Node network of 14 weather stations in Massachusetts.

over time; we fix the centers to ensure that the spatial correla-
tions are relatively time-invariant. The field is simulated for 201
time steps; the snapshots of the field at time steps 0, 50, 100, 150,
and 200 are provided in Fig. 11. The node network used here
is a 5 × 5 randomized grid (similar to Fig. 10 but without
edge randomization) scaled to the dimensions of the support of
the scalar field. For each fixed travel budget, 100 random 5 × 5
node networks are generated. In each randomly generated net-
work, the nodes of the network are given equal importance
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Fig. 14. Heat maps of Massachusetts in four different seasons of a year. Note that the color scaling for each figure is different horizontally but the color scaling
used for each column of figures is the same. Top row: Interpolations using temperature data at 14 weather stations. Rows 2–4: Interpolations using estimated data
with various budgets.

(i.e., unit utility). To estimate α′
ij ’s and α′′

ij ’s for computing the
weights, data from the first 50 time steps were used (T = 50).
For running the model to obtain a utility maximizing tour, the
second diagonal node from the top-left corner was used as the
base node. The resulting tour is then used to obtain ψ′(vi, ts) for
ts = 100, 150, and 200, according to (16). We define the quality
of ψ′(vi, ts) as

∑
ts ∈{100,150,200}(ψ(vi, ts) − |ψ′(vi, ts) − ψ(vi, ts)|)∑

ts ∈{100,150,200} ψ(vi, ts)
. (17)

To compare to our results, we also exhaustively search
through the network for a tour starting and ending at the same
base node that minimizes the same quality defined by (17) under
the same travel budget. This experiment was limited to travel
budgets 6 and 8, corresponding to tours containing up to five
nodes. While our model can produce tours with many more
nodes, for comparing the result, we have to exhaustively search
through all tours starting from the base node to find the best
one, which becomes very costly as the number of nodes is over
5. The quality score obtained this way is denoted as the “ac-
tual quality.” The result comparing the approaches is given in
Table IX. Using the given metric, the average quality error was
less than one, meaning that it was not more than the error in-
curred by omitting a single node. In roughly 30% of the cases,
the tour found using our method was identical to the one found
using exhaustive tour search.

As a secondary and more intuitive measure of the quality of
our method, we put a regular 6 × 6 node network fitted over the
same field (see Fig. 11) and run the MIQP model such that we
just have enough budget to obtain a full utility of 36. We let
the start node be the second node from the left on the first row.
From the output, we can then estimate values for all nodes that
are not visited on the tour. We plot the much sparser survey data
over the same space for time steps 100, 150, and 200 as shown
in Fig. 12. Comparing these figures with the corresponding ones
from Fig. 11, we observe that our models provide reasonable
estimates of the entire synthetic scalar field without the need to
visit all the nodes.

TABLE X
TEMPERATURE ESTIMATION ERROR WITH RESPECT TO BUDGET

Travel Budget 2.0 3.0 4.0 5.0 6.0
Average Error (◦C) 0.46 0.27 0.22 0.15 0.08

B. Temperature Scalar Field

Our second simulation works with real temperature data re-
trieved from National Oceanographic Data Center.3 The data
consists of monthly average temperatures taken at 14 locations
in the state of Massachusetts (see Fig. 13) over a 24 month pe-
riod. Using methodology similar to the synthetic scalar field ex-
ample, we use the first year’s data as training data (i.e., T = 12)
and then run our algorithm to sample and estimate temperature
for the next year for every three months (a total of 12/3 = 4
sets of temperatures). Node 10 (Boston) is selected as the base.
The ground truth for these four sets is plotted in the top row of
Fig. 14.

For constructing the budget, since the area of Massachusetts
is relatively small, we treat it as flat and use longitudes and lat-
itudes to measure the distance between the nodes. We run our
algorithm using varying budgets from 2.0 to 6.0. The results are
plotted using heat maps in Fig. 14. Although the figures are visu-
alizations of discrete data through interpolation, via similarity,
we observe that additional budget allows better sampling and
estimation quality. Quantitatively, since temperature itself is a
good metric, we measure the quality of the estimation by sum-
ming up the absolute difference between actual and estimated
values at each node. Then, the total error is averaged over the
number of nodes. The outcome is listed in Table X. At a budget
of 3.0, which is enough to visit half of the nodes, the estimation
quality is already fairly good with an average error of 0.27 ◦C.
The error goes to less than 0.1 ◦C with a budget of 6.0. On the
other hand, visiting all nodes requires a budget of roughly 8.5.

3http://www.nodc.noaa.gov/General/temperature.html

http://www.nodc.noaa.gov/General/temperature.html
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VI. CONCLUSION AND FUTURE WORK

We introduced COP (and QCOP) as a generalization to OP to
address the problem of planning tours for surveying a spatially
correlated field that also changes over time. Our computational
experiments showed that the MIQP-based anytime algorithms
for QCOP are effective in capturing correlations among nearby
nodes, indicating that QCOP and the associated MIQP models
are applicable to persistent monitoring tasks in which the mobile
robots have limited range.

There are many promising directions along which this work
may be advanced; we mention two here. First, instead of look-
ing at only immediate correlations as we did with QCOP, it may
be beneficial look at correlations of nodes that are further apart
in the node network, i.e., nodes that are in the two- or three-
neighborhood (a k-neighborhood of a node v contains all nodes
on paths from v with at most k edges; e.g., a two-neighborhood
contains v’s neighbors and v’s neighbors’ neighbors). This ex-
tension is nontrivial because the inclusion of additional nodes
poses new computational challenges. We expect, however, the
gain in estimation accuracy will degrade quickly as the neigh-
borhood expands. Therefore, a two-neighborhood is perhaps all
that is needed. Second, for QCOP, the current weight selec-
tion criterion for applying the model in practice is somewhat
ad hoc and has room for improvement. Through a more sys-
tematic approach, perhaps via statistical methods, we hope to
derive more principled procedures for selecting the weights for
the MIQP models to further improve the modeling power and
applicability.

Furthermore, this paper only begins to address the problem
of using correlations in informative path and policy planning in
a discrete fashion. The dual problem to this estimation problem
is a learning one: How can we learn the correlations among
the nodes for applying the methods from this paper? How can
we learn with limited number of mobile robots? What about
concurrent learning and estimation?
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